JPS6014305A - Self-driving method of truck - Google Patents

Self-driving method of truck

Info

Publication number
JPS6014305A
JPS6014305A JP58121334A JP12133483A JPS6014305A JP S6014305 A JPS6014305 A JP S6014305A JP 58121334 A JP58121334 A JP 58121334A JP 12133483 A JP12133483 A JP 12133483A JP S6014305 A JPS6014305 A JP S6014305A
Authority
JP
Japan
Prior art keywords
markers
image sensors
images
angles
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58121334A
Other languages
Japanese (ja)
Inventor
Hiroshi Tatsumi
博司 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP58121334A priority Critical patent/JPS6014305A/en
Publication of JPS6014305A publication Critical patent/JPS6014305A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To set easily a driving target and to improve greatly the working efficiency by keeping the differences of angles formed by the straight lines connecting markers and left and right image sensors and center line of a truck within a set range respectively. CONSTITUTION:Markers 6 and 7 are set on a virtual driving target (lc) with a prescribed distance (y) secured between them. The images of markers 6 and 7 are projected to a pair of image sensors 4 respectively. These sensors 4 detect the right-left displacement distance to optical axes (lb) of those images. Based on the result of this detection, each camera 5 calculates successively at the angles theta1a, theta1b, theta2a and theta2b formed by markers 6 and 7 respectivly through an automatic controller. Then an automatic controller controls an automatic steering device to a driving device 1 so as to maintain relations theta1a-theta1b<=epsilon1 and theta2a-theta2b<=epsilon2 in terms of the absolute values of said angles. Thus the direction and the right-left position can be corrected for a truck body A.

Description

【発明の詳細な説明】 本発明は、例えば、溝掘作業において掘削作業車を溝掘
予定ラインに沿って自動走行させる等の各種作業車の自
走方法に関し、その目的は、走行目標の設定を容易にす
る点にある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a self-propelling method for various working vehicles, such as, for example, making an excavating vehicle automatically travel along a trenching planned line during trenching work, and the purpose of the present invention is to set a traveling target. The point is to make it easier.

本発明による作業車の自走方法の特徴手段は、2組のイ
メージセンザ一対全作業車に、その左右中心線に対して
左右にほぼ等距離づつ振分けて設けておき、走行目標線
上に2個のマーカを離して並べ、それらマーカ夫々の像
をmJ記間両イメージセンサ対に各別に写し、それらイ
メージセンサ−の像に基いて、前記マーカ夫々とその像
を写す左右のイメージセンサ−とを結ぶ直線と、前記作
業車の左右中心線との角度の差を設定範囲内に維持する
ように1前記作業車の向き及び左右位置を自動操向装置
によシ修正させる点にあり、その作用・効果は次の通り
である。
The characteristic means of the self-propelling method of a working vehicle according to the present invention is that two sets of image sensors are provided on each working vehicle, distributed approximately equal distances to the left and right with respect to the left and right center line, and two image sensors are placed on the traveling target line. The markers are spaced apart from each other, the images of each marker are separately captured on both image sensor pairs, and based on the images of the image sensors, the markers and the left and right image sensors that capture the image are determined. 1. The direction and lateral position of the work vehicle are corrected by an automatic steering device so as to maintain the difference in angle between the straight line connecting the work vehicle and the left-right center line of the work vehicle within a set range; The actions and effects are as follows.

つまシ、第2図(ロ)に示すように、作業車間が何らか
の原因で走行目標線(71?c)からはずれた場合、マ
ーカf61 、 +71夫々と左右イメージセンサ一対
(4)と金結ぶ直線と、作業車(3)の左右中心線(j
?a)とが成す角度(θ18) 、(θ1b)・(θ柿
)、(θ2b)(図上同位角関係で表示)が、各マーカ
+6+ 、 +71ごとに夫々設定許容範囲(ξl)、
(ξ11)内で等【7く(1θ1a−θB)I≦1ξ1
1、(θ2a−θ1b1≦151)なるように、すなわ
ち、第2図(イ)に示す状態となるように、自動操向装
置により作業車tAlの向き及び左右位置を修正させる
ことによって、作業車fAl ”r走行目標線(lc)
に沿って自走させるのである。
As shown in Figure 2 (b), if the distance between the working vehicles deviates from the target line (71?c) for some reason, a straight line connects the markers f61 and +71 and the pair of left and right image sensors (4). and the left and right center line (j
? The angles formed by a) (θ18), (θ1b)・(θpersimmon), and (θ2b) (displayed in the same angle relationship in the diagram) are set within the allowable range (ξl) for each marker +6+ and +71, respectively.
Equivalently within (ξ11) [7 (1θ1a-θB)I≦1ξ1
1. By correcting the direction and lateral position of the work vehicle tAl by the automatic steering device so that (θ2a-θ1b1≦151), that is, the state shown in FIG. 2(A), the work vehicle fAl ”r Travel target line (lc)
It is made to run on its own along the following lines.

