JPS60139392A - Method and apparatus for preparing ultra-pure water - Google Patents

Method and apparatus for preparing ultra-pure water

Info

Publication number
JPS60139392A
JPS60139392A JP24743683A JP24743683A JPS60139392A JP S60139392 A JPS60139392 A JP S60139392A JP 24743683 A JP24743683 A JP 24743683A JP 24743683 A JP24743683 A JP 24743683A JP S60139392 A JPS60139392 A JP S60139392A
Authority
JP
Japan
Prior art keywords
water
gas
steam
supply section
oxidation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24743683A
Other languages
Japanese (ja)
Other versions
JPS6215275B2 (en
Inventor
Yozo Morita
洋造 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP24743683A priority Critical patent/JPS60139392A/en
Publication of JPS60139392A publication Critical patent/JPS60139392A/en
Publication of JPS6215275B2 publication Critical patent/JPS6215275B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To prepare ultra-pure water of which the TOC content is at least 0.1ppm or less, by introducing inert gas and steam or water into an oxidizing catalyst layer to heat both of them to 300 deg.C or more while cooling and condensing the formed steam. CONSTITUTION:Purified air is introduced into water 5 ready to evaporate in the steam generating chamber 3 of a steam generation apparatus 6 from a purified air supply part 1 by a conduit 1 and mixed with steam. This gaseous mixture is introduced into an oxidation reaction pipe 8 which is packed with granular cobalto-cobaltic oxide being an oxidizing catalyst and heated to 800 deg.C in a heating furnace 9 to burn and oxidize the org. substance in steam. The generated ultra-pure stem is introduced into a cooling condenser 12 and condensed to collect formed ultra-pure water in an ultra-pure water container 13. The total carbon concn. of the obtained ultra-pure water comes to 0.1ppm or less.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、有機物を実質的に含有しない超純水〔全有
機炭素(Too)が少なくとも0.1pPmを超えない
水〕の製法と製造装置に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a method and method for producing ultrapure water that does not substantially contain organic substances [water whose total organic carbon (Too) does not exceed at least 0.1 pPm]. Regarding equipment.

(ロ)従来技術 近年科学技術の発展に伴い有機物を実質的に含有しない
超純水の需要が高まっている。 例えば現在最も純度の
高い超純水を要するのは半導体製造時のウェハーなとの
洗浄用でちゃ、最新の高効率膜による許過やイオン交換
膜などいくつかの方法を組合わせて0.1〜0.2 p
pmのTOO量の純水が製造され使用されている。 こ
の超純水製造時にはそのTOO量を)管理する必要があ
るがTo。
(b) Prior art With the development of science and technology in recent years, the demand for ultrapure water that does not substantially contain organic matter has increased. For example, at present, ultrapure water of the highest purity is required for cleaning wafers during semiconductor manufacturing. ~0.2p
Pure water in an amount of TOO pm is produced and used. When producing this ultrapure water, it is necessary to control the amount of TOO.

測定を行うにはToo測定装置のブランク値を測定しな
ければならない。 そのためゼロ基準液としてTOO量
が少なくとも0− I PPmを超えない実質的に有機
物を含有しない超純水が必要である。
To perform the measurement, a blank value of the Too measurement device must be measured. Therefore, as the zero reference liquid, ultrapure water with a TOO amount not exceeding at least 0-I PPm and containing substantially no organic matter is required.

通常の蒸留法には、(1)水の沸点に近い有機物は分離
されない。 また水より高沸点の有機物も水蒸気蒸留の
効果圧よシ蒸留水中に入ってくる、(11)水蒸気発生
時に同時に出る飛沫中の有機物が蒸留水中に入る、舗蒸
留水の捕集時に大気と接触するため大気中のCO,が溶
解し炭素濃度が高くなる、などの問題点がある。 した
がって通常の蒸留水には0.1〜0.5 ppmのTo
oが含有されている。
In ordinary distillation methods, (1) organic substances near the boiling point of water cannot be separated; Furthermore, organic matter with a higher boiling point than water also enters the distilled water due to the effective pressure of steam distillation. (11) Organic matter in the droplets released at the same time as steam is generated enters the distilled water. When collecting distilled water, it comes into contact with the atmosphere. Therefore, there are problems such as the CO in the atmosphere being dissolved and the carbon concentration increasing. Therefore, ordinary distilled water contains 0.1 to 0.5 ppm of To.
Contains o.

