JPS58160813A - Vortex flow meter - Google Patents

Vortex flow meter

Info

Publication number
JPS58160813A
JPS58160813A JP57042446A JP4244682A JPS58160813A JP S58160813 A JPS58160813 A JP S58160813A JP 57042446 A JP57042446 A JP 57042446A JP 4244682 A JP4244682 A JP 4244682A JP S58160813 A JPS58160813 A JP S58160813A
Authority
JP
Japan
Prior art keywords
vortex
receiving body
vibration
recessed portion
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57042446A
Other languages
Japanese (ja)
Inventor
Hisashi Tamura
田村 久
Takehiro Sawayama
沢山 武弘
Toshio Aga
阿賀 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP57042446A priority Critical patent/JPS58160813A/en
Publication of JPS58160813A publication Critical patent/JPS58160813A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3259Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations
    • G01F1/3266Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations by sensing mechanical vibrations

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To improve seismic resistance and an SN ratio with regards to a vortex flow meter which measures the velocity or flow rate of fluid by making use of Karman's vortex street by improving the mounting structure of a power receiving body. CONSTITUTION:When measuring fluid flows in a pipeline 1, alternating forces are acted in the floating direction of a vortex generating body 21 by Karman's vortex street. The alternating forces are drawn out to the outside as electric signals by two stress detecting parts 3a, 3b. One end 2b1 of a power receiving body 2b in this stage is inserted in the free end state into the pipe, and the mid- part 2b2 thereof is mounted to the pipeline 1 through a flexible part 22. The other end 2b3 is fixed to the pipeline 1; therefore, the sensitivity is improved, and since oscillating noises do not result in the synthesis of two kinds of oscillation modes differing in frequency characteristics, the restriction for the need of disposing the parts 3a, 3b in the positions where the amplitude ratio by the oscillations of the respective modes are equal is eliminated.

Description

【発明の詳細な説明】 本発明は、カルマン渦を利用して流体の流速または流量
を測定する渦流量針に関するものである0流体中に物体
を置くと、物体の雨後側面から交互にがつ規則的に渦が
発生し、下−流に渦列となって流れることが古くから知
られている。この渦列はカルマン渦列といわれ、単位時
間当りの渦の生成数(渦周波数)が流体の流速に比例し
ている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vortex flow needle that measures the flow velocity or flow rate of a fluid using Karman vortices. It has been known for a long time that vortices are generated regularly and flow downstream as a vortex train. This vortex street is called a Karman vortex street, and the number of vortices generated per unit time (vortex frequency) is proportional to the flow velocity of the fluid.

そこで、測定、流体を導く管路内に渦発生体を配置し、
渦の生成による揚力変化を渦発生体(tたは受力体)に
設けた圧電素子、ストレンゲージ、容量やイ7ダクタン
ス等のセンナで検出した後信号変換して流体の流速や流
量を測定する渦流量針が実用化されている。ところでこ
の種の渦流量計においては、ポンプなどにより励起され
る配管振動等の外乱振動による影響を受け、特に低流速
時のsA比が悪化するという欠点があった。
Therefore, for measurement, a vortex generator is placed inside the pipe that guides the fluid.
Changes in lift caused by vortex generation are detected using a piezoelectric element, strain gauge, capacitance, ductance, etc. installed on the vortex generator (t or force receiving body), and then the signal is converted to measure the flow velocity and flow rate of the fluid. A vortex flow needle has been put into practical use. However, this type of vortex flowmeter has the disadvantage that it is affected by external vibrations such as piping vibrations excited by a pump, etc., and the sA ratio deteriorates particularly at low flow speeds.

食品用等に使用される場合に、衛生上の観点から管路の
底面側の渦発生体端面を自由端としな性ればならないが
、この場合に、特に上記欠点の除去がむずかしい。以下
、図によって説明する。
When used for food products, etc., the end face of the vortex generator on the bottom side of the pipe must be made into a free end from the viewpoint of hygiene, but in this case, it is particularly difficult to eliminate the above-mentioned drawbacks. This will be explained below using figures.

第1図は、従来より一般に使用されている従来例の構成
説明図である。
FIG. 1 is a diagram illustrating the configuration of a conventional example that has been commonly used.

