JP4458044B2 - Production method of high purity liquid chlorine - Google Patents

Production method of high purity liquid chlorine Download PDF

Info

Publication number
JP4458044B2
JP4458044B2 JP2005515270A JP2005515270A JP4458044B2 JP 4458044 B2 JP4458044 B2 JP 4458044B2 JP 2005515270 A JP2005515270 A JP 2005515270A JP 2005515270 A JP2005515270 A JP 2005515270A JP 4458044 B2 JP4458044 B2 JP 4458044B2
Authority
JP
Japan
Prior art keywords
liquid chlorine
chlorine
water
hydrogen chloride
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005515270A
Other languages
Japanese (ja)
Other versions
JPWO2005044725A1 (en
Inventor
良典 木全
弘之 加納
信三 成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Publication of JPWO2005044725A1 publication Critical patent/JPWO2005044725A1/en
Application granted granted Critical
Publication of JP4458044B2 publication Critical patent/JP4458044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/075Purification ; Separation of liquid chlorine

Description

本発明は、例えば単結晶シリコン膜などのエッチングを始めとする半導体製造プロセス、光ファイバー材料製造におけるヒドロキシル基除去用に使用される不純物の含有量が極めて少ない高純度液体塩素の製造方法に関する。本発明の製造方法によれば高純度液体塩素中には、分子状酸素や分子状水素は勿論のこと、塩化水素、水および二酸化炭素等の不純物は極めて微量にしか含ませないことができる。また、本発明の製造方法は、蒸留手段を採用するものである。
なお、以下の説明において、分子状酸素および分子状水素等は、酸素ガスおよび水素ガス等と称することがあり、分子状塩素を単に塩素と称することがある。
The present invention relates to a method for producing high-purity liquid chlorine having a very low content of impurities used for removing a hydroxyl group in a semiconductor production process such as etching of a single crystal silicon film or the like, and optical fiber material production. According to the production method of the present invention is a high purity liquid chlorine, of course molecular oxygen and molecular hydrogen, hydrogen chloride, water and impurities such as carbon dioxide, can not contain only very small amount. The production method of the present invention employs a distillation means.
In the following description, molecular oxygen and molecular hydrogen are sometimes referred to as oxygen gas and hydrogen gas, and molecular chlorine is sometimes simply referred to as chlorine.

塩素ガスは、食塩水の電気分解により、カセイソーダとともに製造され、そこでは水分、酸素ガスおよび水素ガス等を比較的多く含む粗塩素ガスが得られる。かかる粗塩素ガスは、例えば濃硫酸と接触させるなどの方法により水分を除去された後に、各種の方法により、純度99%程度の塩素ガスまたは液体塩素に精製される。水分を除去した後の粗塩素ガスには、通常2〜数%の酸素ガス、0.1〜0.2%の水素ガスおよび0.4〜0.6%の二酸化炭素ガスが含まれており、それらの除去方法としては、塩素ガスを一旦液体塩素として、その後気化させる工程においてそれらを除去する方法が一般的である(例えば特許文献1)。
粗塩素ガスに関するその他の精製方法としては、粗塩素ガス中の塩素を低温の水に溶解し、塩素水和物結晶を生成させることにより塩素以外のガスと分離した後に、該結晶を加温して高純度の塩素ガスを得る方法も知られている(特許文献2)。
Chlorine gas is produced together with caustic soda by electrolysis of salt water, where crude chlorine gas containing a relatively large amount of moisture, oxygen gas, hydrogen gas and the like is obtained. Such crude chlorine gas is purified into chlorine gas or liquid chlorine having a purity of about 99% by various methods after moisture is removed by, for example, contacting with concentrated sulfuric acid. The crude chlorine gas after removing moisture usually contains 2 to several percent oxygen gas, 0.1 to 0.2% hydrogen gas and 0.4 to 0.6% carbon dioxide gas. As a method for removing them, a method is generally used in which chlorine gas is once converted into liquid chlorine and then removed in a vaporization step (for example, Patent Document 1).
As another purification method for crude chlorine gas, the chlorine in the crude chlorine gas is dissolved in low-temperature water and separated from gases other than chlorine by generating chlorine hydrate crystals, and then the crystals are heated. A method of obtaining high purity chlorine gas is also known (Patent Document 2).

また、特許文献3には、粗液体塩素を蒸留塔に供給し、該塔内において加熱により酸素ガス等を追い出すことが開示されている。さらに、特許文献4においても、粗塩素ガスを圧力変動吸着法により、ゼオライトまたは活性炭等の吸着剤に吸着させ、塩素と塩素以外の不純物をそれらの吸着性の違いにより分離した後、さらに蒸留により低沸点ガスを除去するという精製方法が開示されている。  Patent Document 3 discloses that crude liquid chlorine is supplied to a distillation column and oxygen gas or the like is driven out by heating in the column. Furthermore, in Patent Document 4, crude chlorine gas is adsorbed on an adsorbent such as zeolite or activated carbon by a pressure fluctuation adsorption method, and impurities other than chlorine and chlorine are separated by their adsorptivity, and further distilled. A purification method for removing low boiling gas is disclosed.

