JPS6013975B2 - yellow iron oxide pigment - Google Patents

yellow iron oxide pigment

Info

Publication number
JPS6013975B2
JPS6013975B2 JP14717381A JP14717381A JPS6013975B2 JP S6013975 B2 JPS6013975 B2 JP S6013975B2 JP 14717381 A JP14717381 A JP 14717381A JP 14717381 A JP14717381 A JP 14717381A JP S6013975 B2 JPS6013975 B2 JP S6013975B2
Authority
JP
Japan
Prior art keywords
iron oxide
yellow iron
pigment
aqueous solution
yellow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14717381A
Other languages
Japanese (ja)
Other versions
JPS5849694A (en
Inventor
聡一郎 信岡
孝 浅井
和明 阿度
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14717381A priority Critical patent/JPS6013975B2/en
Priority to US06/413,556 priority patent/US4459276A/en
Publication of JPS5849694A publication Critical patent/JPS5849694A/en
Publication of JPS6013975B2 publication Critical patent/JPS6013975B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Description

【発明の詳細な説明】 本発明は、粒子形態が豆粒状(楕円体)をもった、粒度
分布幅の狭い黄色酸化鉄顔料、及びその製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a yellow iron oxide pigment having a particle shape (ellipsoid) and having a narrow particle size distribution, and a method for producing the same.

その目的とするところは、色調、分散性及び耐熱性の優
れた黄色酸化鉄顔料を提供し、従来からの用途を更に拡
大し、熱加工樹脂、化粧品及びトラフイックベィント用
などへの新しい用途を開拓するところにある。現在、黄
色顔料としては、黄鉛、ストロンチウム黄、カドミウム
黄及びペンジジン黄などがある。これらはすべて有蔓性
または発煙性であるから環境汚染の防止、国民の健康保
全のために当然のことながらその使用は規制されてきて
いる。このような情勢にかんがみ、色材工業界では、上
記の有溝性黄色顔料に代る優れた無毒性黄色顔料の開発
が待望されている。黄色酸化鉄は、Q−Fe00日なる
組成でG℃thite構造を有し、針鉄鉱、黄土、オー
カーなどと呼ばれ、古くから着色材料として使用されて
きた。
The aim is to provide a yellow iron oxide pigment with excellent color tone, dispersibility, and heat resistance, further expand its existing uses, and create new uses such as heat-processable resins, cosmetics, and traffic paints. We are in the process of developing this. Currently, yellow pigments include yellow lead, strontium yellow, cadmium yellow, and penzidine yellow. Since all of these are vegetative or smoke-emitting, their use has naturally been regulated in order to prevent environmental pollution and protect the health of the public. In view of this situation, the color material industry is eagerly awaiting the development of an excellent non-toxic yellow pigment to replace the above-mentioned grooved yellow pigment. Yellow iron oxide has a composition of Q-Fe00 days and a G°Cthite structure, is called goethite, loess, ocher, etc., and has been used as a coloring material since ancient times.

これは無犠牲で耐涙性及び安定性があり、かつ安価であ
る。その用途は、塗料、印刷インキ、建築材料などを始
め、無毒性であることからイ8鰹品、タバコフィルター
の巻紙及び養鶏飼料などの着色にまで及んでいる。また
、戦後、磁気記録用磁性粉の原料としても使用されるよ
うになり、磁気記録方式の進歩普及と共にその需要の伸
びは顕著である。しかし、これの顔料としての性質は、
満足すべきものではなく改善の余地が多分にある。すな
わち、色調がやや不鮮明、針状粒形に基づく高粘性、耐
熱性が劣るなどの欠点を有している。これがため、上記
有毒性黄色顔料との代替は制約されており、かねてより
、この顔料の特性改善及び品質向上への要請は強かった
。黄色酸化鉄の製造法は、現在、硫酸第1鉄水溶液の加
水分解と空気酸化反応を応用して、微小結晶核を所望の
粒子径まで成長させる方法が採用されている。
It is sacrificial, tear-resistant, stable, and inexpensive. Its uses range from paints, printing inks, and building materials to coloring of bonito products, cigarette filter wrapping paper, and poultry feed because it is nontoxic. After the war, it also came to be used as a raw material for magnetic powder for magnetic recording, and demand for it has increased markedly as magnetic recording methods have progressed and spread. However, its properties as a pigment are
This is not something to be satisfied with and there is a lot of room for improvement. That is, they have drawbacks such as a slightly unclear color tone, high viscosity due to the acicular particle shape, and poor heat resistance. For this reason, replacement with the above-mentioned toxic yellow pigment is limited, and there has been a strong demand for improving the characteristics and quality of this pigment for some time. Currently, yellow iron oxide is produced by applying hydrolysis of an aqueous ferrous sulfate solution and air oxidation reaction to grow microcrystal nuclei to a desired particle size.