図において、1は測定流体の流れる円筒状の管路、2は
管路1に挿入された柱状の受力体で、クーテンレス材よ
りなシ一端は管路1に固定され、他端は自由端状態とな
っていゐ。21は受力体1に設けられた凹部である03
は凹部21に設けられた円板状の応力・検出部で、その
中心軸は受力体2の中心軸上にある。応力検出部3はこ
の場合は第2図に示す如く円板状の素子本体31と電極
32.33.34よりなる。電極32は薄″円板状を、
なし、素子本体31の−TM@に設けられている。一方
、電極33.34はほぼ弓形をなし、素子本体31の他
面1IIK−素子本体31の中心を挾んで、測定流体の
流れに直角方向に対称形に設けられている。素子本体3
1はこの場合は圧電素子が使用されている。4は絶縁材
よりなり、圧力検出部5を凹部21内に凹部21より絶
縁して封着する封着体で、この場合は、ガラス材が用い
られている。
In the figure, 1 is a cylindrical pipe through which the measurement fluid flows, 2 is a columnar force receiving body inserted into the pipe 1, and is made of stainless steel.One end is fixed to the pipe 1, and the other end is a free end. It is in a state. 03 21 is a recess provided in the force receiving body 1
is a disk-shaped stress/detection section provided in the recess 21, and its center axis is on the center axis of the force-receiving body 2. In this case, the stress detection section 3 consists of a disk-shaped element body 31 and electrodes 32, 33, and 34, as shown in FIG. The electrode 32 has a thin disk shape,
None, provided at -TM@ of the element body 31. On the other hand, the electrodes 33 and 34 have a substantially arcuate shape, and are symmetrically provided in a direction perpendicular to the flow of the measurement fluid across the other surface 1IIK of the element body 31 and the center of the element body 31. Element body 3
1, a piezoelectric element is used in this case. Reference numeral 4 denotes a sealing body made of an insulating material and sealing the pressure detection part 5 in the recess 21 insulated from the recess 21. In this case, a glass material is used.

以上の構成において、管路1内に測定流体が流れると渦
発生体21にはカルマン渦により第1図に示す矢印Xの
ような交番力が作用する。(以下、この方向を「揚力方
向」と称する。)この交番力は封着体゛4を介して応力
検出部5に伝達される。
In the above configuration, when the measurement fluid flows in the pipe line 1, an alternating force as indicated by the arrow X shown in FIG. 1 acts on the vortex generator 21 due to the Karman vortex. (Hereinafter, this direction will be referred to as the "lift direction.") This alternating force is transmitted to the stress detection section 5 via the sealing body 4.

この場合、受力体2には第1図に示す如く、受力体2の
中心軸をはさんで逆方向の応力変化が発生する。而して
、応力検出部3の電極32−電極33゜電極32−電極
34間にはこの応力変化に対応した電気信号(たとえば
電荷の変化)が生ずる。この変化の回数を検出すること
により渦発生周波数が検出できる。而して、電極32−
電極33.電極32−電極34間の電気出力を差動的に
処理すれば、2倍の電気出力を得ることができる。
In this case, as shown in FIG. 1, stress changes occur in the force-receiving body 2 in opposite directions across the central axis of the force-receiving body 2. An electric signal (for example, a change in electric charge) corresponding to this stress change is generated between the electrodes 32 and 33 and between the electrodes 32 and 34 of the stress detection section 3. By detecting the number of times this change occurs, the vortex generation frequency can be detected. Therefore, the electrode 32-
Electrode 33. If the electrical output between the electrodes 32 and 34 is processed differentially, twice the electrical output can be obtained.

一方、管路を伝帳してくる振動ノイズ、たとえばポンプ
、コンプレッサー、ダンパーの開閉等による振動ノイズ
の影響によシ管路全体が振れる。
On the other hand, the entire pipeline vibrates due to the influence of vibration noise transmitted through the pipeline, such as vibration noise caused by the opening and closing of pumps, compressors, dampers, etc.