このTOOをさらに低下させるために再蒸留するとか、
過マンガン酸カリウムなどの酸化剤ととも加熱処理した
後に蒸留する処理が行われ、また最近著しく進歩してい
る高効率膜による処理も行われている。 しかしこねら
の処理を行っても、01〜0、8 ppm程度のToo
が含有されている。
To further reduce this TOO, redistilling or
Treatments include distillation after heat treatment with an oxidizing agent such as potassium permanganate, and treatments using high-efficiency membranes, which have recently made significant progress, are also performed. However, even with the treatment, the amount of too much
Contains.

(ハ)目的 この発明は、TOO量が少なくともO,l ppmを超
えない超純水及びその製造装置を提供することを目的と
するものでおる。
(c) Purpose The purpose of the present invention is to provide ultrapure water in which the amount of TOO does not exceed at least O,l ppm and an apparatus for producing the same.

に)構成 この発明は上記の情況においてなされたものであシ、純
酸素ガス又は酸素を含有もしくは含有しない不活性ガス
と、水蒸気又は水とを酸化触媒層に導入し800℃以上
に加熱し生成する水蒸気を冷却凝縮させて超純水を得る
ことを特徴とする超純水の製法を提供するものである。
B) Structure This invention was made in the above situation, and is produced by introducing pure oxygen gas or an inert gas containing or not containing oxygen and steam or water into an oxidation catalyst layer and heating it to 800°C or higher. The present invention provides a method for producing ultrapure water, which is characterized by obtaining ultrapure water by cooling and condensing water vapor.

なおこの発明の方法において、純酸素ガス又は酸素を含
有もしくは含有しない不活性ガスと水蒸気は、該ガスを
水蒸気発生装置内に通過させて水蒸気と混合し得られた
混合ガスとして酸化触媒層に導入される。 また該ガス
と水は、それぞれ別個に酸化触媒層に導入されるが水は
酸化触媒層に滴下して導入するのが好ましい。
In the method of this invention, pure oxygen gas or an inert gas containing or not containing oxygen and water vapor are introduced into the oxidation catalyst layer as a mixed gas obtained by passing the gas through a water vapor generator and mixing it with water vapor. be done. Further, the gas and water are introduced into the oxidation catalyst layer separately, but it is preferable that water is introduced dropwise into the oxidation catalyst layer.

この発明に用いられる酸素含有不活性ガスとしては精製
空気などが使用され、酸素を含有しない不活性ガスとし
ては窒素などが使用される。 またこの発明の方法に用
いられる水としては、予め濾過やイオン交換処理を行っ
た水が好ましく To。
Purified air or the like is used as the oxygen-containing inert gas used in this invention, and nitrogen or the like is used as the oxygen-free inert gas. The water used in the method of the present invention is preferably water that has been previously subjected to filtering or ion exchange treatment.

が2 ppm以下の水が挙げられる。 また酸化触媒と
しては、純酸素ガス又は酸素含有不活性ガスを用いる場
合は白金、ロジウムなどの酸素非供給型の触媒が用いら
れ、一方酸素を含有しない不活性ガスを用いる場合は、
四三酸化コバルト、酸化銅、酸化ニッケルなどの酸素供
給型の触媒が用いられる。 また加熱温度は800℃以
上を要し好ましいのは600〜1000℃である。 1
000℃以上であれば酸化触媒は実質的に不要となる。
Examples include water with 2 ppm or less. In addition, as an oxidation catalyst, when using pure oxygen gas or an oxygen-containing inert gas, a non-oxygen-supplying catalyst such as platinum or rhodium is used, while when using an inert gas that does not contain oxygen,
Oxygen-supplying catalysts such as tricobalt tetraoxide, copper oxide, and nickel oxide are used. Further, the heating temperature is required to be 800°C or higher, preferably 600 to 1000°C. 1
If the temperature is 000°C or higher, an oxidation catalyst is substantially unnecessary.