この際、硫酸第1鉄水溶液の加水分解によって生成する
硫酸を極めて緩やかに中和し結晶成長を促す方法として
、鉄屑による方法とアンモニアガスによる方法の二方法
がある。前者については、例えば、信岡ほか、工化、6
6,412(1963)に詳述されている。後者につい
ては、矢田、エレクトロニク・セラミクス、‘72’舷
.1,P.15に記載されている。これらの文献及び後
記の図3と図4から従来の黄色酸化鉄は、その粒子形態
が針状タクトイド型で、その軸比:墓謡霞は50以上で
ある。
At this time, there are two methods to very gently neutralize the sulfuric acid produced by hydrolysis of the ferrous sulfate aqueous solution and promote crystal growth: a method using iron scraps and a method using ammonia gas. Regarding the former, see, for example, Nobuoka et al., Koka, 6
6,412 (1963). Regarding the latter, see Yada, Electronic Ceramics, '72'. 1, P. 15. From these documents and FIGS. 3 and 4 described later, the particle form of conventional yellow iron oxide is acicular tactoid, and its axial ratio: grave haze is 50 or more.

その製造方法は、不溶性塩の水溶液中における結晶成長
に関するもので、その生成機構から考えて製造条件の調
整のみにより、現在以上に生成物の粒度を揃えたり均質
なものを得ることは極めて困難であり、また粒子の形や
軸比を変えることは不可能である。従って、現在市販の
黄色酸化鉄は、図3と図4に見られるように、大粒子や
小粒子が混在し、針状粒子の軸比も揃わず、幅の広い粒
度分布を示している。一般に粉体系が示す諸物性は、そ
の粉体が構成する粒子形態と相関性のあることはよく知
られている。
The manufacturing method involves crystal growth in an aqueous solution of an insoluble salt, and considering the formation mechanism, it is extremely difficult to make the particle size of the product more uniform or to obtain a more homogeneous product than at present, just by adjusting the manufacturing conditions. It is also impossible to change the shape or axial ratio of the particles. Therefore, as shown in FIGS. 3 and 4, currently commercially available yellow iron oxide has a mixture of large particles and small particles, the axial ratio of the acicular particles is not uniform, and it exhibits a wide particle size distribution. It is well known that the physical properties exhibited by a powder system are generally correlated with the particle morphology of the powder.

顔料においては、その粒子形態は、色調、隠ベイ力、吸
総量、着色力及び塗料としたときのレオロジカルな性質
や塗膜の強度などに影響を与える。黄色酸化鉄の場合、
大粒子と小粒子が混在すれば、大粒子の示す物性と小粒
子の示す物性が異なるが粉体としては相互に減殺された
統計的平均としての物性を示すことになる。色調を例に
とれば、信岡、大工試報告、軸.331, P.33(
昭44)に記述されているように、大粒子の示す色と小
粒子の示す色とは相違するから、これらを混合すれば、
絵具の温色のように減色混合となり明度と彩度が小さく
なり暗い感じの色調となる。つまり、顔料としては、粒
度分布幅の狭い粉体であることが理想である。さらに、
針状粒子の軸比の小さい分散性の良好な吸総量の低い顔
料であることが要望されている。本発明者らは、長年に
わたる黄色酸化鉄の研究から、その本質的欠点を理解し
、斯界のニーズに応え、鋭意研究を重ね、これの品質向
上のため貢献してきた。
In the case of pigments, their particle morphology influences color tone, Bay hiding power, absorption amount, coloring power, rheological properties when used as a paint, strength of paint film, etc. For yellow iron oxide,
If large particles and small particles coexist, the physical properties exhibited by the large particles are different from those exhibited by the small particles, but the powder exhibits physical properties as a statistical average that cancel each other out. Taking color tone as an example, Nobuoka, carpentry exam report, axis. 331, P. 33(
As described in 1972, the colors shown by large particles and those shown by small particles are different, so if they are mixed,
Like the warm colors of paint, it is a subtractive color mixture, and the brightness and saturation decrease, resulting in a dark tone. In other words, it is ideal for the pigment to be a powder with a narrow particle size distribution. moreover,
There is a demand for a pigment with a small axial ratio of acicular particles, good dispersibility, and a low total absorption amount. Through many years of research on yellow iron oxide, the present inventors understood its essential drawbacks, responded to the needs of the industry, conducted extensive research, and contributed to improving the quality of yellow iron oxide.