この振動によって受力体2には前述交番力Xが作用する
方向に受力体2の質量分布に基ず〈交番の曲げモーメン
トMNが作用する。この交番の曲げモーメント〜により
受力体2に生ずる応力は応力検出部3においてノイズと
して検出される。
Due to this vibration, an alternating bending moment MN acts on the force receiving body 2 in the direction in which the aforementioned alternating force X acts based on the mass distribution of the force receiving body 2. The stress generated in the force-receiving body 2 by this alternating bending moment is detected as noise in the stress detection section 3.

第5図はこの曲げモーメント〜を示したもので、Msは
渦発生によって生じた交番の曲げモーメントである。
FIG. 5 shows this bending moment ~, where Ms is the alternating bending moment caused by vortex generation.

この場合、渦発生によって生じた交番の曲げモーメント
M8と振動ノイズモーメント〜とはその作用形態がほぼ
同様であるので、M、)〜の条件下でしか使用できない
。したがって、耐振性能を重視すると、測定可能流速の
下限が汎用される領域に達することができない。一方、
測定下限を重視すると、耐振性能が汎用される領域に達
し、ない。
In this case, since the alternating bending moment M8 generated by the vortex generation and the vibration noise moment ~ have almost the same mode of action, they can only be used under the conditions M, )~. Therefore, if emphasis is placed on vibration resistance, the lower limit of the measurable flow velocity cannot reach a generally used range. on the other hand,
If emphasis is placed on the lower limit of measurement, the vibration resistance will reach the range where it is commonly used.

本発明は、この問題点を解決するものである。The present invention solves this problem.

本発明の目的は、耐振性能が向上し、S/N比の良好な
渦流量計を提供するにある。
An object of the present invention is to provide a vortex flowmeter with improved vibration resistance and a good S/N ratio.

第4図は、本発明の一実施例の構成説明図である。FIG. 4 is an explanatory diagram of the configuration of an embodiment of the present invention.

図において、第1図と同一記号は同一機能を示す。以下
、第1図と相違部分のみ説明する。
In the figure, the same symbols as in FIG. 1 indicate the same functions. Hereinafter, only the differences from FIG. 1 will be explained.

2aは、管路1に挿入された柱状の受力体で、ステンレ
スよりなる。受力体2aの挿入先端は自由端状態に6す
、その途中が管路1に固定されている。
2a is a columnar force receiving body inserted into the conduit 1, and is made of stainless steel. The insertion tip of the force-receiving body 2a is in a free end state 6, and the middle part thereof is fixed to the conduit 1.

5は凹部21に隙間51をもって挿入され、二個の応力
検出部3a、 3bを、凹部21の所要位置(後述する
)に抑圧固定する固定体である。固定体5は凹部21の
開口端部で固定され、この場合は、溶接固定52−され
ている。6は第5図に示す如く、応力検出部3a、 3
bのそれぞれの出力e□、e2を演算する演算回路で、
61は第1変換増幅器、62は第2変換増幅器、63は
第1変換増幅器61と第2変換増幅器62の出力を加算
または減算する演算器である。
Reference numeral 5 denotes a fixing body that is inserted into the recess 21 with a gap 51 and presses and fixes the two stress detecting parts 3a and 3b at a predetermined position (described later) in the recess 21. The fixed body 5 is fixed at the open end of the recess 21, and in this case, it is fixed by welding 52-. 6, as shown in FIG. 5, stress detection parts 3a, 3
An arithmetic circuit that calculates the respective outputs e□ and e2 of b,
61 is a first conversion amplifier, 62 is a second conversion amplifier, and 63 is an arithmetic unit that adds or subtracts the outputs of the first conversion amplifier 61 and the second conversion amplifier 62.

以上の構成において、受力体2に、渦発生に基づく交番
力が作用すると、受力体2は、ある瞬間に°おいては、
第6図に示す如く変位する@図中矢印Xは作用する力を
表わす。而して、固定体5に着目すると、第7図に示す
如く、固定体5の下端には、曲げモーメン)Mと、受力
体2の途中が固定されているととに基づく力Fが作用し
、それぞれに基づく曲げモーメントM、、 M1□が生
ずる。これらの合成曲はモーメントとして町が発生する
In the above configuration, when an alternating force based on vortex generation acts on the force receiving body 2, the force receiving body 2 at a certain moment
As shown in FIG. 6, the displacement @arrow X in the figure represents the acting force. When we focus on the fixed body 5, as shown in FIG. , and bending moments M, , M1□ are generated based on each. These composite songs generate towns as moments.

