JPS6014289B2 - Flow velocity flow measuring device - Google Patents

Flow velocity flow measuring device

Info

Publication number
JPS6014289B2
JPS6014289B2 JP55037709A JP3770980A JPS6014289B2 JP S6014289 B2 JPS6014289 B2 JP S6014289B2 JP 55037709 A JP55037709 A JP 55037709A JP 3770980 A JP3770980 A JP 3770980A JP S6014289 B2 JPS6014289 B2 JP S6014289B2
Authority
JP
Japan
Prior art keywords
electrode
vortex generator
vortex
electrode part
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55037709A
Other languages
Japanese (ja)
Other versions
JPS56133663A (en
Inventor
太平 北島
武弘 沢山
良夫 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP55037709A priority Critical patent/JPS6014289B2/en
Publication of JPS56133663A publication Critical patent/JPS56133663A/en
Publication of JPS6014289B2 publication Critical patent/JPS6014289B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/01Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by using swirlflowmeter

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 本発明は、カルマン渦を利用した流速流量測定装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow rate measuring device that utilizes Karman vortices.

本発明の目的は、構造堅牢にして、耐熱、耐久力を有し
、外部振動ノイズに強い流速流量測定装置を提供するに
ある。
An object of the present invention is to provide a flow rate measuring device that has a robust structure, has heat resistance and durability, and is resistant to external vibration noise.

第1図は本発明の一実施例を一部断面で示す構成斜視図
、第2図は第1図の要部断面図、第3図は第1図装置に
用いられている電極部斜視図である。
FIG. 1 is a perspective view of the structure of an embodiment of the present invention partially in section, FIG. 2 is a sectional view of the main part of FIG. 1, and FIG. 3 is a perspective view of the electrode part used in the device shown in FIG. 1. It is.

これらの図において、1は被測定流体が流れる管路、2
はこの管路内に配置され管路内に渦を発生させる渦発生
体で、渦の生成を検出する検出手段としての役目をもし
ている。
In these figures, 1 is a pipe through which the fluid to be measured flows, 2
is a vortex generator disposed within this conduit to generate a vortex within the conduit, and also serves as a detection means for detecting the generation of a vortex.

この渦発生体2の一方の端は、管壁にネジ3によって固
定され、また他方の端は管路外に延長され、フランジ4
において例えばネジあるいは溶接によって固定されてい
る。なお、渦発生体2の一端は管肇に固定しなくともよ
い。渦発生体2の一方の端には、その軸方向に延びる凹
部21が形成されており、この凹部21に電極部5が渦
発生体2の一方の端から凹部の側壁と僅かな間隔を隔て
て挿入配置されている。この電極部5は、第3図にその
斜視図を示すように、フランジ53をもった円柱状部材
で構成されており、円柱表面に軸方向に平行して並ぶ二
個の電極部51,52が形成されている。ここで円柱状
部材としては、例えば高熱に耐えるセラミックが用いら
れ、この表面に例えばスパッタ、蒸着、筋付等の手段で
電極部51,52が形成される。各電極部51,52の
表面は、必要に応じて、コーティングするようにしても
よい。61,62は電極部51,52に接続されるリー
ド線で、ここでは熱に対する影響を考慮して円柱状部材
の内部を通って外部に導びかれている。
One end of this vortex generator 2 is fixed to the pipe wall with a screw 3, and the other end is extended outside the pipe and has a flange 4.
For example, it is fixed by screws or welding. Note that one end of the vortex generator 2 does not need to be fixed to the hem of the tube. A recess 21 extending in the axial direction is formed at one end of the vortex generator 2, and an electrode portion 5 is placed in the recess 21 at a slight distance from the side wall of the recess from the one end of the vortex generator 2. It is inserted and placed. As shown in a perspective view in FIG. 3, this electrode section 5 is composed of a cylindrical member with a flange 53, and two electrode sections 51 and 52 are arranged parallel to each other in the axial direction on the surface of the column. is formed. Here, as the columnar member, for example, ceramic that can withstand high heat is used, and the electrode portions 51 and 52 are formed on the surface thereof by means such as sputtering, vapor deposition, and streaking. The surfaces of each electrode portion 51, 52 may be coated, if necessary. Lead wires 61 and 62 are connected to the electrode portions 51 and 52, and are guided to the outside through the inside of the cylindrical member in consideration of the influence on heat.