一方、半導体製造プロセスにおけるドライエッチング剤として利用される塩素ガスは、不純物が極めて少ないものである。特に塩化水素、水、酸素ガス、二酸化炭素は単結晶シリコン膜に悪影響を及ぼすため、かかる用途向けの塩素ガスにおいては、ppmレベルでこれらの不純物の含有量が問題となっている。
例えば、酸素ガス、塩化水素および水は、半導体ウェハー表面を酸化するという問題があり、さらにガス配管やエッチング装置の腐食の原因ともなる。または、二酸化炭素もウェハー表面を生成する固体炭素により汚染するという問題があった。従って、半導体製造プロセス用の塩素ガスは、前述の精製方法によって得られた塩素ガスまたは液体塩素をさらに精製したものでなければならず、そのための精製方法としては、以下のような方法が採用されていた。
On the other hand, chlorine gas used as a dry etching agent in a semiconductor manufacturing process has very few impurities. In particular, hydrogen chloride, water, oxygen gas, and carbon dioxide adversely affect the single crystal silicon film. Therefore, in the chlorine gas for such applications, the content of these impurities at the ppm level is a problem.
For example, oxygen gas, hydrogen chloride, and water have a problem of oxidizing the surface of the semiconductor wafer, and further cause corrosion of gas pipes and etching apparatuses. Alternatively, carbon dioxide is also contaminated by solid carbon that forms the wafer surface. Therefore, the chlorine gas for the semiconductor manufacturing process must be further purified from the chlorine gas or liquid chlorine obtained by the above-described purification method, and the following method is adopted as the purification method for that purpose. It was.

すなわち、特許文献5では、酸処理をしたゼオライトを充填した精製装置に塩素ガスを通過させることにより、ガス中の不純物を除去し、それによって得られる塩素ガスを半導体製造プロセスにおけるエッチング用に用いることが提案されている。
また、特許文献6には、酸化鉄を主成分とする成形体に塩素ガスを接触させることにより、塩素ガス中の塩化水素や水分を除去するという方法が開示されている。しかしながら、上記のような吸着法においては吸着剤の劣化が不可避であり、例えば蒸留法等と比較すると、吸着法は大量の塩素の精製手段としてコスト的に適しているとは言えない。
特開昭50−128696号(特許請求の範囲) 特開昭53−31593号(特許請求の範囲および第2頁右下欄) 特開2002−316804号(特許請求の範囲および第2頁段落[0003]〜[0008]) 特開平9−132401号(第6頁段落[0043]および第12頁図10) 特開昭52−65194号(特許請求の範囲) 特開平8−119604号(特許請求の範囲)
That is, in Patent Document 5, by passing chlorine gas through a purification apparatus filled with acid-treated zeolite, impurities in the gas are removed, and the resulting chlorine gas is used for etching in a semiconductor manufacturing process. Has been proposed.
Patent Document 6 discloses a method of removing hydrogen chloride and moisture in chlorine gas by bringing chlorine gas into contact with a molded body containing iron oxide as a main component. However, in the adsorption method as described above, the deterioration of the adsorbent is unavoidable. For example, the adsorption method is not suitable as a means for purifying a large amount of chlorine as compared with a distillation method or the like.
JP-A-50-128696 (Claims) JP 53-31593 (Claims and lower right column on page 2) JP 2002-316804 (Claims and paragraphs [0003] to [0008] on page 2) JP-A-9-132401 (paragraph [0043] on page 6 and FIG. 10 on page 12) JP-A-52-65194 (Claims) JP-A-8-119604 (Claims)

本発明においては、例えば半導体製造プロセスにおいても使用することができる不純物、特に塩化水素、水および二酸化炭素が殆ど含まれていない高純度液体塩素を、優れた生産効率で大量に生産する方法の提供を課題とした。  In the present invention, there is provided a method for producing a large amount of high-purity liquid chlorine containing almost no impurities, particularly hydrogen chloride, water and carbon dioxide, which can be used in a semiconductor manufacturing process, for example, with excellent production efficiency. Was an issue.