一方、管路振動等によっては、受力体2は、全体として
振動し、そのある瞬間の変位は、第8図に示す如くなる
。前述と同様に1固定体5に着目する0凹部21の変形
により、溶接面足部分52を介して、固定体5に、曲げ
モーメン)Mo、力Foが作用し、それぞれに基づく曲
げモーメントM2□1M2□が生ずる。これらの合成曲
げモーメントとしてN2が発生する。
On the other hand, due to pipe vibration, etc., the force receiving body 2 vibrates as a whole, and its displacement at a certain moment becomes as shown in FIG. Similarly to the above, focusing on the fixed body 5, due to the deformation of the recess 21, the bending moment Mo and the force Fo act on the fixed body 5 via the welding surface foot portion 52, and the bending moment M2 □ is based on each of them. 1M2□ is generated. N2 is generated as a resultant bending moment.

また、第10図に示す如く、外乱振動にもとすき、固定
体5の下端には、曲げモーメントル、力FNと自重Wが
作用し、それぞれに基づく曲げモーメントM3□”32
’ N33が生ずる。これらの合成曲げモーメントとし
てN3が発生する。
In addition, as shown in FIG. 10, in response to disturbance vibration, a bending moment, force FN, and self-weight W act on the lower end of the fixed body 5, and a bending moment M3□"32 based on each of them acts on the lower end of the fixed body 5.
'N33 occurs. N3 is generated as a resultant bending moment.

今、応力検出部3a、 3bで検出される渦信号の電荷
の振幅をe8□、es□、凹部21の変形により検出さ
れる振動ノイズの電荷の振幅をeNOI”NO2’固定
体5自体による振動ノイズの電荷の振幅を’Nl ’”
N2とすれば、 信号分は e sinω1w(e、2−7e、1)sinr4  
     (1)振動ノイズ分は eNSin gNt −(eN02−TeN01 )F
inet)°1”(”N2−T”Nl )ssin (
oJt+tA(ω’ ))   (2)ω:信号電荷の
角周波数 ωl:ノイズ電荷の角周波数 dc ’):ノイズ電荷間の位相差 信号電荷の振幅”m1’ ”s□は渦周波数によってそ
れぞれ変化する。
Now, the amplitude of the charge of the vortex signal detected by the stress detection parts 3a and 3b is e8□, es□, and the amplitude of the charge of the vibration noise detected by the deformation of the recess 21 is eNOI"NO2", which is the vibration caused by the fixed body 5 itself. The amplitude of the noise charge is 'Nl'”
If N2, the signal component is e sinω1w (e, 2-7e, 1) sinr4
(1) Vibration noise is eNSing gNt - (eN02-TeN01)F
inet)°1”(”N2-T”Nl)ssin (
oJt+tA(ω')) (2) ω: Angular frequency of signal charge ωl: Angular frequency of noise charge dc'): Phase difference between noise charges Amplitude of signal charge "m1'"s□ changes depending on the vortex frequency. .

また箋ノイズ電荷の振幅’Nl’ @N2’ ”NOI
”NO2および位相差−(O1)も、外乱振動の加速度
および周波数によって、それぞれ変化するが、振幅の比
eNu ”N2および”NOl ’ ”NO2は、外乱
振動の加速度および周波数の影響を受けず一定である。
Also, the amplitude of the noise charge 'Nl'@N2' ”NOI
``NO2'' and phase difference -(O1) also vary depending on the acceleration and frequency of the disturbance vibration, but the amplitude ratio eNu ``N2'' and ``NOl'' ``NO2 remain constant without being affected by the acceleration and frequency of the disturbance vibration. It is.

したがって、 となるように応力検出部3a、 3bの位置を選べば、
eN・sinωt〜0   となる。
Therefore, if the positions of the stress detection parts 3a and 3b are chosen so that
eN・sinωt~0.