この電極部5は、渦発生体の凹部に電極部51,52と
が流れ方向に対して左右対称に配置されるように挿入さ
れ、凹部21の側壁と各電極部51,52との間でコン
デンサを形成する。而して、渦発生体2の部分と、電極
部5の部分、それぞれの質量と曲げ剛性との比が等しく
なるように構成されている。
This electrode part 5 is inserted into the recess of the vortex generator so that the electrode parts 51 and 52 are arranged symmetrically with respect to the flow direction, and between the side wall of the recess 21 and each electrode part 51 and 52. form a capacitor. Thus, the vortex generating body 2 portion and the electrode portion 5 portion are configured so that the ratio of mass and bending rigidity of each portion is equal.

このように構成した装置の動作は次の通りである。The operation of the device configured as described above is as follows.

管路1内に流体が流れると、渦発生体2の両側からカル
マン渦が交互に規則的に発生し、この渦の発生に伴って
渦発生体2はその方向が交互に変る揚力を受ける。渦発
生体2が揚力を受けると、渦発生体2は第4図に示すよ
うにこの揚力に対応して僅かに変位する。渦発生体2の
揚力に伴う変位量6は、渦発生体2の形状、凹部側壁の
肉厚、片側固定か両側固定か等、種々の設計条件で変わ
るが、実用上は0.02仏m程度といった僅かな変位量
が得られればよい。渦発生体2が、このように揚力によ
って変位すると、凹部の側壁は電極部51,52の面に
対して変位し、側壁と各電極部51,52間の距離が変
わってその容量が変化する。ここで、電極部5は各電極
部51,52が第2図に示すように被測定流体の流れ方
向に対して左右対称に配置されるように凹部5に挿入さ
れているので、電極部5竃と側壁との間で形成される容
量CIと、電極部62と側壁との間で形成される容量C
2とは、渦発生体2のカルマン渦の揚力による変位(流
れ方向と直角な方向の変位)に対して互に差動的に変位
することとなる。また、流れ方向と同じ方向の振動ノイ
ズ等による変位に対しては同相的に変位することとなる
。第5図は、各電極部51,52と側壁との間の容量変
化を検出するための電気回路の一例を示す接続図である
When fluid flows in the pipe 1, Karman vortices are generated alternately and regularly from both sides of the vortex generator 2, and as these vortices are generated, the vortex generator 2 receives a lifting force whose direction alternately changes. When the vortex generator 2 receives a lift force, the vortex generator 2 is slightly displaced in response to the lift force, as shown in FIG. The amount of displacement 6 due to the lifting force of the vortex generator 2 varies depending on various design conditions such as the shape of the vortex generator 2, the thickness of the side wall of the recess, and whether it is fixed on one side or both sides, but in practice it is 0.02 French m. It suffices if a small amount of displacement such as a certain degree can be obtained. When the vortex generator 2 is thus displaced by the lifting force, the side wall of the recess is displaced with respect to the surfaces of the electrode parts 51 and 52, and the distance between the side wall and each electrode part 51 and 52 changes, changing the capacitance. . Here, the electrode part 5 is inserted into the recess 5 so that the electrode parts 51 and 52 are arranged symmetrically with respect to the flow direction of the fluid to be measured as shown in FIG. A capacitance CI formed between the oven and the side wall, and a capacitance C formed between the electrode part 62 and the side wall.
2 means that the vortex generating body 2 is differentially displaced relative to the displacement due to the lift force of the Karman vortex (displacement in the direction perpendicular to the flow direction). Furthermore, displacement due to vibration noise or the like in the same direction as the flow direction results in in-phase displacement. FIG. 5 is a connection diagram showing an example of an electric circuit for detecting a change in capacitance between each electrode part 51, 52 and a side wall.

いま、各電極部51,52の面積をS、各電極部面と凹
部側壁との間のギャップをd、空気の誘電率をご0とす
れば、容量Cは{1}式で与えられる。C=CI=C2 =ご。
Now, assuming that the area of each electrode part 51, 52 is S, the gap between each electrode part surface and the side wall of the recess is d, and the dielectric constant of air is 0, the capacitance C is given by the formula {1}. C=CI=C2=Go.

‐き ‘11ここで、渦発生体2がカルマン渦
による揚力で変位し、ギャップdが△d変位したとすれ
ば、容量の変位量△Cは‘2}式で表わすことができる
-ki '11 Here, if the vortex generating body 2 is displaced by the lift force caused by the Karman vortex and the gap d is displaced by Δd, the displacement amount ΔC of the capacitance can be expressed by the formula '2}.