本発明者らは、上記課題を解決するために鋭意検討した結果、従来塩素の精製において採用されていなかった技術手段、すなわち液体塩素を蒸留してガス化した塩素をコンデンサーで再び液化し、その際に低沸点ガスを系外に除去するという手段によれば、高純度の液体塩素を効率よく大量に製造できることを見出し、本発明を完成するに至った。
すなわち、本発明は、液体塩素を加圧下で蒸留して、留出するガスを冷却器で液化成分とガス状物質とに分離し、該液化成分の一部または全部を液体塩素として製品受槽に移送することからなる高純度液体塩素の製造方法において、前記冷却器の液出口と液体塩素タンクを連結する配管の中途にバイパスを設け、該バイパス内に設置した赤外線吸光度測定フローセルに前記液化成分の一部を採取し、該液化成分中の不純物濃度を測定し、不純物濃度が目標値に達した液化成分を製品受槽に移送することを特徴とする高純度液体塩素の製造方法である。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have devolatilized the technical means that has not been conventionally employed in the purification of chlorine, i.e., chlorine that has been gasified by distilling liquid chlorine and then liquefying it with a condenser. At the same time, according to the means of removing low boiling point gas out of the system, it was found that high-purity liquid chlorine can be efficiently produced in large quantities, and the present invention has been completed.
That is, the present invention distills liquid chlorine under pressure, separates the distillate gas into a liquefied component and a gaseous substance with a cooler, and a part or all of the liquefied component is liquid chlorine in a product receiving tank. In the method for producing high purity liquid chlorine comprising transporting, a bypass is provided in the middle of the pipe connecting the liquid outlet of the cooler and the liquid chlorine tank, and the liquefied component is introduced into the infrared absorbance measurement flow cell installed in the bypass. A method for producing high-purity liquid chlorine, which comprises collecting a part, measuring an impurity concentration in the liquefied component, and transferring the liquefied component having the impurity concentration reaching a target value to a product receiving tank.

本発明によれば、例えば水2ppm以下、塩化水素5ppm以下、二酸化炭素2ppm以下である高純度液体塩素を容易に製造することができ、さらに本発明における蒸留条件を適宜選択することにより、製造する液体塩素に含まれる水、塩化水素または二酸化炭素等の含有量を目的に応じて変化させることもできる。  According to the present invention, it is possible to easily produce high purity liquid chlorine having, for example, 2 ppm or less of water, 5 ppm or less of hydrogen chloride, and 2 ppm or less of carbon dioxide, and further, by appropriately selecting the distillation conditions in the present invention. The content of water, hydrogen chloride, carbon dioxide or the like contained in the liquid chlorine can be changed according to the purpose.

以下、本発明についてさらに詳しく説明する。本発明における液体塩素の精製は、基本的に蒸留によって行われ、本発明においては当該蒸留のための設備として、蒸留塔、コンデンサー、製品受槽が必要であり、さらに主留分すなわち液体塩素中の不純物濃度を測定するために、赤外線分光光度計および赤外線吸光度測定フローセルが蒸留系内に組み込まれていることが必要である。
蒸留方法に関しては特に制限はなく、バッチ式蒸留または連続式蒸留のいずれでもよく、また単蒸留または精留のいずれでもよい。それらは、生産量の多寡または目的とする液体塩素の純度に応じて適宜選択すればよい。
Hereinafter, the present invention will be described in more detail. Purification of liquid chlorine in the present invention is basically carried out by distillation. In the present invention, a distillation column, a condenser and a product receiving tank are required as equipment for the distillation, and further, a main fraction, that is, liquid chlorine. In order to measure the impurity concentration, it is necessary that an infrared spectrophotometer and an infrared absorbance measurement flow cell are incorporated in the distillation system.
There are no particular restrictions on the distillation method, and either batch distillation or continuous distillation may be used, and either simple distillation or rectification may be used. They may be appropriately selected depending on the amount of production or the purity of the target liquid chlorine.

以下本発明の一実施態様を表した図1を用いて、本発明を説明する。図1においては、蒸留塔として精留塔1を使用している。精留塔としては、塩素中に金属不純物の混入が起こり難い点でガラス製充填剤を詰めた充填式のものが好ましいが、一般的な棚段式のものも使用できる。精留塔の好ましい理論段数は2段以上である。精留塔の下部に供給された液体塩素の加熱は、図示されていない温水タンクから供給される35〜40℃程度の温水によることが好ましい。また、塔内圧力としては1.1〜2.0MPaが好ましい。  Hereinafter, the present invention will be described with reference to FIG. 1 showing an embodiment of the present invention. In FIG. 1, a rectifying column 1 is used as a distillation column. The rectifying column is preferably a packed type packed with a glass filler in view of the difficulty of mixing metal impurities into chlorine, but a general plate type can also be used. The preferred number of theoretical plates in the rectification column is 2 or more. The liquid chlorine supplied to the lower part of the rectification column is preferably heated by hot water of about 35 to 40 ° C. supplied from a hot water tank (not shown). Further, the pressure in the tower is preferably 1.1 to 2.0 MPa.