以上の如く、固定体5の一端を支持する受力一体2の凹
部21の剛性の影響が無視できず、また、振動ノイズが
、周波数特性の異なる2種の振動モードの合成として生
ずる場食に、(5)式の条件な満足するようK、応力検
出部3m、 3bの位置を選べば、振動ノイズを大幅に
減少することができる○第11図は、本発明の他の実施
例の構成説明図である。
As described above, the influence of the rigidity of the recess 21 of the force-receiving unit 2 that supports one end of the fixed body 5 cannot be ignored, and vibration noise is caused by field noise that is generated as a combination of two types of vibration modes with different frequency characteristics. If the positions of K and stress detection parts 3m and 3b are selected so as to satisfy the conditions of equation (5), vibration noise can be significantly reduced. Figure 11 shows the configuration of another embodiment of the present invention. It is an explanatory diagram.

本実施例においては、受力体2bの一端2b1を自由端
状態に管路1内に挿入し、途中2b2を可撓部22を介
して管路1に取付け、他端2b3を管路1に固定したも
のである。而して、応力検出部3a、 3bを、受力体
2bの他端2b3と途中2b、 f)間の所要位置に配
置したものである。
In this embodiment, one end 2b1 of the force receiving body 2b is inserted into the pipe line 1 in a free end state, the middle part 2b2 is attached to the pipe line 1 via the flexible part 22, and the other end 2b3 is inserted into the pipe line 1. It is fixed. Thus, the stress detection parts 3a, 3b are arranged at required positions between the other end 2b3 of the force receiving body 2b and the intermediate portions 2b, 2f).

このようなものにおいては、渦発生に基づく交番力によ
る変位は、第12図の如くなり、これに伴って生ずる曲
げモーメント”11は、第13図の如くなる。
In such a device, the displacement due to the alternating force due to the generation of vortices is as shown in FIG. 12, and the resulting bending moment "11" is as shown in FIG. 13.

又、管路振動等の外乱力に基づく変位は第14図の如く
なり、また、これに伴う曲げモーメントM3は第15図
の如くなる。
Further, the displacement due to disturbance force such as pipe vibration is as shown in FIG. 14, and the accompanying bending moment M3 is as shown in FIG. 15.

以上の関係を式に表わすと、 信号分は ”s ” ”sl −7−es2          
    (4)振動ノイズ分は ON ” ”Nl −TeN2           
    (5)ここで となるように、応力検出部3a、 3bの位置を選べば
、8N→0 となる。
Expressing the above relationship in the formula, the signal component is "s""sl -7-es2
(4) Vibration noise is ON ” ”Nl -TeN2
(5) If the positions of the stress detection parts 3a and 3b are chosen as shown here, 8N→0.

本実施例においては、受力体2aの途中を可撓支持する
ようにしたので、感度の大なるものが得られる。
In this embodiment, since the force receiving body 2a is flexibly supported in the middle, a high sensitivity can be obtained.

また、振動ノイズ分は、周波数特性の異なる2糧の振動
モードの合成でないので、各モードの振動による振幅比
の等しい位置に応力検出部3a、 3bを配置しなけれ
ばならない制約はない。
Further, since the vibration noise component is not a combination of two vibration modes having different frequency characteristics, there is no restriction that the stress detection units 3a and 3b must be placed at positions where the amplitude ratio due to the vibration of each mode is equal.

なお、前述の実施例においては、検出センナとして、圧
電素子よ抄なる応力検出部3を使用したものKついて説
明したが、これに限ることはなく、たとえば、ストレン
ゲージでもよく、要するに、渦発生により受力体2に作
用する交番力を検出できるものであればよい。
In the above-mentioned embodiment, the stress detecting section 3 made of a piezoelectric element was used as the detecting sensor, but the present invention is not limited to this. For example, a strain gauge may also be used. Any device that can detect the alternating force acting on the force receiving body 2 may be used.

また、前述の実施例において、受力体2は渦発生体をも
兼ねたものくついて説明したが、渦発生体を受力体2と
別体に作動、受力体2の上流側に渦発生体を配置したも
のであってもよいことは勿論である。
In addition, in the above-mentioned embodiments, the force receiving body 2 was explained as having the function of also serving as a vortex generating body. It goes without saying that a generator may be placed therein.