したがって、走行目標の設定を、単に2本のマーカi6
) 、 (7) k走行目標線(ec)上に立てるだけ
で極めて奪易に行なうことができて、従来のように、走
行目標線Cec)上に、その全長にわたって白色を描い
た#)、磁気センサー用の鉄粉を散布するなどに比して
、作業能率を大巾に向上し得るに至った。
Therefore, setting the driving goal can be done simply by using the two markers i6.
), (7) k It can be carried out extremely easily by simply standing on the driving target line (ec), and as in the past, a white line is drawn along the entire length of the driving target line (Cec). Compared to methods such as dispersing iron powder for magnetic sensors, work efficiency has been greatly improved.

次に本発明の実施例を例示図に基づいて詳述付け、かつ
、その旋回台(2)に上下揺動並びに屈伸操作自在な掘
削作業装置(3)を取付けて構成したがツクホウ作業車
において、イメージセンサ一対(4)全写体とする一対
のカメラ(5)ヲ、旋回台(2)の左右中心線(/a)
に対1〜で等圧#(ハの振分は状に配置して、かつ、各
カメラ(5)の光lI[1ll(ld)が旋回台左右中
心線(4a)と平行となるように向けて、旋回台(2)
前端の左右に設けておくと共に、溝掘作業時に際して、
その溝掘予定フィンに沿う仮想走行目標線(Nc)上に
、2本のマーカ(6)。
Next, an embodiment of the present invention will be described in detail based on illustrative drawings, and an excavation work device (3) that can be vertically oscillated and can be bent and extended is attached to the swivel base (2). , a pair of image sensors (4), a pair of cameras that capture the entire object (5), a left-right center line (/a) of the swivel base (2)
Equal pressure # (distribution of C is arranged in the form of Aim at the swivel base (2)
In addition to providing them on the left and right sides of the front end, when digging trenches,
Two markers (6) are placed on the virtual travel target line (Nc) along the trenching planned fin.

(7)を、所定距離fy)だけ離して並べる状態で、か
つ、互いの対地高さ全所定高さくX)だけ異ならせた状
態で立てておく。
(7) are arranged in a state where they are separated by a predetermined distance fy) and are erected in a state where their heights from the ground differ by a total predetermined height X).

旋回台(2)と走行装置(1)とを同方向向きに固定し
た溝掘作業走行状態において、左右イメージセンサ一対
(4)に各マーカ+61 、 +71の像(6a)、(
7a)を各別に写させて、それら像(6a)、(7a)
の光軸(4b)に対する左右変位用#をイメージセンサ
一対(4)に各別に検出させると共に、その検出結果に
基づいて、各カメラ(5)に対・してマーカ+6) 、
 +71夫々と各カメラ(5)の光軸(4b)とが成す
角度、(換言すれば、同位角関係から旋回台(2)の左
右中心線(ea) ’i:成す角度)(θla) 、 
(θxb) 、 (0時)。
When the swivel table (2) and the traveling device (1) are fixed in the same direction and are running in trench digging work, the pair of left and right image sensors (4) displays the images (6a) and +71 of each marker.
7a) separately, and the images (6a) and (7a)
A pair of image sensors (4) are made to separately detect # for left and right displacement with respect to the optical axis (4b) of
+71 and the optical axis (4b) of each camera (5) (in other words, from the same angle relationship, the left and right center line (ea) of the swivel base (2) 'i: angle formed) (θla),
(θxb), (0 o'clock).

(θ81))を自動制御器(8)によシ連続的演算算出
させる。 そして、それら各マーカ+61 、 +71
ごとの算出角度(θxa)、 (θ、b)・(θia)
 、(θ、b)が夫々許容角度範囲(ξ1)、(ξき)
内において等しく維持されるように、つまり、次式(イ
)、(ロ))で示す関係が維持されるように、 101、−〇xbl≦Iξ、((イ) 1θ、a−θsbl≦l t* +、 (ti自動制御
器(81により走行装fil (11に対する自動操向
装置(9)を制御操作1.て車体囚の向き、及び、左右
位置を修正きせる。
(θ81)) is continuously calculated by the automatic controller (8). And each of those markers +61, +71
Calculated angle (θxa), (θ, b)・(θia)
, (θ, b) are the allowable angle ranges (ξ1) and (ξ), respectively.
In other words, so that the relationships shown in the following equations (a) and (b) are maintained, 101, -〇xbl≦Iξ, ((a) 1θ, a-θsbl≦l t* +, (ti The automatic controller (81) controls the automatic steering device (9) for the traveling equipment fil (11) to correct the direction of the vehicle body and the left and right position.