△c=−c・羊 【2}例えば、電極の面積S
を80仇岬2、ギャップdを0.1肋とした場合、容量
Cは7他Fとなり、前記した側壁の変位量が0.02仏
mである場合、そのときの容量変化△Cは7×10‐2
pFとなる。
△c=-c・Sheep [2} For example, the area of the electrode S
If 80mm is 2, and the gap d is 0.1mm, the capacitance C will be 7mm, and if the displacement of the side wall is 0.02cm, then the capacitance change △C will be 7 ×10-2
pF.

各容量CI,C2は、ブリッジ回路Bの対辺に接続され
、渦の揚力変化による容量変化△Cは菱動的に検出され
、一方、ノイズ振動による同相的に変化する容量変化は
ここで相殺される。このように構成した装置は、渦発生
体2に作用する揚力を凹部側壁の僅かな変位変化とし、
この僅かな変位変化を差動的に容量変化として電気的に
検出し、被測定流体の流速に対応した数のパルス信号を
得るもので、全体構成を堅牢にでき、また、圧電素子や
ストレーンゲージ等の検出素子を用いるものでないこと
から、高温に耐え、しかもノイズ振動に影響されず高感
度であるという特長がある。また、電極部を凹部内に挿
入配置する構造とすることによって、製作が容易であり
、また電極部の点検、取換等を行なうことができる。な
お、第1図に示す装置において、凹部21と電極部5と
の間にできるギャップを真空に維持するか、あるいはH
e,A言等の不活性ガスを封入するようにしてもよい。
この場合、電極部5の着脱は制限されるが、高温におい
て電極等の酸化を防ぐことが可能となり、更に耐熱性を
向上させることができる。次に、管路振動等の外部ノイ
ズの影響に対する動作について説明する。
Each capacitor CI, C2 is connected to the opposite side of the bridge circuit B, and the capacitance change △C due to the lift change of the vortex is rhombically detected, while the capacitance change that changes in phase due to noise vibration is canceled here. Ru. The device configured in this way uses the lift force acting on the vortex generating body 2 as a slight displacement change of the side wall of the recess,
This small displacement change is electrically detected differentially as a capacitance change, and a number of pulse signals corresponding to the flow velocity of the fluid to be measured is obtained.The overall structure can be made robust, and it can also be used with piezoelectric elements and strain gauges. Because it does not use detection elements such as the above, it has the advantage of being able to withstand high temperatures, being unaffected by noise and vibration, and being highly sensitive. Further, by adopting a structure in which the electrode portion is inserted into the recess, manufacturing is easy, and the electrode portion can be inspected, replaced, etc. Note that in the apparatus shown in FIG.
It is also possible to fill in an inert gas such as E or A gas.
In this case, although the attachment and detachment of the electrode part 5 is restricted, it is possible to prevent the electrode etc. from oxidizing at high temperatures, and the heat resistance can be further improved. Next, the operation against the influence of external noise such as pipe vibration will be explained.

第6図は片持支持の場合の原理的説明図で、凶は流れゼ
ロの状態を示し、‘B}‘ま流れゼロの状態でし管路全
体が外部振動(ポンプやその他の配管振動)により励振
されている場合を示す。
Figure 6 is a diagram explaining the principle of cantilever support. This shows the case where it is excited by .

今、外部振動の振動加速度をQ(G)、渦発生体2の部
分(その支持部分を含む)の質量をMV、電極部5の部
分(その支持部を含む)の質量をMEとすると、各々に
作用する力Fv、FEは次の如くなる。
Now, if the vibration acceleration of external vibration is Q(G), the mass of the vortex generator 2 part (including its supporting part) is MV, and the mass of the electrode part 5 part (including its supporting part) is ME, The forces Fv and FE acting on each are as follows.

Fv=Mv×Qg “””{1’
FB=M8×Qg ”””【21
力Fv、FBの作用力により、渦発生体2及び電極部5
の部分はたわむ。
Fv=Mv×Qg “””{1'
FB=M8×Qg “””[21
Due to the acting forces Fv and FB, the vortex generator 2 and the electrode part 5
The part bends.

支持点からxの距離でのたわみをそれぞれav,aEと
すると、刻=鎧砦{芸くき)2−葦(号)3 十壱2(亨)4} ‐‐‐…{31aE=菱雫{
享(き)2−葦(亨)3 十毛(亨〉4} ‐‐‐…■ 但し夕;渦発生体2、電極部5の長さ E;縦弾性係数 1:断面二次モーメント となる。
If the deflection at the distance x from the support point is av and aE, respectively, then the time = armored fort {geikuki) 2 - reed (go) 3 tenichi 2 (to) 4} ---...{31aE = diamond drop {
Ki 2 - Toru 3 Toru 4 - - -…■ However, the length E of the vortex generator 2 and the electrode part 5; the longitudinal elastic modulus 1: the second moment of area. .

本発明においては、Mv−ME
……{5)Evlv一EEbに構成されているので
、‘3’{41式よりたわみ量av=aEとなる。
In the present invention, Mv-ME
...{5) Since Evlv - EEb, the amount of deflection is av=aE from equation '3'{41.

したがって、ギャップd,,らは変動しない。Therefore, the gaps d,, etc. do not change.

この結果、振動ノイズを検出することがなく、特に、渦
発生信号のパワーが小さい、低流速城でのS/N比を向
上させ測定領域を広げられる。また、密度が小さく、し
たがって、渦発生信号のパワー(渦のパワー〆L6×V
2、ここで、6:密度、V;流速)が小さい気体等の測
定にも好適となり、測定可能対象領域を広げることがで
きる。次に、本発明装置の具体的設計の一例を示すと下
記の如くなる。渦発生体2をステンレス材使用 密度6v=8、Ev:2×1ぴkg/娩 電極部5をセラミックのアルミナ材使用 密度88=3.8 E8=3.5×1びk9/松渦発生
体2の外窪め14肋、内軽◇8.55柵とすれば電極部
5の外径?8.45肌の円柱となる。
As a result, vibration noise is not detected, and the S/N ratio can be improved and the measurement area can be expanded, especially in low flow velocity castles where the power of the vortex generation signal is small. In addition, the density is small, so the power of the vortex generation signal (vortex power〆L6×V
2. Here, 6: density, V: flow velocity) is also suitable for measuring gases, etc., and the measurable target area can be expanded. Next, an example of a specific design of the device of the present invention is as follows. The vortex generator 2 is made of stainless steel, the density of which is 6v = 8, Ev: 2 x 1 kg / the electrode section 5 is made of ceramic alumina material, the density of which is 88 = 3.8, E8 = 3.5 x 1 k9 / pine vortex generation If the outer recess of body 2 is 14 ribs and the inner light is 8.55, what is the outer diameter of electrode part 5? 8.45 It becomes a cylinder of skin.

第7図は本発明の他の実施例の構成説明図である。本実
施例においては、中空部22を有する渦発生体2′に筒
状の電極部5′を挿入し、渦発生体2′及び電極部5′
の両端を管路1に固定する雨特構造としたもので、装置
全体をより堅固にできる。
FIG. 7 is a configuration explanatory diagram of another embodiment of the present invention. In this embodiment, a cylindrical electrode part 5' is inserted into a vortex generator 2' having a hollow part 22, and the vortex generator 2' and electrode part 5'
Both ends of the pipe are fixed to the conduit 1, making the entire device more solid.

なお、上述の実施例においては、渦発生体2に電極部5
が設けられていると説明したが、渦発体は管路1の上流
側に設けられており、下流に設けられた本発明装置で、
流速又は流量を測定するようにしてもよいことは勿論で
ある。
In addition, in the above-mentioned embodiment, the electrode part 5 is attached to the vortex generator 2.
Although it has been explained that the vortex generator is provided on the upstream side of the pipe line 1, the vortex generator is provided on the upstream side of the pipe line 1, and the device of the present invention provided downstream,
Of course, the flow velocity or flow rate may also be measured.

なお、上述の実施例においては、凹部21および電極部
5の断面形状は円形と説明したが、短形状あるいは他の
形状でもよい。
In the above-described embodiment, the cross-sectional shapes of the recess 21 and the electrode portion 5 are circular, but they may be rectangular or other shapes.

また、電極部5には電極部51,52が対称に設けられ
ていると説明したが、電極部51,1個のみ設けられた
ものであってもよいことは勿論である。
Moreover, although it has been explained that the electrode parts 51 and 52 are provided symmetrically in the electrode part 5, it goes without saying that only one electrode part 51 may be provided.

また、渦発生体2の部分と電極部5の部分とにおける、
質量と曲げ剛性との比は正確に等しくなくても、ほぼ等
しければ振動ノイズの除去効果の大なるものが得られる
In addition, in the vortex generator 2 part and the electrode part 5 part,
Even if the ratios of mass and bending rigidity are not exactly equal, if they are approximately equal, a great vibration noise removal effect can be obtained.

以上説明したように、本発明によれば、構造堅牢にして
、耐熱、耐久力に有し、外部振動ノイズに強い流速流量
測定装置を実現することができる。
As described above, according to the present invention, it is possible to realize a flow rate measuring device that has a robust structure, has high heat resistance and durability, and is resistant to external vibration noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を一部断面で示す構成斜視図
、第2図は第1図の要部断面図、第3図は第1図装置に
用いられる電極部斜視図、第4図は第1図装置の動作説
明図、第5図は電気回路の一例を示す接続図、第6図A
,Bは外部ノイズの影響に対する動作説明図、第7図は
本発明の他の実施例の構成説明図である。 1…・・・管路、2・・・・・・渦発生体、21・・・
・・・凹部、22・・・・・・中空部、3・・・・・・
ネジ、4・・・・・・フランジ、6・・・・・・電極部
、51,52・・・・・・電極。 〆3楓〆7函 X′図 ズZ囚 〆4四 〆J図 ズj図
FIG. 1 is a perspective view of the structure of an embodiment of the present invention partially shown in cross section, FIG. 2 is a sectional view of the main part of FIG. 1, and FIG. Figure 4 is an explanatory diagram of the operation of the device shown in Figure 1, Figure 5 is a connection diagram showing an example of an electric circuit, and Figure 6A.
, B are diagrams illustrating the operation under the influence of external noise, and FIG. 7 is a diagram illustrating the configuration of another embodiment of the present invention. 1... Pipeline, 2... Vortex generator, 21...
... recessed part, 22 ... hollow part, 3 ...
Screw, 4...flange, 6...electrode part, 51, 52...electrode. 3 Kaede 7 Boxes

Claims (1)

【特許請求の範囲】[Claims] 1 被測定流体中に配置され中空部を有する柱状の物体
と、該物体の中空部にギヤツプを隔てゝ同心状に配置さ
れた柱状の電極部を挿入し、前記中空部壁と前記電極部
との間で形成される容量を検出すると共に、その質量と
曲げ剛性との比が前記渦発生体の部分と、前記電極部の
部分とで等しくなるように構成されてなる流速流量測定
装置。
1. A columnar object disposed in the fluid to be measured and having a hollow part, and a columnar electrode part arranged concentrically with a gap in between, inserted into the hollow part of the object, and the wall of the hollow part and the electrode part What is claimed is: 1. A flow rate measuring device configured to detect a capacitance formed between the vortex generating body and the electrode portion, and to have a ratio of mass to bending rigidity equal to that of the vortex generator portion and the electrode portion.
JP55037709A 1980-03-24 1980-03-24 Flow velocity flow measuring device Expired JPS6014289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55037709A JPS6014289B2 (en) 1980-03-24 1980-03-24 Flow velocity flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55037709A JPS6014289B2 (en) 1980-03-24 1980-03-24 Flow velocity flow measuring device

Publications (2)

Publication Number Publication Date
JPS56133663A JPS56133663A (en) 1981-10-19
JPS6014289B2 true JPS6014289B2 (en) 1985-04-12

Family

ID=12505043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55037709A Expired JPS6014289B2 (en) 1980-03-24 1980-03-24 Flow velocity flow measuring device

Country Status (1)

Country Link
JP (1) JPS6014289B2 (en)

Also Published As

Publication number Publication date
JPS56133663A (en) 1981-10-19

Similar Documents

Publication Publication Date Title
US5705751A (en) Magnetic diaphragm pressure transducer with magnetic field shield
US7007556B2 (en) Method for determining a mass flow of a fluid flowing in a pipe
JPS62215829A (en) Vortex flow rate measuring device
US3927566A (en) Flowmeters
US6044716A (en) Fluid pressure detector and air flow rate measuring apparatus using same
US3326041A (en) Apparatus for developing differential pressures in a conduit line
JPS6331041B2 (en)
JPS6029046B2 (en) Flow velocity flow measuring device
JPS6014289B2 (en) Flow velocity flow measuring device
US4362061A (en) Vortex shedding flow measuring device
JPH0684897B2 (en) Eddy current measuring device
JP3049176B2 (en) Vortex flowmeter and vortex sensor
JPS6046367B2 (en) Flow velocity flow measuring device
JPS58160813A (en) Vortex flow meter
RU21239U1 (en) VORTEX FLOW METER CONVERTER
JPS5928342Y2 (en) force detector
JP2001336961A (en) Vortex flowmeter
JPH037780Y2 (en)
JPS5953489B2 (en) Flow velocity flow measuring device
JPH05118889A (en) Vortex flowmeter
JPH07225141A (en) Vortex flowmeter
JPS6025528Y2 (en) Flow velocity flow measuring device
JPH0192617A (en) Vortex flowmeter
JPH01107113A (en) Vortex flowmeter
JPH06129885A (en) Vortex flow meter