以上説明し喪ように、本発明によれば、耐震性が向上し
、S/N比の良好な渦流量計を実現することができる。
As explained above, according to the present invention, it is possible to realize a vortex flowmeter with improved earthquake resistance and a good S/N ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来より一般に使用されている従来例の構成説
明図、第2図は第1図の部品図、第5図。 は第1図の動作説明図、第4図は本発明の一実施例の構
成説明図、第5図は第4図の回路図、第6図〜第10図
は第4図の動作説明図、第11図は本発明の他の実施例
の構成説明図、第12図〜第15図は第11図の動作説
明図である。 1・・・管路、2・・・受力体、21・・・凹部、 3
m、 3b・・・応力検出部、31・・・素子本体、3
2.33.34・・・電極、5・・・固定体、51・・
・隙間、52・・・溶接固定、6・・・演算回路、61
・・・第1変換増幅器、62・・・第2変換増幅器、6
3・・・演算器。
FIG. 1 is an explanatory diagram of the configuration of a conventional example that has been commonly used in the past, FIG. 2 is a parts diagram of FIG. 1, and FIG. is an explanatory diagram of the operation of FIG. 1, FIG. 4 is an explanatory diagram of the configuration of an embodiment of the present invention, FIG. 5 is a circuit diagram of FIG. 4, and FIGS. 6 to 10 are explanatory diagrams of the operation of FIG. 4. , FIG. 11 is an explanatory diagram of the configuration of another embodiment of the present invention, and FIGS. 12 to 15 are explanatory diagrams of the operation of FIG. 11. DESCRIPTION OF SYMBOLS 1... Pipeline, 2... Force receiving body, 21... Recessed part, 3
m, 3b... Stress detection section, 31... Element body, 3
2.33.34... Electrode, 5... Fixed body, 51...
・Gap, 52... Welding fixation, 6... Arithmetic circuit, 61
...First conversion amplifier, 62...Second conversion amplifier, 6
3... Arithmetic unit.

Claims (2)

【特許請求の範囲】[Claims] (1)  測定流体の流れる管路と、該管路に一端が自
由端状態に挿入され途中が鉄管路に取付けられた桂状の
受力体と、該受力体の他端側に設けられた凹部と、該凹
部に配置された第1と第2七ンサと、前記凹部に隙間を
もって挿入され誼凹部の開口端部にその一端が固定され
前記第1と第2センサを前記凹部に押圧固定する柱状の
固定体と、前記第1センサよりの信号が加えられる第1
変換増幅器と、第2センナよ如の信号が加えられる第2
変換増幅器と、第1変換増幅器の出力と第2変換増幅器
の出力とを加算または減算する演算−器とを具備し、前
記第1と第2センサは信号成分の比と外乱振動にもとず
〈ノイズ成分との比が異なる二点に配置されてなる渦流
量計。
(1) A pipe line through which the fluid to be measured flows, a Katsura-shaped force receiving body whose one end is inserted into the pipe line in a free end state and whose middle part is attached to the iron pipe line, and a force receiving body provided at the other end of the force receiving body. a recessed portion, first and second sensors disposed in the recessed portion, inserted into the recessed portion with a gap, one end of which is fixed to an open end of the recessed portion, and presses the first and second sensors into the recessed portion; a columnar fixed body to be fixed; a first sensor to which a signal from the first sensor is applied;
a converter amplifier and a second sensor to which the signal of the second sensor is applied;
It comprises a conversion amplifier and an arithmetic unit that adds or subtracts the output of the first conversion amplifier and the output of the second conversion amplifier, and the first and second sensors are configured based on the ratio of signal components and the disturbance vibration. <A vortex flow meter that is placed at two points with different ratios to the noise component.
(2)前記第1と第2センナは外乱振動にもとずき前記
凹部の振動によるノイズの比と前記固定体の振動による
ノイズの比とが等しくなる二点にそれぞれ配置されたこ
とを特徴とする特許請求の範囲第1項記載の渦流量計〇
(2) The first and second sensors are respectively arranged at two points where the ratio of the noise due to the vibration of the recess and the noise due to the vibration of the fixed body are equal to each other based on external vibration. The vortex flowmeter according to claim 1
JP57042446A 1982-03-17 1982-03-17 Vortex flow meter Pending JPS58160813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57042446A JPS58160813A (en) 1982-03-17 1982-03-17 Vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042446A JPS58160813A (en) 1982-03-17 1982-03-17 Vortex flow meter