精留塔で気化された成分は、コンデンサー2を通過する。コンデンサーとしては、円筒状の容器内に多数の管を有しており、例えば冷媒をその管内に流し、被冷却ガスを円筒状容器に流して熱交換をさせる形式の多管式コンデンサーが好ましい。本発明においては、コンデンサー2において非凝縮性ガスを除外するための抜出し口(非凝縮ガス排出管)3が取り付けられており、コンデンサー2において凝縮しなかったガスをそこから系外に除去する。上記の非凝縮性ガスに含まれる主な成分は、酸素ガス、二酸化炭素および窒素ガス等である。なお、不純物として液体塩素中に含まれる水分の大半は、精留塔内において精留中に塩素と反応して塩化水素に変換される。
多管式コンデンサーにおける内管の本数は、特に限定されないが、通常数〜20本程度で十分である。冷媒としては、10℃以下の冷水が好ましい。
The component vaporized in the rectification column passes through the condenser 2. The condenser has a large number of tubes in a cylindrical container. For example, a multi-tube condenser of a type in which a refrigerant is allowed to flow in the pipe and a gas to be cooled is allowed to flow in the cylindrical container to exchange heat is preferable. In the present invention, a discharge port (non-condensable gas discharge pipe) 3 for removing non-condensable gas in the condenser 2 is attached, and gas that has not been condensed in the condenser 2 is removed from the system. The main components contained in the non-condensable gas are oxygen gas, carbon dioxide and nitrogen gas. Note that most of the moisture contained in liquid chlorine as impurities reacts with chlorine during rectification in the rectification column and is converted to hydrogen chloride.
The number of inner tubes in the multi-tube condenser is not particularly limited, but usually about several to 20 is sufficient. As the refrigerant, cold water of 10 ° C. or lower is preferable.

コンデンサー2で液化された留分は、コンデンサー2の直ぐ後に設けられた赤外線吸光度測定フローセル4と図示されていない赤外線分光光度計によって、不純物をモニターされる。赤外線吸光度測定フローセル4は、前記留分を外気と一切接触させることなくフローセル内に取り込むことができるように、蒸留系を構成する配管から分岐した配管すなわちバイパスと配置、連結されている。フローセル内に密封された留分は、赤外線分光光度計によりスペクトルを測定され、当該スペクトルにおける特定の波数における吸光度から当該波数に固有の赤外線吸収のある不純物濃度を測定する。赤外線分光光度計としては、汎用のものが使用できるが、好ましくは、短時間で高感度な測定ができる点でフーリエ変換方式の測定器である。例えば、4000〜2000cm−1波数域のS/N比が1:10000以上で吸光度0.0001まで計測できるニコレー社製のMAGNA750型赤外線分光光度計等が挙げられる。  The fraction liquefied by the condenser 2 is monitored for impurities by an infrared absorbance measurement flow cell 4 provided immediately after the condenser 2 and an infrared spectrophotometer (not shown). The infrared absorbance measurement flow cell 4 is arranged and connected to a pipe branched from a pipe constituting the distillation system, that is, a bypass so that the fraction can be taken into the flow cell without making any contact with the outside air. The fraction sealed in the flow cell has a spectrum measured by an infrared spectrophotometer, and an impurity concentration having infrared absorption specific to the wave number is measured from the absorbance at a specific wave number in the spectrum. A general-purpose infrared spectrophotometer can be used as the infrared spectrophotometer. Preferably, the infrared spectrophotometer is a Fourier transform type measuring device in that highly sensitive measurement can be performed in a short time. For example, a MAGNA 750 type infrared spectrophotometer manufactured by Nicorey which can measure up to an absorbance of 0.0001 when the S / N ratio in the 4000-2000 cm-1 wavenumber region is 1: 10000 or more is mentioned.

フローセルとしては、塩素に対して腐食し難い材質でしかもある程度の耐圧性のものが好ましい。フローセルの耐圧は、1.5〜2.0MPaの圧力に耐えることが好ましい。また、赤外線透過窓板としては塩素に侵されず、かつ高硬度で耐圧性に優れたフッ化カルシウム、サファイヤまたは石英が好ましい。セルの胴体の材質は特に限定されないが、ステンレスまたはハステロイ等の耐腐食性に優れたものが好ましい。セルの光路長は5〜40mmが好ましく、赤外分光光度計の性能および必要とする定量下限に応じて適宜選択すれば良い。  The flow cell is preferably made of a material that does not corrode with chlorine and has a certain level of pressure resistance. The pressure resistance of the flow cell preferably withstands a pressure of 1.5 to 2.0 MPa. The infrared transmitting window plate is preferably calcium fluoride, sapphire or quartz which is not affected by chlorine and has high hardness and excellent pressure resistance. The material of the cell body is not particularly limited, but a material excellent in corrosion resistance such as stainless steel or hastelloy is preferable. The optical path length of the cell is preferably 5 to 40 mm, and may be appropriately selected according to the performance of the infrared spectrophotometer and the required lower limit of quantification.