例えば特許においては、安藤、信岡、侍公昭31−32
92;信岡、浅井、阿度、椿公昭53−281斑;信岡
、浅井、阿度、U.S.Pat.,3969797:信
岡ら、特公昭55一9016などである。これらの技術
の一部は、契約され実施されている。今回、さらに新技
術を開発するに至った。それは、黄色酸化鉄の粒子形態
を針状から豆粒状へと改善し、粒度分布幅を狭くするこ
とに成功した。これによって顔料としての諸特性、すな
わち色調、分散性、安定性などを飛躍的に向上させるこ
とができた。次に本発明の構成について説明する。
For example, in patents, Ando, Nobuoka, Samurai Kosho 31-32
92; Nobuoka, Asai, Ato, Tsubaki Kimishō 53-281; Nobuoka, Asai, Ato, U. S. Pat. , 3969797: Nobuoka et al., Special Publication No. 55-9016. Some of these technologies have been contracted and implemented. This time, we have developed a new technology. It succeeded in improving the particle morphology of yellow iron oxide from needle-like to bean-like and narrowing the particle size distribution width. This made it possible to dramatically improve the various properties of the pigment, including color tone, dispersibility, and stability. Next, the configuration of the present invention will be explained.

これは次の2工程に大別できる。まず、結晶成長の種晶
として用いる粒度のよく揃った米粒状の酸化水酸化鉄粉
末の調製工程、及びその米粒状の種晶を成長させて豆粒
状の黄色酸化鉄顔料を製造する工程である。粒子形態が
米粒状の結晶種子の調製法について説明する。
This can be roughly divided into the following two steps. First, there is a process of preparing rice grain-shaped iron oxide hydroxide powder with well-uniformed particle size to be used as a seed crystal for crystal growth, and a process of growing the rice grain-shaped seed crystal to produce a bean-shaped yellow iron oxide pigment. . A method for preparing crystal seeds having a rice grain-like particle shape will be described.

第2鉄塩水溶液とアルカリ水溶液とを反応させて水酸化
鉄沈殿を作る。この際、使用する第2鉄塩は、硫酸第2
鉄、塩化第2鉄、及び硝酸第2鉄などの水溶性鉄塩であ
る。使用する濃度は、0.9M/〆以下とし、好ましく
は0.2M/そ付近である。一方、アルカ川ま、水酸化
ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カ
リウム、及び水酸化カルシウムなどである。使用濃度は
、4M/そ以下とし、好ましくはIM/〆付近である。
所定濃度以上で反応させると、生成物が不均質となり、
粒度分布幅を拡げ、好ましくない結果となる。上記、鉄
塩水溶液とアルカリ水溶液とを−5〜30qoで反応さ
せるが、この際、アルカリ水溶液に鉄塩水溶液を加える
ことが必要条件である。もしこれを逆に行えば、生成物
の粒子形態は、軸比の大きい針状となるからである。ま
た、両液を反応させる温度は、生成物の粒子径、粒子の
軸比に影響を与える重要な因子である。3ぴ0以上では
、軸比が大きくなり過ぎタクトィドを形成し易くなる。
A ferric salt aqueous solution and an alkaline aqueous solution are reacted to form an iron hydroxide precipitate. At this time, the ferric salt used is ferric sulfate.
Water-soluble iron salts such as iron, ferric chloride, and ferric nitrate. The concentration used is below 0.9M/〆, preferably around 0.2M/〆. On the other hand, they include alkaline carbonate, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and calcium hydroxide. The concentration used is 4M/lower, preferably around IM/〆.
If the reaction is carried out at a concentration higher than the specified concentration, the product will be heterogeneous,
This broadens the particle size distribution, resulting in unfavorable results. As mentioned above, the iron salt aqueous solution and the alkaline aqueous solution are reacted at -5 to 30 qo, but at this time, it is a necessary condition that the iron salt aqueous solution is added to the alkaline aqueous solution. If this is done in reverse, the particle morphology of the product will be acicular with a large axial ratio. Furthermore, the temperature at which the two liquids are reacted is an important factor that influences the particle size of the product and the axial ratio of the particles. If it is 3 pins or more, the axial ratio becomes too large and tactoids tend to form.

上記のようにして調製した水酸化鉄沈殿を3ひげ間以上
、好ましくは約1日間熟成させてから次の水熱処理を行
う。
The iron hydroxide precipitate prepared as described above is aged for three or more days, preferably about one day, and then subjected to the next hydrothermal treatment.

この熟成によって、均質な、よく揃った粒子が得られる
。熟成した沈殿を120〜250午○の範囲、好ましく
は180『0で約1時間水熱処理を施す。処理温度が低
いときは結晶化に長時間を要し、所定以上の温度では赤
色酸化鉄Q−Fe203が混在してくる。この水熱処理
によって無定形水酸化鉄沈殿の結晶化は促進され、溶解
、析出作用によって米粒状の酸化水酸化鉄q一Fe00
日すなわち黄酸化鉄が生成する。
This ripening results in homogeneous, well-ordered particles. The aged precipitate is subjected to hydrothermal treatment for about 1 hour at 120 to 250 pm, preferably 180 pm. When the processing temperature is low, it takes a long time for crystallization, and when the temperature is higher than a predetermined temperature, red iron oxide Q-Fe203 is mixed. This hydrothermal treatment promotes the crystallization of the amorphous iron hydroxide precipitate, and the dissolution and precipitation action produces grain-like iron oxide hydroxide q-Fe00.
In other words, yellow iron oxide is produced.