この発明の方法において酸化触媒層から放出される水蒸
気の冷却凝縮は放冷、強制空冷、水冷、電子式冷却器に
よる冷却などのいずれの方法でもよい。
In the method of the present invention, the water vapor released from the oxidation catalyst layer may be cooled and condensed by any method such as natural cooling, forced air cooling, water cooling, or cooling using an electronic cooler.

この発明の方法によれば、通常の蒸留法では前記のよう
に蒸留水中に入ってくる有機物質を完全に燃焼酸化する
ことができる。 また得られる超純水は純酸素ガス又は
酸素を含有もしくは含有しない不活性ガスの気流ととも
に留出してくるため捕集時にも大気と接触することがな
いので大気中の二酸化炭素の純水への溶解が防止される
。 なお上記気流中には有機物質の燃焼酸化時に発生す
る二酸化炭素が含まれることがあるが、原料として用い
らハる水自体が前記のように微量のToeしか含有して
いないので、上記気流中の二酸化炭素の濃度は大気中の
CO,濃度(通常goo〜500ppm )の”/10
0以下であるので、留出する純水中への溶解量は無視し
える量である。
According to the method of the present invention, the organic substances that enter the distilled water can be completely combusted and oxidized as described above in the conventional distillation method. In addition, the obtained ultrapure water is distilled out with a stream of pure oxygen gas or an inert gas containing or not containing oxygen, so it does not come into contact with the atmosphere during collection, so carbon dioxide in the atmosphere is not converted into pure water. Dissolution is prevented. Note that the above air stream may contain carbon dioxide generated during combustion oxidation of organic substances, but since the water used as a raw material itself contains only a small amount of Toe as mentioned above, the above air stream may contain carbon dioxide. The concentration of carbon dioxide in the atmosphere is "/10 of the concentration of CO in the atmosphere (usually goo ~ 500 ppm)"
Since it is less than 0, the amount dissolved in the distilled pure water is negligible.

この発明は上記の方法を行うのに好適な超純水の製造装
置を提供するものである。 すなわち純酸素ガス又は酸
素を含有もしくは含有しない不活性ガスと水蒸気の供給
部名は純酸素ガス又は酸素を含有もしくは含有しない不
活性ガスと水の供給部、酸化触媒の充填された酸化反応
管と加熱炉とからなる酸化反応部、冷却凝縮部及び超純
水容器とからなることを特徴とする超純水製造装置であ
る。
The present invention provides an apparatus for producing ultrapure water suitable for carrying out the above method. In other words, the name of the supply section for pure oxygen gas or an inert gas containing or not containing oxygen and water vapor is the supply section for pure oxygen gas or inert gas containing or not containing oxygen, and the oxidation reaction tube filled with an oxidation catalyst. This ultrapure water production apparatus is characterized by comprising an oxidation reaction section including a heating furnace, a cooling condensation section, and an ultrapure water container.

この発明の装置において、純酸素ガス又は酸素を含有も
しくは含有しない不活性ガスと水蒸気の供給部は、該ガ
ス供給部、水蒸気発生室と加熱手段とからなる水蒸気発
生装置、該ガス供給部から延びて水蒸気発生室内まで延
びる導管、及び水蒸気発生室から延びて酸化反応部に連
結する該ガスと水蒸気との混合気体導管とからなシ、該
ガスと水蒸気とを混合して酸化反応部に送9うるよう構
成されている。 また純酸素ガス又は酸素を含有もしく
け含有しない不活性ガスと水の供給部は、酸化反応部と
導管で連結された該ガス供給部及び酸化反応部と導管で
連結された水供給部とからなシ、該ガスと水が別個に酸
化反応部に導入されるよう構成されている。
In the apparatus of the present invention, a supply section for pure oxygen gas or an inert gas containing or not containing oxygen and water vapor extends from the gas supply section, a steam generation device comprising a steam generation chamber and a heating means, and the gas supply section. and a conduit extending from the steam generation chamber to the steam generation chamber, and a mixed gas conduit of the gas and steam extending from the steam generation chamber and connected to the oxidation reaction section, the gas and steam are mixed and sent to the oxidation reaction section.9 It is structured to be comfortable. In addition, the pure oxygen gas or the inert gas containing or not containing oxygen and the water supply section are connected to the oxidation reaction section and the gas supply section through a conduit, and from the oxidation reaction section and the water supply section connected through the conduit. However, the gas and water are separately introduced into the oxidation reaction section.