上記コンデンサー2から出てくる留分は、それに含まれる不純物の多寡により、行き先が選択される。すなわち、通常その一部は還流として蒸留塔に戻され、残りは全量精製された液体塩素として製品受槽5に送られる。バッチ式の精留を行うときには、精留の開始から終期にいたるまでの間で、開始時には全還流とし、液体塩素中の水分を塩素と反応させて水を塩化水素に変換させ、その間コンデンサー2からの留分を赤外線分光光度計でモニターする。留分中の不純物濃度が安定したことを確認した後からさらにしばらくの期間、留分の一部を蒸留塔に還流し、それ以外の留分を初留分排出管7から系外に排出する。初留を留出させながら不純物濃度のモニターを継続し、目標の純度に至ったことを確認した後に高純度化された液体塩素留分を製品受槽に送る。
本発明において単蒸留を採用する場合には、還流は不要であり、コンデンサーからの留分を赤外線分光光度計でモニターし、初留分と高沸分のカットだけすればよい。また単蒸留または精留のいずれの場合であっても、コンデンサー2から出てくる留分の純度が低いときは必要により、初留分排出管7から当該留分を系外に排出することもできる。
連続で蒸留を行う場合には、蒸留開始後しばらくの間、装置内の洗浄運転を行い、その際コンデンサーから出る留分は初留分排出管7から除去するのが好ましい。その後は、非凝縮性ガスを連続的に系外に除去しながら、かつ目的の純度の液体塩素が得られるように、蒸留条件を選択して連続蒸留を行うことができる。
The destination of the fraction coming out of the condenser 2 is selected depending on the amount of impurities contained therein. That is, usually a part of it is returned to the distillation column as reflux, and the rest is sent to the product receiving tank 5 as purified liquid chlorine. When batch-type rectification is performed, from the start to the end of rectification, the total reflux is set at the start, and water in liquid chlorine reacts with chlorine to convert water into hydrogen chloride, while condenser 2 The fraction from is monitored with an infrared spectrophotometer. After confirming that the impurity concentration in the fraction is stable, a part of the fraction is refluxed to the distillation column for a while, and the other fraction is discharged out of the system from the initial fraction discharge pipe 7. . Monitor the impurity concentration while distilling the first distillate, and after confirming that the target purity has been achieved, send the purified liquid chlorine fraction to the product receiving tank.
In the present invention, when simple distillation is employed, reflux is not necessary, and the fraction from the condenser is monitored with an infrared spectrophotometer, and only the initial fraction and high boiling point are cut. In either case of simple distillation or rectification, if the purity of the fraction coming out of the condenser 2 is low, the fraction can be discharged out of the system from the initial fraction discharge pipe 7 as necessary. it can.
In the case of continuous distillation, it is preferable to perform a washing operation in the apparatus for a while after the start of distillation, and at this time, the fraction discharged from the condenser is removed from the initial fraction discharge pipe 7. Thereafter, the continuous distillation can be carried out by selecting the distillation conditions while continuously removing the non-condensable gas out of the system and obtaining liquid chlorine of the target purity.

赤外線分光光度計でモニターする不純物としては、水、塩化水素または二酸化炭素が好ましい。水、塩化水素または二酸化炭素の濃度測定のためには、水3710cm−1塩化水素2830cm−1二酸化炭素2340cm−1の波数の赤外線吸収を利用するのが好ましい。なお、本発明の方法によって製造された高純度液体塩素について測定された赤外線吸収スペクトルの一例は、図2のとおりである。各不純物に対応する波数における赤外線吸収から、常法により不純物濃度が求められる。
不純物測定のために測定した吸光度を濃度に変換するために必要な各不純物成分のモル吸光係数は、吸光光度法で一般的に用いられる方法で求めることができる。すなわち液体塩素と類似な溶媒特性を持つ物質、例えば四塩化炭素などに上記不純物を一定量溶解させた標準試料を用い、単位光路長、単位モル濃度あたりの吸光度を求めればよい。
As impurities monitored with an infrared spectrophotometer, water, hydrogen chloride or carbon dioxide is preferred. In order to measure the concentration of water, hydrogen chloride, or carbon dioxide, it is preferable to use infrared absorption at a wave number of 3710 cm-1 water, 2830 cm-1 hydrogen chloride, and 2340 cm-1 carbon dioxide. In addition, an example of the infrared absorption spectrum measured about the high purity liquid chlorine manufactured by the method of this invention is as FIG. From the infrared absorption at the wave number corresponding to each impurity, the impurity concentration is determined by a conventional method.
The molar extinction coefficient of each impurity component necessary for converting the absorbance measured for impurity measurement into a concentration can be obtained by a method generally used in absorptiometry. That is, a standard sample in which a certain amount of the above impurities is dissolved in a substance having a solvent characteristic similar to that of liquid chlorine, such as carbon tetrachloride, may be used to determine the unit optical path length and the absorbance per unit molarity.