この米粒状の黄酸化鉄は、優れた顔料特性をもっている
が、さらにこれを結晶成長のための種晶として用い、よ
り大きい粒子に成長させ、粒子形態が豆粒状の黄色酸化
鉄顔料Q−Fe00日を製造する。結晶成長の方法とし
ては、硫酸第1鉄水溶液に種晶を加え、その水溶液の加
水分解と空気酸化反応によって種晶を成長させる。すな
わち次の反応式のようである。これによって岬eS04
十02十母LO →4Q−FeoOH十4LS04 ・・・
0}徐々に生成するQ−Fe00日は種晶の表面に析出
するが、この反応は比S04の濃度が増加すると平衡状
態に達し停止する。
This rice-grain-shaped yellow iron oxide has excellent pigment properties, but it is further used as a seed crystal for crystal growth to grow into larger particles. Manufacture the day. As a crystal growth method, seed crystals are added to a ferrous sulfate aqueous solution, and the seed crystals are grown by hydrolysis of the aqueous solution and air oxidation reaction. In other words, the reaction formula is as follows. As a result, Misaki eS04
102 Jumo LO → 4Q-FeoOH 14LS04...
0} Gradually generated Q-Fe00 is precipitated on the surface of the seed crystal, but as the concentration of S04 increases, this reaction reaches an equilibrium state and stops.

そこで、この日2S04を極めて緩かに中和い1)式を
右側に進行させ結晶成長を促す方法として金属鉄を加え
る方法■式と、アンモニアガスによる方法湖式はS04
十Fe→FeS04十日2 ・・・■弦S
04十N比→(NH4)よ○4 ・・・‘
3’とがある。
Therefore, on this day, we very gently neutralized 2S04 to make the formula 1) proceed to the right side and promote crystal growth by adding metallic iron.
10Fe→FeS04 10th 2...■String S
040N ratio → (NH4) ○4...'
There is 3'.

樋晶を成長させるためには、どちらの方法でもよいが、
成長を均一に、かつ円滑に進行させるため、種晶の添加
量、空気の呼込量、反応温度、水溶液の濃度、及び濃伴
方法などを調整して、2次核や樹枝状晶の発生を防ぐこ
とが大切である。成長条件が適応し厳密に管理されてい
る場合、一般に結晶成長のための種晶は、磯初の形態を
保って相似形に成長し、成長過程において形態の変化は
起こらない。従って、最初に添加する種晶の粒子形態や
粒度分布が生成する黄色酸化鉄顔料の特性と密接に関連
するものである。顔料は、塗料、印刷インキ及び化粧品
などの着色材料として使用される。
Either method can be used to grow gutter crystals, but
In order to make the growth proceed uniformly and smoothly, the amount of seed crystals added, the amount of air introduced, the reaction temperature, the concentration of the aqueous solution, and the concentration method are adjusted to generate secondary nuclei and dendrites. It is important to prevent If the growth conditions are suitable and strictly controlled, the seed crystal for crystal growth will generally maintain its initial morphology and grow into a similar shape, and no change in morphology will occur during the growth process. Therefore, the particle morphology and particle size distribution of the seed crystals initially added are closely related to the characteristics of the yellow iron oxide pigment to be produced. Pigments are used as coloring materials in paints, printing inks, cosmetics, etc.