すなわち、第2図(ロ)に示す如く掘削反力等の影響で
走行目標線(IC)から外れた車体伝)を、第2図(イ
)に示す如く走行目標線Cl1c’)に適切に沿う状態
に1自動復帰さぜる′ととにより結果として、車体IA
Jf走行目標線(/c)に沿って適切に自動走行させる
のである。
In other words, as shown in Fig. 2 (B), the vehicle body line (IC) which has deviated from the driving target line (IC) due to the influence of excavation reaction force, etc., is properly moved to the driving target line (IC) as shown in Fig. 2 (A). As a result, the vehicle body IA
The vehicle automatically travels appropriately along the Jf travel target line (/c).

le’l前記カメラ(5)を構成するに、レンズ(5a
) f取付けたカメラボックス(511)内に、前記イ
メージセンサ一対(4)全構成する一対のイメージセン
サ・−一−ニー(4a)。
le'lThe camera (5) includes a lens (5a).
) f A pair of image sensors--one-knee (4a) that completely constitutes the pair of image sensors (4) in the attached camera box (511).

(4b) k 、光軸(う)に対j−で上下に振分は配
置し、前述の如く対地高さを異ならせて立てたマーカf
61 、 +71の像(6a’)、(7a)を上下のイ
メージセンサ(4a3.(4b)に各別に写すことによ
り、各7個のカメラ(5)で2木のマーカf61 、 
+71 ’に検出できるように構成1〜である。
(4b) Markers f are placed above and below the optical axis (U) with respect to j-, and are erected at different heights above the ground as described above.
By capturing the images (6a') and (7a) of 61 and +71 on the upper and lower image sensors (4a3.
Configurations 1 to 1 allow detection at +71'.

尚、イメージセンサ一対(4)にマーカ+61 、 +
7+の像(6a)、(7a) を写させるための具体的
光学構造は種々の改良が可能である。
In addition, the image sensor pair (4) has markers +61, +
Various improvements can be made to the specific optical structure for capturing the 7+ images (6a) and (7a).

本発明の自走方法は、建設用や農用等の各種作業車を対
象とするものである。
The self-propelled method of the present invention is intended for various types of work vehicles such as construction and agricultural vehicles.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る作業車の自走方法の実施例全示し、
第1図は作業走行状態を示す側面図、@2図(イ)、(
ロ)は、同概略平面図、第8図はカメラ構造を示す破断
斜視図である。 (4)・・・・・・イメージセンサ一対、(4a)、(
4b)・・・・・・イメージセンサ−1+6+ 、 [
71・・・・・・マーカ、(6a)。 (7a)・・・・・・像、(9)・・・・・・自動操向
装置、(Al・・・・・・作業車、(4a)・・・・・
・左右中心線、(4c)・・・・・・走行目標線、(θ
+B) 、 ((’B)) 、 C0B)、 (θmb
1”’−・・角度、(ξ])、(ξ、)・・・・・・設
定範囲、(Zl・・・・・・距離。
The drawings show all embodiments of the self-propelled method for a work vehicle according to the present invention,
Figure 1 is a side view showing the working running state, @Figure 2 (A), (
B) is a schematic plan view of the same, and FIG. 8 is a cutaway perspective view showing the camera structure. (4)...Pair of image sensors, (4a), (
4b)...Image sensor -1+6+, [
71...Marker, (6a). (7a)...Statue, (9)...Automatic steering device, (Al...Work vehicle, (4a)...
・Left and right center line, (4c)...Travel target line, (θ
+B) , (('B)) , C0B), (θmb
1”' - Angle, (ξ]), (ξ,)...Setting range, (Zl...Distance.