Publications (1)

Publication Number Publication Date
JPS58160813A true JPS58160813A (en) 1983-09-24

Family

ID=12636297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042446A Pending JPS58160813A (en) 1982-03-17 1982-03-17 Vortex flow meter

Country Status (1)

Country Link
JP (1) JPS58160813A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130823U (en) * 1984-07-27 1986-02-24 オ−バル機器工業株式会社 vortex flow meter
US4679445A (en) * 1986-02-03 1987-07-14 The Babcock & Wilcox Company On-line replacement sensor assembly for a vortex shedding flowmeter
US4926695A (en) * 1987-09-15 1990-05-22 Rosemount Inc. Rocking beam vortex sensor
US5343762A (en) * 1992-10-05 1994-09-06 Rosemount Inc. Vortex flowmeter
WO2000009973A1 (en) * 1998-08-12 2000-02-24 Endress + Hauser Flowtec Ag Turbulent flow sensor
US6973841B2 (en) 2004-04-16 2005-12-13 Rosemount Inc. High pressure retention vortex flow meter with reinforced flexure
US7073394B2 (en) 2004-04-05 2006-07-11 Rosemount Inc. Scalable averaging insertion vortex flow meter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130823U (en) * 1984-07-27 1986-02-24 オ−バル機器工業株式会社 vortex flow meter
US4679445A (en) * 1986-02-03 1987-07-14 The Babcock & Wilcox Company On-line replacement sensor assembly for a vortex shedding flowmeter
US4926695A (en) * 1987-09-15 1990-05-22 Rosemount Inc. Rocking beam vortex sensor
US5343762A (en) * 1992-10-05 1994-09-06 Rosemount Inc. Vortex flowmeter
US5396810A (en) * 1992-10-05 1995-03-14 Rosemount Inc. Vortex flowmeter
WO2000009973A1 (en) * 1998-08-12 2000-02-24 Endress + Hauser Flowtec Ag Turbulent flow sensor
US6352000B1 (en) 1998-08-12 2002-03-05 Flowtec Ag Vortex flow sensor
CN1131996C (en) * 1998-08-12 2003-12-24 安德雷斯和霍瑟·弗罗泰克有限公司 Turbulent flow sensor
US7073394B2 (en) 2004-04-05 2006-07-11 Rosemount Inc. Scalable averaging insertion vortex flow meter
US6973841B2 (en) 2004-04-16 2005-12-13 Rosemount Inc. High pressure retention vortex flow meter with reinforced flexure

Similar Documents

Publication Publication Date Title
US4258565A (en) Force detector
US4420983A (en) Mass flow measurement device
US4550614A (en) Oscillatory flowmeter
US3251226A (en) Apparatus for measuring mass flow and density
US4381680A (en) Mass flow meter
JPS6161607B2 (en)
JPS58160813A (en) Vortex flow meter
WO1993007450A1 (en) Noise rejecting vortex flowmeter
US4976156A (en) Impulse sensor with balanced mass-stiffness distribution
KR100732116B1 (en) Vortex flowmeter
RU2279639C2 (en) Vortex flow meter
JPS5928342Y2 (en) force detector
JPS5855816A (en) Vortex flowmeter
JP3038497B2 (en) Piezoelectric differential pressure vortex sensor
RU21239U1 (en) VORTEX FLOW METER CONVERTER
JPS6027937B2 (en) force detector
JPS5855817A (en) Vortex flowmeter
JPS58154617A (en) Vortex flow meter
SU1700371A1 (en) Mass consumption measuring unit
JPS5953489B2 (en) Flow velocity flow measuring device
JPS6244338Y2 (en)
JPS6032570Y2 (en) Flow velocity flow measuring device
JPH07225141A (en) Vortex flowmeter
JPS55101013A (en) Fluid measuring instrument
JPH06129885A (en) Vortex flow meter