従って、色調、ベヒクルへの分散性及び耐候性が重要な
性質である。黄色酸化鉄の場合、その粒子形態が針状で
あるから、色調は粒子の短軸径に支配されて変わる。つ
まり短軸径と明度に相関性がある。実用上、どの程度の
明度の黄色酸化鉄が顔料としてよいかは、用途によって
様々である。実際、そのために商品としては、各社とも
数品種を取揃えている。短較径の大きさによって藤ベイ
力が変ってくるが、これの大きいものは、ほぼ明度も大
きく明るい顔料である。しかし、ある大きさ以上では明
度の最大値を経て低下する。短鰍の小さいものは、藤ベ
イ力が低く透明性を帯びてくるから、透明性黄色酸化鉄
顔料(ローオパシティ)として使用される。顔料のべヒ
クルへの分散性は、表面エネルギーの最小を示す球状粒
子が最良であることは勿論であるが、黄色酸化鉄の場合
、未だ球状粒子の合成法は発明されていない。本発明者
らは、従来の針状粒子を豆粒状へ改善し、諸特性を向上
させた。それは、鉄製の縫針とボールベアリングを粉体
と考え、ベヒクルへの分散特性を比較したときに似てい
る。前者は高局くからみ合って分散し難いが、後者は嵩
低く分散は容易である。豆粒状の黄色酸化鉄は、同じ色
の針状のものと比較すると、吸油量、高が低く、分散し
易く、また分散したとき低粘度である。これらは顔料と
して大変好ましい性質である。なお、耐膜性や耐熱性は
化合物固有のものであるが、顔料の場合、その粉体の均
質性、結晶性及び粒度分布などが影響を及ぼす。本発明
の黄色酸化鉄は、これらの点については、前述のように
、水熱処理によって完全な結晶化を行った種晶を用いて
成長させたものであるから、粒子がよく揃い、粒子形態
が豆粒状のものであり、優れた顔料特性を示す。次に本
発明を実施例によってさらに詳細に説明する。
Therefore, color tone, dispersibility in vehicles, and weather resistance are important properties. In the case of yellow iron oxide, its particle form is acicular, so the color tone changes depending on the minor axis diameter of the particles. In other words, there is a correlation between the minor axis diameter and brightness. Practically speaking, the brightness of yellow iron oxide suitable for use as a pigment varies depending on the application. In fact, each company has several types of products for this purpose. The Fujibey force changes depending on the size of the short diameter, and pigments with a large value have a large brightness and are bright pigments. However, above a certain level, the brightness decreases after reaching its maximum value. Those with small brachypods have low wisteria power and become transparent, so they are used as transparent yellow iron oxide pigments (low opacity). It goes without saying that spherical particles exhibiting the minimum surface energy are best for pigment dispersibility in a vehicle, but in the case of yellow iron oxide, a method for synthesizing spherical particles has not yet been invented. The present inventors improved the conventional acicular particles into bean-like particles and improved various properties. This is similar to considering a steel sewing needle and a ball bearing as powder and comparing their dispersion characteristics into a vehicle. The former is highly entangled and difficult to disperse, but the latter is low in bulk and easy to disperse. Yellow iron oxide in the form of peas has a lower oil absorption and height, is easier to disperse, and has a lower viscosity when dispersed than needle-like ones of the same color. These properties are very desirable as a pigment. Note that film resistance and heat resistance are unique to the compound, but in the case of pigments, the homogeneity, crystallinity, particle size distribution, etc. of the powder affect them. Regarding these points, the yellow iron oxide of the present invention is grown using seed crystals that have been completely crystallized by hydrothermal treatment, so the particles are well aligned and the particle morphology is good. It is pea-like and exhibits excellent pigment properties. Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 種晶の調製 FeC13・細205雌ノZ及びNaOH75gノ2そ
の水溶液をそれぞれ調製し、両液を−2℃に冷却してお
く。
Example 1 Preparation of seed crystals Aqueous solutions of FeC13, 205 g of FeC and 75 g of NaOH were prepared, and both solutions were cooled to -2°C.

そして、よく縄拝しながらくNaOH水溶液の中にFe
C13水溶液を徐々に添加し、Fe(OH)3沈殿を作
る。沈殿終了後の液温は約0℃となる。この沈殿を時折
蝿拝しながら母液と共に1日熟成させる。熟成後の沈殿
の沈降容積は約250の上となるから、上澄液を拾て、
母液を含む沈殿約300の‘をテフロンビーカーに移し
、オートクレープに仕込み、180℃、6の分間、水熱
処理を施す。このときの圧力は水蒸気の飽和圧である。
この処理によって無定形Fe(OH)3の褐色沈殿は完
全に結晶化し、結晶性黄色沈殿q一Fe00日へと変わ
る。これを水洗すると沈殿の沈降容積は150叫と高低
〈なっている。炉過、乾燥すると米粒状の酸化水酸化鉄
Q−Fe00日すなわち黄酸化鉄が得られる。これの顔
料特性は次のようである。粒子径、最軸:134nm、
短藤:5風m、麹比:2.4、比表面積:35〆/g、
藤ベイ力:530の/g、収量:1酸、沈降容積:10
の【/g、(図1参照)。実施例 2種晶の調製 Fe2(S04)33鍵ノそ及びNaOH7鰭/2その
水溶液をそれぞれ調製し、両液を9℃に冷却しておく。
Then, the Fe was added to the NaOH aqueous solution.
C13 aqueous solution is gradually added to form Fe(OH)3 precipitate. The liquid temperature after precipitation is approximately 0°C. This precipitate is aged with the mother liquor for one day, with occasional stirring. The settling volume of the precipitate after aging is about 250, so pick up the supernatant liquid and
Approximately 300ml of the precipitate containing the mother liquor was transferred to a Teflon beaker, placed in an autoclave, and subjected to hydrothermal treatment at 180°C for 6 minutes. The pressure at this time is the saturation pressure of water vapor.
By this treatment, the brown precipitate of amorphous Fe(OH)3 is completely crystallized and turns into a crystalline yellow precipitate q-Fe00 day. When this was washed with water, the settling volume of the precipitate was as high as 150 yen. After filtration and drying, rice grain-like iron oxide hydroxide Q-Fe00 day, that is, yellow iron oxide is obtained. The pigment properties of this are as follows. Particle diameter, maximum axis: 134 nm,
Short wisteria: 5 wind m, koji ratio: 2.4, specific surface area: 35〆/g,
Fujibay power: 530/g, yield: 1 acid, sedimentation volume: 10
[/g, (see Figure 1). Example Preparation of 2 Seed Crystals Aqueous solutions of Fe2 (S04) 33-key nose and NaOH 7-fin/2 were respectively prepared, and both solutions were cooled to 9°C.

そして、よく燈拝しながら、NaOH水溶液の中にFe
2(S04)3水溶液を徐々に添加し、Fe(OH)3
沈殿を作る。沈殿終了後の液温は約10℃となる。以下
、実施例1と同じ方法で米粒状の黄酸化鉄が得られる。
これの顔料特性は次のようである。粒子径、最軸:1拠
nm、短軸:7仇血、滋比:2.8比表面積:30の/
g、腿ベイ力:580の/g、収量:13も実施例 3 樋晶の調製 Fe(NQ)3・班207雛/夕及びKOHIO舷/2
その水溶液をそれぞれ調製し、両液を1ぴ0に保持して
おく。
Then, while carefully observing the light, I placed Fe in the NaOH aqueous solution.
2(S04)3 aqueous solution was gradually added, Fe(OH)3
Make a precipitate. The liquid temperature after the precipitation is about 10°C. Thereafter, yellow iron oxide in the form of rice grains is obtained in the same manner as in Example 1.
The pigment properties of this are as follows. Particle size, maximum axis: 1 nm, short axis: 7 nm, ratio: 2.8, specific surface area: 30/
g, thigh bay force: 580/g, yield: 13 Example 3 Preparation of gutter crystals Fe (NQ) 3, group 207 chicks/Yu and KOHIO side/2
Prepare respective aqueous solutions and keep both solutions at 1-0.

そして、よく燭拝しながらKOH水溶液の中にFe(N
03)3水溶液を徐々に添加し、Fe*(OH)3沈殿
を作る。沈殿終了後の液温は約20午0となる。以下、
実施例1と全く同じ方法で米粒状の黄酸化鉄が得られる
。これの顔料特性は次のようである。粒子径、最鞠:2
6節m、短鞠:8初m、軸比:3.2、比表面積:26
〆/g、隠ベイ力:920地/g、収量:胞子実施例
4 種晶の成長反応 前記、実施例1において得られる粒子形態が米粒状の黄
酸化鉄Q−Fe00日を結晶成長のための種晶として用
いる。
Then, while praying well, Fe(N) was added to the KOH aqueous solution.
03) Gradually add 3 aqueous solution to form Fe*(OH)3 precipitate. The liquid temperature after precipitation is approximately 20:00. below,
Rice grain-shaped yellow iron oxide is obtained in exactly the same manner as in Example 1. The pigment properties of this are as follows. Particle size, maximum: 2
6 section m, short ball: 8 first m, axial ratio: 3.2, specific surface area: 26
〆/g, Hidden power: 920 ground/g, Yield: Spore example
4 Seed Crystal Growth Reaction The yellow iron oxide Q-Fe00 days obtained in Example 1 and having a grain-like grain shape is used as a seed crystal for crystal growth.

この成長の反応条件は、硫酸第1鉄結晶FeS04・7
4050雌/20その水溶液に、上記種晶30雌を添加
し、さらに水溶液中に金属鉄線250雌を懸垂する。こ
の水溶液を60℃に保ち、燈拝しながら、空気を500
の‘/分吹き込み成長反応を行う。このFeSOクK溶
液の加水分解と酸化反応によって、米粒状の種晶の表面
にQ−Fe00日が徐々に、かつ均一に析出し種晶は成
長する。この反応条件を厳密に制御しながら、連続20
凪時間成長させる。成長の途中、10畑時間において鉄
線50雌を追加し懸垂する。成長過程において、10時
間毎に試料を採取し、それぞれ粒子形態、比表面積、穣
ベイ力などを調べた。その結果を表1に掲げる。表 1
1)BET法、2)J1sk5101 表1から、結晶はほぼ相似形を保ちながら成長を続けて
いる。
The reaction conditions for this growth are ferrous sulfate crystal FeS04.7
4050 female/20 30 female seed crystals were added to the aqueous solution, and a 250 female metal iron wire was further suspended in the aqueous solution. Keep this aqueous solution at 60°C, and blow out 500 degrees of air while holding a light.
The growth reaction is carried out by blowing for 1/min. Due to the hydrolysis and oxidation reactions of this FeSOK solution, Q-Fe00 is gradually and uniformly deposited on the surface of the rice grain-shaped seed crystals, and the seed crystals grow. While strictly controlling the reaction conditions, continuous
Calm time to grow. During growth, 50 females were added and suspended from the iron wire for 10 field hours. During the growth process, samples were collected every 10 hours, and the particle morphology, specific surface area, and Bay force were examined for each sample. The results are listed in Table 1. Table 1
1) BET method, 2) J1sk5101 From Table 1, the crystals continue to grow while maintaining almost similar shapes.

そして、8q時間の成長(図2参照)で短軸が約2倍に
、20拍時間で約3倍に成長している。また、粒子が成
長するに伴って比表面積は減少し、16瓜時間で最初の
約1/7に低下した。隠ベイ力は短軸8仇m付近から急
激に増加し90〜15仇ゆで最大値に達し、それ以上で
はゆるやかに低下している。隠ベイ力と明度はほぼ比例
するから、短鰍90〜15肌皿で最も明るい色である。
それ以上大きくなると、明度は低下し彩度が上昇する。
このように色調は、粒成長に伴って変化するから、実用
的には所望のものを顔料として使用すればよい。上記の
ようにして、粒子形態が豆粒状の粒度のよく揃った黄色
酸化鉄顔料が製造できる。
The short axis grows approximately twice as much in 8q hours of growth (see Figure 2), and approximately triples in 20 beats. In addition, as the particles grew, the specific surface area decreased and decreased to about 1/7 of the initial value after 16 hours. The hidden bay force increases rapidly from around 8 m on the minor axis, reaches its maximum value at 90 to 15 m, and gradually decreases beyond that point. Since the concealment power and brightness are almost proportional, it is the brightest color among the 90 to 15 skin plates.
If it becomes larger than that, the brightness decreases and the saturation increases.
As described above, the color tone changes with grain growth, so in practice, a desired pigment may be used as the pigment. In the manner described above, a yellow iron oxide pigment with a bean-like particle shape and a well-uniformed particle size can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、本発明の方法によって得られた黄色酸化鉄顔料
製造用の種晶の40,00M苦の電子顕微鏡写真である
。 図2は、本発明の方法による黄色酸化鉄顔料の40,0
0の音の電子顕微鏡写真である。図3及び図4は、従釆
の黄色酸化鉄顔料の40,00坊昔の電子顕微鏡写真で
ある。第1図 第2図 第3図 第4図
FIG. 1 is a 40,00M electron micrograph of a seed crystal for producing a yellow iron oxide pigment obtained by the method of the present invention. Figure 2 shows the preparation of yellow iron oxide pigment at 40,0% by the method of the present invention.
This is an electron micrograph of the sound of 0. Figures 3 and 4 are electron micrographs of a 40,000 year old yellow iron oxide pigment. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 粒子形態が楕円体(豆粒体)の黄色酸化鉄において
、その長軸:350〜1000nm、軸比:長軸/短軸
=1.5〜3.2の範囲にあることを特徴とする黄色酸
化鉄顔料。 2 30℃以下のアルカリ水溶液の中に、第2鉄塩水溶
液を30℃以下の温度において、添加、混合して水酸化
鉄を生成させ、これを熟成した後、120〜250℃の
温度で水熱処理を施し、酸化水酸化鉄粉末を調製し、こ
の酸化水酸化鉄粉末を種晶とし、この種晶を第1鉄塩水
溶液中に分散させ、空気吹き込みにより第1鉄塩を酸化
させて、種晶上に酸化水酸化鉄層を析出成長させること
を特徴とする黄色酸化鉄顔料の製造法。 3 結晶成長させるための種晶として用いる酸化水酸化
鉄粉末の粒子形態は、楕円体(米粒状)のもので、その
長軸:100〜350nm、軸比:長軸/短軸=1.5
〜3.2の範囲にあることを特徴とする第2項記載の方
法。
[Claims] 1. A yellow iron oxide having an ellipsoidal (pea-grain) particle form, the major axis of which is 350 to 1000 nm, and the axial ratio of major axis/minor axis = 1.5 to 3.2. A yellow iron oxide pigment characterized by: 2 Add and mix a ferric salt aqueous solution at a temperature below 30°C to an alkaline aqueous solution at a temperature below 30°C to produce iron hydroxide. After aging this, add water at a temperature of 120 to 250°C. Heat treatment is performed to prepare an iron oxide hydroxide powder, the iron oxide hydroxide powder is used as a seed crystal, the seed crystal is dispersed in an aqueous ferrous salt solution, and the ferrous salt is oxidized by blowing air, A method for producing a yellow iron oxide pigment, characterized by depositing and growing an iron oxide hydroxide layer on a seed crystal. 3 The particle form of the iron oxide hydroxide powder used as a seed crystal for crystal growth is an ellipsoid (rice grain shape), its long axis: 100 to 350 nm, and the axial ratio: long axis / short axis = 1.5.
3.2.
JP14717381A 1981-09-17 1981-09-17 yellow iron oxide pigment Expired JPS6013975B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14717381A JPS6013975B2 (en) 1981-09-17 1981-09-17 yellow iron oxide pigment
US06/413,556 US4459276A (en) 1981-09-17 1982-08-31 Yellow iron oxide pigment and method for manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14717381A JPS6013975B2 (en) 1981-09-17 1981-09-17 yellow iron oxide pigment