Claims (1)

【特許請求の範囲】[Claims] 2組のイメージセンサ一対(4)を作業車(Alに、そ
の左右中心線(/a)に対して左右にほぼ等距離(ハづ
つ振分けて設けておき、走行目標線Cec)上に2個の
マーカ(6) 、 (’nを離して並べ、それらマーカ
f6+ 、 +71夫々の像(6a)、(7a)を前記
両イメージセンサ一対(4)に各別に写し、それらイメ
ージセンサ−(4a)、(4b)の像(6a)、(7m
)に基いて、前記マーカ+6+ 、 +71夫々とその
像(6a)、(7a)を写ス左右のイメージセンサ−(
4a)、(4b)とヲ結ぶ直線と、前記作業車間の左右
中心線(/?a ’)との角度(θ、a) 、 (θ1
b)・(θ、、)、 (θIIb)の差を設定範囲(ξ
1’L(ξハ内に維持するように、前記作業車(A)の
向き及び左右位fll−自動操向装N(9)により修正
させる作業車の自走方法。
A pair of image sensors (4) are installed on the work vehicle (Al, at approximately equal distances (distributed to each side) on the left and right with respect to the left and right center line (/a) of the work vehicle (Al), and two pieces are placed on the driving target line Cec. The markers (6) and ('n are arranged at a distance from each other, and the images (6a) and (7a) of the markers f6+ and +71 are respectively projected onto the pair of image sensors (4), and the image sensors -(4a) , (4b) images (6a), (7m
), the markers +6+ and +71 and their images (6a) and (7a) are photographed by the left and right image sensors (
The angle (θ, a), (θ1
b)・(θ, , ), (θIIb) is set within the setting range (ξ
A method of self-propelling a working vehicle in which the direction and left/right position of the working vehicle (A) are corrected by an automatic steering system N (9) so as to maintain the working vehicle (A) within 1'L (ξ).
JP58121334A 1983-07-04 1983-07-04 Self-driving method of truck Pending JPS6014305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121334A JPS6014305A (en) 1983-07-04 1983-07-04 Self-driving method of truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121334A JPS6014305A (en) 1983-07-04 1983-07-04 Self-driving method of truck

Publications (1)

Publication Number Publication Date
JPS6014305A true JPS6014305A (en) 1985-01-24

Family

ID=14808686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121334A Pending JPS6014305A (en) 1983-07-04 1983-07-04 Self-driving method of truck

Country Status (1)

Country Link
JP (1) JPS6014305A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165130U (en) * 1985-04-04 1986-10-14
JPS63560U (en) * 1986-06-20 1988-01-05
US6934613B2 (en) * 2003-04-22 2005-08-23 Hyundai Motor Company Automated self-control traveling system for expressways and method for controlling the same
FR2918185A1 (en) * 2007-06-26 2009-01-02 Bouygues Construction Sa Tool carrying robot guiding method for drilling e.g. roof lining, wall in tunnel, involves placing markers in environment in which robot is moved, where robot is moved towards its support points while being located with respect to markers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165130U (en) * 1985-04-04 1986-10-14
JPH0432917Y2 (en) * 1985-04-04 1992-08-07
JPS63560U (en) * 1986-06-20 1988-01-05
US6934613B2 (en) * 2003-04-22 2005-08-23 Hyundai Motor Company Automated self-control traveling system for expressways and method for controlling the same
FR2918185A1 (en) * 2007-06-26 2009-01-02 Bouygues Construction Sa Tool carrying robot guiding method for drilling e.g. roof lining, wall in tunnel, involves placing markers in environment in which robot is moved, where robot is moved towards its support points while being located with respect to markers

Similar Documents

Publication Publication Date Title
CA2976890C (en) Image display system for work machine, remote operation system for work machine, and work machine
US8666571B2 (en) Flight control system for flying object
US4590356A (en) Robot navigation method for joint following
EP1087257B1 (en) Stereo camera apparatus in a vehicle
CN105241444B (en) A kind of boom-type roadheader spatial pose automatic checkout system and its measurement method
US6768813B1 (en) Photogrammetric image processing apparatus and method
JP5650942B2 (en) Inspection system and inspection method
DE102004060853A1 (en) Mobile robot and system for condensing for path scattering
JP2623157B2 (en) Control device for moving objects
US11977378B2 (en) Virtual path guidance system
JPS6014305A (en) Self-driving method of truck
JP6799557B2 (en) Work machine
JP2004352107A (en) Railway equipment managing system
JPH02212906A (en) Multi-leg type moving device
JP4276360B2 (en) Stereo imaging system
JP2673653B2 (en) Communication method to remote working machine
JPH08110229A (en) Automatic marker
JP4430789B2 (en) Stereo imaging system
JPH01165829A (en) Measurer for excavation shape in pneumatic caisson
JPH06258077A (en) Automatic excavating system
JP3344902B2 (en) Remote operation support image system for construction mobile
JPS6388403A (en) Operation marker for road sign vehicle
JP3178283B2 (en) Road curve measurement method
JPH01165827A (en) Excavator for pneumatic caisson
JPH0389103A (en) Apparatus for detecting approach of obstacle to overhead power transmission line