本発明によって得られる高純度液体塩素中の酸素ガスや窒素ガスの濃度は、ガスクロマトグラフィー等によって測定することができるが、通常いずれも検出下限以下にまで低減されている。本発明においては、半導体製造用に好適に使用できる液体塩素、すなわち水2ppm以下、塩化水素5ppm以下、二酸化炭素2ppm以下の高純度液体塩素が得られるよう、蒸留条件を選択することが好ましい。さらに好ましくは、水0.4ppm以下、塩化水素1ppm以下、二酸化炭素1ppm以下の高純度液体塩素である。
以下、実施例を挙げることにより、本発明をさらに具体的に説明する。
The concentration of oxygen gas or nitrogen gas in the high-purity liquid chlorine obtained by the present invention can be measured by gas chromatography or the like, but both are usually reduced below the lower limit of detection. In the present invention, it is preferable to select the distillation conditions so that liquid chlorine that can be suitably used for semiconductor production, that is, high-purity liquid chlorine of 2 ppm or less of water, 5 ppm or less of hydrogen chloride, and 2 ppm or less of carbon dioxide is obtained. More preferably, it is a high purity liquid chlorine containing 0.4 ppm or less of water, 1 ppm or less of hydrogen chloride, and 1 ppm or less of carbon dioxide.
Hereinafter, the present invention will be described more specifically with reference to examples.

食塩の電解槽で生成し、乾燥させた塩素を1MPaまで空気加圧して液化した塩素(以下、原料液体塩素という)を図1に示すような蒸留装置における充填塔方式のバッチ式精留塔1に300kg供給した。この原料液体塩素は別途行った赤外線吸収スペクトル分析により、水が2.1ppm、塩化水素は1.9ppmの不純物を含んでいた。
蒸留器を40℃まで加温して精留運転を開始し、全還流させながらフローセルに導かれた留分の赤外吸収スペクトル測定を行った。全還流を開始して3時間後には、水が0.8ppmに減少し、塩化水素は8.9ppmに増加していた。この間に液体塩素中の水分が、塩素と反応して塩化水素に変化したものと推測される。
次いで、還流比2で排出管7へ初留を30kg留去させた後に留出液中の不純物量を測定したところ、水0.4ppm、塩化水素1.3ppmまで減少していた。それ以降の留出液全量を主留として製品受槽5に導いた。精製液体塩素の回収量は260kg、収率は87%であった。得られた高純度液体塩素について赤外線吸収スペクトルの測定を行った結果、水、塩化水素および二酸化炭素含有量はそれぞれ0.33ppm、0.95ppm、0.51ppmと定量された。
A batch-type rectification column 1 of a packed column system in a distillation apparatus as shown in FIG. 1 is a chlorine (hereinafter referred to as a raw material liquid chlorine) which is liquefied by pressurizing air to 1 MPa and drying it in a salt electrolyzer. 300 kg was supplied. This raw material liquid chlorine contained impurities of 2.1 ppm for water and 1.9 ppm for hydrogen chloride by infrared absorption spectrum analysis performed separately.
The distillation apparatus was heated to 40 ° C. to start the rectification operation, and the infrared absorption spectrum of the fraction led to the flow cell was measured while fully refluxed. Three hours after the start of total reflux, water decreased to 0.8 ppm and hydrogen chloride increased to 8.9 ppm. It is presumed that the moisture in the liquid chlorine changed into hydrogen chloride by reacting with chlorine during this period.
Subsequently, when 30 kg of the first distillate was distilled off to the discharge pipe 7 at a reflux ratio of 2, the amount of impurities in the distillate was measured. As a result, the amount was reduced to 0.4 ppm water and 1.3 ppm hydrogen chloride. Thereafter, the entire distillate was introduced into the product receiving tank 5 as the main distillate. The amount of purified liquid chlorine recovered was 260 kg, and the yield was 87%. As a result of measuring the infrared absorption spectrum of the obtained high purity liquid chlorine, the contents of water, hydrogen chloride and carbon dioxide were determined to be 0.33 ppm, 0.95 ppm and 0.51 ppm, respectively.