Publications (2)

Publication Number Publication Date
JPS5849694A JPS5849694A (en) 1983-03-23
JPS6013975B2 true JPS6013975B2 (en) 1985-04-10

Family

ID=15424227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14717381A Expired JPS6013975B2 (en) 1981-09-17 1981-09-17 yellow iron oxide pigment

Country Status (1)

Country Link
JP (1) JPS6013975B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320498B2 (en) * 1985-05-08 1991-03-19 Mokusan Kk
JP2005076033A (en) * 2003-09-03 2005-03-24 Bayer Chemicals Ag METHOD FOR PRODUCING YELLOW IRON OXIDE PIGMENT WITH CaCO3 PRECIPITANT

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126518A (en) * 1984-07-13 1986-02-05 Ube Ind Ltd Preparation of granular iron oxyhydroxide particle
EP1328476B1 (en) * 2000-09-26 2011-03-30 LANXESS Deutschland GmbH Contact and adsorber granulates
DE102006022449A1 (en) * 2006-05-13 2007-11-15 Lanxess Deutschland Gmbh Improved iron oxide yellow pigments
CN101928043B (en) * 2010-09-16 2012-04-25 厦门大学 Alpha-type ferric oxide micron ball and preparation method thereof
CN102452687A (en) * 2010-10-26 2012-05-16 南开大学 Method for preparing porous nanometer alpha-Fe2O3 hollow spheres and application of hollow spheres to low-temperature alcohol sensitivity
EP3517504A1 (en) * 2018-01-26 2019-07-31 LANXESS Deutschland GmbH Process for the manufacturing of goethite pigments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320498B2 (en) * 1985-05-08 1991-03-19 Mokusan Kk
JP2005076033A (en) * 2003-09-03 2005-03-24 Bayer Chemicals Ag METHOD FOR PRODUCING YELLOW IRON OXIDE PIGMENT WITH CaCO3 PRECIPITANT

Also Published As

Publication number Publication date
JPS5849694A (en) 1983-03-23

Similar Documents

Publication Publication Date Title
US4459276A (en) Yellow iron oxide pigment and method for manufacture thereof
Ingole et al. Green synthesis of selenium nanoparticles under ambient condition
US2388659A (en) Manufacture of pigments
US5093099A (en) Flaky powder of zinc oxide and its composition for external use
DE2162716A1 (en) PROCESS FOR THE PRODUCTION OF NEEDLE-SHAPED MAGNETIC IRON OXIDES
JPH0623055B2 (en) Novel colored pure iron oxide pigments, a process for their preparation and their use
JPS6013975B2 (en) yellow iron oxide pigment
JP3456665B2 (en) Transparent iron oxide pigment and method for producing the same
CN102372300A (en) Preparation method of needle-like nano calcium carbonate
US5500043A (en) Lustrous pigment and the method of producing the same
JP4375842B2 (en) Method for producing calcium carbonate and method for whitening precipitated calcium carbonate from limestone
EP0631984B1 (en) Magnesium hydroxide and method for its preparation
JPS6015580B2 (en) yellow iron oxide pigment
DE3821342A1 (en) NEW IRON OXIDE PIGMENTS, METHOD FOR THE PRODUCTION AND USE THEREOF
JPH0453809B2 (en)
JPS6163526A (en) Preparation of spherical basic magnesium carbonate
JPS603012B2 (en) Precipitation method for producing red iron oxide
EP0315849A1 (en) Process for preparing nacreous bismuth oxychloride pigments
US3992219A (en) Zinc and manganese pigments
JP2549857B2 (en) Method for producing calcium carbonate with controlled particle size
JPH04164816A (en) Production of acicular zinc oxide powder by submerged synthetic method
JPH10259026A (en) Production of fine particle of acicular goethite
JPS627633A (en) Plate goethite and preparation of the same
DE3925374A1 (en) METHOD FOR PRODUCING MICROCRYSTALLINE CO / TI-SUBSTITUTED BARIUM FERRITE PLATES
GB2271767A (en) Pure-colored iron oxide direct red pigments and a process for their production