(ホ))実施例 この発明を、この発明の方法を行うのに用いる超純水製
造装置の実施例によって説明する。
(e)) Embodiments The present invention will be explained with reference to embodiments of an ultrapure water production apparatus used to carry out the method of the present invention.

第1図と第2図はこの発明の超純水の製造装置の実施例
の系統図である。
FIGS. 1 and 2 are system diagrams of an embodiment of the ultrapure water production apparatus of the present invention.

第1図において、精製空気供給部(1)から導管(2)
によって精製空気が、水蒸気発生装置(6)の水蒸気発
生室(3)中で蒸発しつつある水(5)中に導入されて
水蒸気と混合される。 その混合気体が導管(7)によ
って、酸化触媒の粒状四三酸化コバルトが充填さね加熱
炉(9)で800℃に加熱された酸化反応管(8)内に
導入され、水蒸気中の有機物が燃焼酸化され、生成した
超純水蒸気は導管(6)によって冷却凝縮器[F]に導
入されて凝縮し超純水となシ超純水容器Q31C捕集さ
れる。
In Figure 1, from the purified air supply section (1) to the conduit (2)
Purified air is introduced into the evaporating water (5) in the steam generation chamber (3) of the steam generator (6) and mixed with the steam. The mixed gas is introduced through a conduit (7) into an oxidation reaction tube (8) filled with granular tricobalt tetroxide as an oxidation catalyst and heated to 800°C in a pan heating furnace (9), where organic matter in the water vapor is removed. The ultrapure water vapor produced by combustion and oxidation is introduced into the cooling condenser [F] through the conduit (6), where it is condensed to become ultrapure water and collected in the ultrapure water container Q31C.

第2図において、精製空気が精製空気供給部(21)か
ら導管のによって、酸化触媒の粒状四三酸化コバルトが
充填され加熱炉■で800℃に加熱された酸化反応管@
に送られ、−力水は水容器のからポンプ囚で導管のを経
由して上記酸化反応管器に滴下される。 そして水中の
有機物が燃焼酸化され生成した超純水蒸気は導管■によ
って冷却凝縮器のに導入されて凝縮し超純水容器e(1
1に捕集される。
In Figure 2, purified air is passed through a conduit from the purified air supply section (21) to an oxidation reaction tube filled with granular tricobalt tetraoxide as an oxidation catalyst and heated to 800°C in a heating furnace.
The water is then dripped from the water container into the oxidation reactor via a pump and a conduit. Then, the ultrapure water vapor generated by combustion and oxidation of the organic matter in the water is introduced into the cooling condenser through the conduit ■, where it is condensed and ultrapure water container e (1
1 is collected.

第1図の装置によって、水としてイオン交換処理水を用
い、精製空気としてボンベに充填され市販されている高
純度空気(Aグレード)を用いて製造した超純水と従来
法による純水との全炭素量の測定結果を次表に示した。
Using the apparatus shown in Figure 1, ultrapure water produced by using ion-exchange treated water as water and commercially available high-purity air (A grade) filled in a cylinder as purified air and pure water produced by conventional methods. The measurement results of total carbon content are shown in the table below.

注※:強塩基性イオン交換樹脂と強酸性イオン交換樹脂
を用いる混床式純水装置による処理。
Note: Processed using a mixed-bed water purification system that uses strong basic ion exchange resin and strong acid ion exchange resin.

※※:市販の2段蒸留器(石英ガラス製)による。※※: Based on a commercially available two-stage distiller (made of quartz glass).

※×※:高純度窒素での曝気。*×*: Aeration with high-purity nitrogen.

上記実施例によって得られた超純水の全炭素濃度は著し
く小さく0.11)1)m以下であった。 したがって
この純水は例えば超純水測定用TOC測定装置のゼロ基
準液に充分使用することができる。
The total carbon concentration of the ultrapure water obtained in the above example was extremely small, 0.11)1)m or less. Therefore, this pure water can be sufficiently used as a zero reference liquid in a TOC measuring device for measuring ultrapure water, for example.

(へ)効果 この発明によれば、全炭素濃度がO,l ppm以下の
超純水を簡便に製造することができる。
(F) Effects According to the present invention, ultrapure water having a total carbon concentration of O,l ppm or less can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図はこの発明の超純水製造装置の実施例の
系統図である。 (1)、1211・・・精製空気供給部、(2) 、 
(7) 、 (s) 、■、ム。 ■・・・導管、(3)・・・水蒸気発生室、(4)・・
・加熱器、(5)・・・水、(6)・・・水蒸気発生装
置、(8)、@・・・酸化反応管、(9)、■・・・加
熱炉、αO9■・・・酸化反応部、(ハ)、■・・・冷
却凝縮器、及びQ3.ellll・・・超純水容器。
FIGS. 1 and 2 are system diagrams of an embodiment of the ultrapure water production apparatus of the present invention. (1), 1211...Purified air supply unit, (2),
(7), (s),■,mu. ■... Conduit, (3)... Steam generation chamber, (4)...
・Heater, (5)...Water, (6)...Steam generator, (8), @...Oxidation reaction tube, (9),■...Heating furnace, αO9■... Oxidation reaction section, (c), ■... cooling condenser, and Q3. ellll...ultra pure water container.

Claims (1)

【特許請求の範囲】 1、純酸素ガス又は酸素を含有もしくは含有しない不活
性ガスと、水蒸気又は水とを酸化触媒層に導入し800
℃以上に加熱し生成する水蒸気を冷却凝縮させて超純水
を得ることを特徴とする超純水の製法。 2、純酸素ガス又は酸素を含有もしくけ含有しない不活
性ガスを水蒸気発生装置内に通過させて水蒸気と混合し
てその混合ガスを酸化触媒層に導入する特許請求の範囲
第1項記載の製法。 8、純酸素ガス又は酸素を含有もしくは含有しない不活
性ガスを酸化触媒層に導入し、同時に水を酸化触媒層に
導入する特許請求の範囲第1項記載の製法。 L 純酸素ガス又は酸素を含有もしくは含有しない不活
性ガスと水蒸気の供給部、又は純酸素ガス又は酸素を含
有もしくけ含有しない不活性ガスと水の供給部、酸化触
媒の充填された酸化反応管と加熱炉とからなる酸化反応
部、冷却凝縮部及び超純水容器とからなることを特徴と
する超純水製造装置。 5、純酸素ガス又は酸素を含有もしくは含有しない不活
性ガスと水蒸気の供給部が、該ガス供給部、水蒸気発生
室と加熱手段とからなる水蒸気発生装置、該ガス供給部
から延びて水蒸気発生室内まで延びる導管及び水蒸気発
生室から延びて酸化反応部に連結する該ガスと水蒸気と
の混合気体導管とからなり、該ガスと水蒸気とを混合し
て酸化反応部に送シうるよう構成されてなる特許請求の
範囲第4項記載の装置。 6、純酸素ガス又は酸素を含有もしくは含有しない不活
性ガスと水の供給部が、酸化反応部と導管で連結された
該ガス供給部、及び酸化反応部と導管で連結された水供
給部とからなシ、該ガスと水が別個に酸化反応部に導入
されるよう構成されてなる特許請求の範囲第4項記載の
装置。
[Claims] 1. Introducing pure oxygen gas or an inert gas containing or not containing oxygen and water vapor or water into the oxidation catalyst layer.
A method for producing ultrapure water that is characterized by obtaining ultrapure water by cooling and condensing the water vapor generated by heating above ℃. 2. The manufacturing method according to claim 1, which comprises passing pure oxygen gas or an inert gas containing or not containing oxygen into a steam generator, mixing it with steam, and introducing the mixed gas into the oxidation catalyst layer. . 8. The manufacturing method according to claim 1, wherein pure oxygen gas or an inert gas containing or not containing oxygen is introduced into the oxidation catalyst layer, and water is simultaneously introduced into the oxidation catalyst layer. L A supply section for pure oxygen gas or an inert gas containing or not containing oxygen and water vapor, or a supply section for pure oxygen gas or an inert gas containing or not containing oxygen and a water vapor supply section, an oxidation reaction tube filled with an oxidation catalyst An ultrapure water production device comprising an oxidation reaction section including a heating furnace, a cooling condensation section, and an ultrapure water container. 5. A supply section for pure oxygen gas or an inert gas containing or not containing oxygen, and water vapor, which extends from the gas supply section, a steam generation device consisting of the gas supply section, a steam generation chamber, and a heating means, and is connected to the steam generation chamber. and a mixed gas conduit for the gas and steam, which extends from the steam generation chamber and connects to the oxidation reaction section, and is configured to mix the gas and steam and send it to the oxidation reaction section. An apparatus according to claim 4. 6. A gas supply section in which pure oxygen gas or an inert gas containing or not containing oxygen and a water supply section are connected to the oxidation reaction section through a conduit, and a water supply section connected to the oxidation reaction section through a conduit. 5. The apparatus according to claim 4, wherein the gas and water are separately introduced into the oxidation reaction section.
JP24743683A 1983-12-27 1983-12-27 Method and apparatus for preparing ultra-pure water Granted JPS60139392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24743683A JPS60139392A (en) 1983-12-27 1983-12-27 Method and apparatus for preparing ultra-pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24743683A JPS60139392A (en) 1983-12-27 1983-12-27 Method and apparatus for preparing ultra-pure water

Publications (2)

Publication Number Publication Date
JPS60139392A true JPS60139392A (en) 1985-07-24
JPS6215275B2 JPS6215275B2 (en) 1987-04-07

Family

ID=17163407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24743683A Granted JPS60139392A (en) 1983-12-27 1983-12-27 Method and apparatus for preparing ultra-pure water

Country Status (1)

Country Link
JP (1) JPS60139392A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315417A (en) * 1989-06-14 1991-01-23 Rofutee Kk Soft pillow

Also Published As

Publication number Publication date
JPS6215275B2 (en) 1987-04-07

Similar Documents

Publication Publication Date Title
US2700648A (en) Ozone stabilization
JPS5929521B2 (en) Manufacturing method of purified hydrochloric acid
KR20220156760A (en) Method for preparing electronic grade sulfuric acid from waste sulfuric acid solution
JPS60139392A (en) Method and apparatus for preparing ultra-pure water
JPH05505556A (en) Process for treating aqueous solutions mainly containing nitric acid and hydrofluoric acid
JPH01189921A (en) Resist removing apparatus
JPS60206479A (en) Ultra-pure water making apparatus
JP4019272B2 (en) Method and apparatus for treating waste water containing low boiling point organic substances
JP3959259B2 (en) Method for recovering hydrogen fluoride
JP4458044B2 (en) Production method of high purity liquid chlorine
JP4565124B2 (en) Separation and recovery method of radionuclide using ozone water
JP4074379B2 (en) Recycling apparatus and recycling method
US4178353A (en) Preparation and purification of phosphoryl chloride
JP3415273B2 (en) Method and apparatus for etching silicon or silicon oxide and method and apparatus for preparing sample for impurity analysis
WO1996033129A1 (en) A chemical procedure to produce water of reduced deuterium content
JPS5884103A (en) Manufacture of hydrogen peroxide
US3145079A (en) Process for the preparation of purified hydrogen bromide gas by the use of activated arbon as catalyst
US3553938A (en) Method for separating and recovering hydrogen fluoride
JPS63287590A (en) Production equipment for pure water free from organic material
RU2701834C2 (en) Method of producing highly enriched isotope 13c
JP3775891B2 (en) How to recover mercury from mercury contaminated soil
JPH01171621A (en) Decomposition of ozone
JPH04114431A (en) Oxidization process
SU735568A2 (en) Method of gas desorbing from liquid
Mason Spectrophotometric determination of oxidation states of selenium in glass