なお、上記の例で液体塩素中の不純物濃度の測定に用いた赤外線吸収スペクトル測定条件は、次のとおりである。
○測定条件
装置 ニコレー社製MAGNA750型フーリェ変換赤外分光光度計
測定波数域 4000〜2100cm−1
分解能 4cm−1
積算回数 128回
定量計算に用いたパラメータモル吸光係数 水 35M−1cm−1(3710cm−1)
モル吸光係数 塩化水素 12M−1cm−1(2830cm−1)
モル吸光係数 二酸化炭素 120M−1cm−1(2340cm−1)
液体塩素の比重1.44
○フローセル
セル胴体材質 ハステロイ
赤外線透過窓材 サファイヤ(有効受光面 15mm径)
セル内容積 1ml
光路長 1cm
In addition, the infrared absorption spectrum measurement conditions used for the measurement of the impurity concentration in liquid chlorine in the above example are as follows.
○ Measurement conditions Apparatus Nicole MAGNA750 type Fourier transform infrared spectrophotometer Measurement wavenumber range 4000-2100 cm-1
Resolution 4cm-1
Number of integration 128 times Parameter molar extinction coefficient used for quantitative calculation Water 35M-1cm-1 (3710cm-1)
Molar extinction coefficient Hydrogen chloride 12M-1cm-1 (2830cm-1)
Molar extinction coefficient Carbon dioxide 120M-1cm-1 (2340cm-1)
Specific gravity of liquid chlorine 1.44
○ Flow cell Cell body material Hastelloy Infrared transmitting window material Sapphire (effective light receiving surface 15mm diameter)
Cell volume 1ml
Optical path length 1cm

本発明の製造方法によって得られる高純度液体塩素は、水分および塩化水素濃度が極めて低く、半導体ウェハーのドライエッチング剤や光ファイバー材料の製造用に最適である。
The high-purity liquid chlorine obtained by the production method of the present invention has extremely low moisture and hydrogen chloride concentrations, and is optimal for production of semiconductor wafer dry etching agents and optical fiber materials.

本発明における蒸留装置およびそれに組み込んだ赤外線吸光度測定フローセルの一実施形態の模式図である。It is a schematic diagram of one Embodiment of the distillation apparatus in this invention, and the infrared-absorbance measuring flow cell incorporated in it. 本発明で得られた高純度液体塩素について、赤外線吸光度を測定した吸収スペクトルの一例である。It is an example of the absorption spectrum which measured the infrared light absorbency about the high purity liquid chlorine obtained by this invention.

符号の説明Explanation of symbols

1……精留塔
2……コンデンサー
3……非凝縮ガス排出管
4……赤外線吸光度測定フローセル
5……製品受槽
6……流量計
7……初留分排出管
8……液体塩素供給管
9……温水供給管
10……温水排出管
11……冷水供給管
12……冷水排出管
1 …… Rectifying column 2 …… Condenser 3 …… Non-condensable gas discharge pipe 4 …… Infrared absorbance measurement flow cell 5 …… Product receiving tank 6 …… Flow meter 7 …… First fraction discharge pipe 8 …… Liquid chlorine supply pipe 9 ... Hot water supply pipe 10 ... Hot water discharge pipe 11 ... Cold water supply pipe 12 ... Cold water discharge pipe

Claims (4)

液体塩素を加圧下で蒸留して、留出するガスを冷却器で液化成分とガス状物質とに分離し、該液化成分の一部または全部を液体塩素として製品受槽に移送することからなる高純度液体塩素の製造方法において、前記冷却器の液出口と液体塩素タンクを連結する配管の中途にバイパスを設け、該バイパス内に設置した赤外線吸光度測定フローセルに前記液化成分の一部を採取し、該液化成分中の不純物濃度を測定し、不純物濃度が目標値に達した液化成分を製品受槽に移送することを特徴とする高純度液体塩素の製造方法Liquid chlorine is distilled under pressure, the gas to be distilled is separated into a liquefied component and a gaseous substance with a cooler, and a part or all of the liquefied component is transferred to a product receiving tank as liquid chlorine. In the method for producing pure liquid chlorine, a bypass is provided in the middle of the pipe connecting the liquid outlet of the cooler and the liquid chlorine tank, and a part of the liquefied component is collected in an infrared absorbance measurement flow cell installed in the bypass, A method for producing high-purity liquid chlorine, wherein the impurity concentration in the liquefied component is measured, and the liquefied component whose impurity concentration has reached a target value is transferred to a product receiving tank 前記液化成分における不純物のうちから水、塩化水素または二酸化炭素の1種または2種以上を選択し、その濃度の測定することを特徴とする請求項1記載の高純度液体塩素の製造方法。The method for producing high-purity liquid chlorine according to claim 1, wherein one or more of water, hydrogen chloride and carbon dioxide is selected from impurities in the liquefied component and the concentration thereof is measured. 請求項1または2に記載の方法によって水、塩化水素および二酸化炭素の濃度を測定することにより、水2ppm以下、塩化水素5ppm以下、二酸化炭素2ppm以下にする高純度液体塩素の製造方法 Water by the method of claim 1 or 2, by measuring the concentration of hydrogen chloride and carbon dioxide, water 2ppm or less, hydrogen chloride 5 ppm, the method of producing a high-purity liquid chlorine to less carbon dioxide 2ppm. 請求項1または2に記載の方法によって水、塩化水素および二酸化炭素の濃度を測定することにより、水0.4ppm以下、塩化水素1ppm以下、二酸化炭素1ppm以下にする高純度液体塩素の製造方法Claim 1 or 2 in water by the method described by measuring the concentration of hydrogen chloride and carbon dioxide, water 0.4ppm or less, hydrogen chloride 1 ppm, the method of producing a high-purity liquid chlorine to less carbon dioxide 1 ppm.
JP2005515270A 2003-11-05 2004-10-28 Production method of high purity liquid chlorine Expired - Fee Related JP4458044B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003375769 2003-11-05
JP2003375769 2003-11-05
PCT/JP2004/015982 WO2005044725A1 (en) 2003-11-05 2004-10-28 Method for producing high purity liquid chlorine

Publications (2)

Publication Number Publication Date
JPWO2005044725A1 JPWO2005044725A1 (en) 2007-11-29
JP4458044B2 true JP4458044B2 (en) 2010-04-28

Family

ID=34567089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005515270A Expired - Fee Related JP4458044B2 (en) 2003-11-05 2004-10-28 Production method of high purity liquid chlorine

Country Status (3)

Country Link
JP (1) JP4458044B2 (en)
KR (1) KR101025074B1 (en)
WO (1) WO2005044725A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544696B2 (en) * 2008-09-24 2014-07-09 東亞合成株式会社 Method for producing liquefied chlorine
KR101136033B1 (en) * 2009-10-13 2012-04-18 코아텍주식회사 A Manufacturing Method and an Apparatus of High Degree Purity Cl2
JP5795602B2 (en) * 2010-03-06 2015-10-14 ノラム インターナショナル リミテッドNoram International Limited Method and apparatus for vaporizing liquid chlorine containing nitrogen trichloride
BRPI1014219A2 (en) * 2010-03-06 2016-04-12 Noram Int Ltd "method and apparatus for processing a stream comprising liquid chlorine containing nitrogen trichloride"
CN103466549B (en) * 2013-08-20 2015-04-01 山东新龙科技股份有限公司 High-purity chlorine gas rectifying technology and equipment thereof
CN113546439B (en) * 2021-08-16 2023-02-21 聊城鲁西氯甲烷化工有限公司 Liquid chlorine flash evaporation deoxidization system and process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2726774B2 (en) * 1991-06-11 1998-03-11 三井東圧化学株式会社 Industrial separation and recovery method of chlorine
JP3246705B2 (en) * 1995-03-09 2002-01-15 株式会社トクヤマ How to supply chlorine gas
JP2002316804A (en) 2001-04-19 2002-10-31 Sumitomo Chem Co Ltd Method for refining chlorine

Also Published As

Publication number Publication date
KR20060111551A (en) 2006-10-27
JPWO2005044725A1 (en) 2007-11-29
WO2005044725A1 (en) 2005-05-19
KR101025074B1 (en) 2011-03-25

Similar Documents

Publication Publication Date Title
KR100796067B1 (en) Dry etching gas for semi condutor process and preparation method thereof
US6238636B1 (en) Process and systems for purification of boron trichloride
WO2014185499A1 (en) Method for purifying hydrogen chloride
US7516627B2 (en) Method for separating a krypton-xenon concentrate and a device for carrying out said method
JP3595301B2 (en) Method and apparatus for continuous purification of ammonia gas
JP2023524919A (en) Separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA
JP4458044B2 (en) Production method of high purity liquid chlorine
CA2298233A1 (en) Process for preparing pure hydrofluoric acid
CN113247862A (en) High-purity electronic-grade hydrogen chloride production device and process
JP2001311686A (en) Method and apparatus for measurement of concentration of fluorine compound as well as manufacturing method for fluorine compound
CN1644487A (en) Apparatus and method for preparing high-purity hydrochloric acid by low-temperature evaporation
CA1165781A (en) Chlorocarbon recovery apparatus
EP3395759B1 (en) Hydrogen chloride mixture, method for producing the same, and filling container
JP5946740B2 (en) Anhydrous hydrogen chloride purification method and anhydrous hydrogen chloride purification apparatus
WO2023238627A1 (en) Method for producing high-purity hydrochloric acid
EP0714849B1 (en) Production process for refined hydrogen iodide
CN215101984U (en) High-purity electronic-grade hydrogen chloride production device
JPH0144114B2 (en)
JP2000034115A (en) Production of high-purity carbon monoxide
KR20120010625A (en) Method for producing silicon tetrafluoride and appartus used therefor
TW202413269A (en) Production method of high purity hydrochloric acid
US3013631A (en) Separation of carbon fluorides from nitrogen fluorides
JP2011168564A (en) Method for producing difluoroacetic acid ester
RU2096400C1 (en) Method for purification of chloroform
Scott et al. The Atomic Weight of Chlorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Ref document number: 4458044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees