JPS60136308A - Vapor growth of compound semiconductor - Google Patents

Vapor growth of compound semiconductor

Info

Publication number
JPS60136308A
JPS60136308A JP24408283A JP24408283A JPS60136308A JP S60136308 A JPS60136308 A JP S60136308A JP 24408283 A JP24408283 A JP 24408283A JP 24408283 A JP24408283 A JP 24408283A JP S60136308 A JPS60136308 A JP S60136308A
Authority
JP
Japan
Prior art keywords
group
iii
metal organic
organic compound
tma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24408283A
Other languages
Japanese (ja)
Inventor
Takatoshi Nakanishi
中西 隆敏
Motoyuki Yamamoto
山本 基幸
Yuhei Muto
武藤 雄平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24408283A priority Critical patent/JPS60136308A/en
Publication of JPS60136308A publication Critical patent/JPS60136308A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To form a double hetero junction structure having a metal constitutional distribution of high accuracy and good reproduction ability, by supplying a second III-family metal organic compound gas which decides the liquid crystal ratio at the intermediate layer of the double hetero junction, at a constant flow rate from one of two or more material containers through the whole growth process. CONSTITUTION:A GaAlAs hetero junction laser wafer is produced using TMC as a first III-family metal organic compound, TMA as a second III-family metal organic compound, and AsH3 as a V-family element compound. In this case, the flow rate of H2 gas flowing into one of two TMA bubbler 121, 122, for example TMA bubbler 121, is always set at a constant amount necessary for the Al consstitution of a active layer 3. The other TMA bubbler 122 is used when growing the n type and p type clad layers 2, 4. That is, the growth of the clad layers 2, 4 are performed by using both of the two TMA bubbler 121, 122 and by supplying the TMA vapor necessary for the Al constitution of these layers into the reactive container 18. When growing the active layers, the supply of H2 gas into the TMA bubbler 122 is completely stopped.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、有機金属化合物ガスを用いた熱分解法により
ダブルへテロ接合構造を形成する化合物半導体の気相成
長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for vapor phase growth of a compound semiconductor in which a double heterojunction structure is formed by a thermal decomposition method using an organometallic compound gas.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

化合物半導体の気相成長方法の一つとして、有機金属化
合物ガスの熱分解を利用するMOCVD法が知られてい
る。例えば、有機ガリウムの一種であるトリメチルガリ
ウム(TMG ) 、有機アルミニウムの一種であるト
リメチルアルミニウム(TMA )および砒素の水素化
物であるアルシン(A@Hs )を用い、砒化ガリウム
アルミニウム(GaAtA1 )を気相成長させること
ができる。この成長方法は、従来のエピタキシャル結晶
成長方法に較べ、原理的に以下のような特徴を有する。
2. Description of the Related Art MOCVD, which utilizes thermal decomposition of organometallic compound gas, is known as one of the vapor phase growth methods for compound semiconductors. For example, using trimethylgallium (TMG), which is a type of organic gallium, trimethylaluminum (TMA), which is a type of organic aluminum, and arsine (A@Hs), which is a hydride of arsenic, gallium aluminum arsenide (GaAtA1) is prepared in a vapor phase. can be grown. This growth method has the following characteristics in principle compared to conventional epitaxial crystal growth methods.

(1) 出発原料がドーピングガスを含めて全てガス又
は蒸気の形で供給できるため、これらの反応装置への流
入量を制御することにより、混晶組成はもとよシ、不純
物ドーピング量や膜厚5等を精密に制御することができ
る。
(1) All starting materials, including doping gas, can be supplied in the form of gas or vapor, so by controlling the amount flowing into these reactors, it is possible to control not only the mixed crystal composition but also the amount of impurity doping and film formation. Thickness 5 etc. can be precisely controlled.

(2)単一温度領域しか必要としないため、成長領域を
広くとれ、大面積工ぎタキシャルウエハを量産すること
ができる。
(2) Since only a single temperature region is required, the growth region can be widened and large-area processed taxial wafers can be mass-produced.

、以上のような特徴のため、MOCvD法は、化合物半
導体発光素子特に膜厚や組成の高精度制御を必要とする
半導体レーザ・ウェハの製造に適用が試みられるように
なってきた。
Due to the above characteristics, attempts have been made to apply the MOCvD method to the production of compound semiconductor light emitting devices, particularly semiconductor laser wafers that require highly accurate control of film thickness and composition.

゛しかしながら、MoCvD法により化合物半導体レー
ザ・ウニノ・を製造するに際しては以下に述べるような
困難な問題があった。図面を参照して説明する。
However, when manufacturing the compound semiconductor laser UNINO by the MoCvD method, there were difficult problems as described below. This will be explained with reference to the drawings.

第1図は、化合物半導体レーザ・ウニノ・の−例の断面
構造を模式的に示す。このウニノーは、GaAs基板1
上に、nWGal、−xAtXAsからなるクラッド層
2、アンドープ又は不純物をドーグした薄いGaAg又
はG a 1ykAyA sからなる活性層3、および
p型Ga1−2At、Asからなるクラッド層4を順次
成長させたダブルへテロ接合構造を有する。活性層3は
光閉じ込めとキャリア閉じ込めを行うため、混晶比yは
x、zよシ小さく設定される。一般的に、n型、p型の
クラッド層2゜4の厚みが1μm程度であシ、混晶比x
、zが0.3以上であるのに対し、活性層3は厚みが0
、1μm程度と薄く、又混晶比yは0.1程度と小さい
FIG. 1 schematically shows the cross-sectional structure of an example of a compound semiconductor laser. This Unino is a GaAs substrate 1
A cladding layer 2 made of nWGal, -xAtXAs, an active layer 3 made of undoped or impurity-doped thin GaAg or Ga1ykAyAs, and a cladding layer 4 made of p-type Ga1-2At, As were successively grown on top. It has a double heterojunction structure. Since the active layer 3 performs optical confinement and carrier confinement, the mixed crystal ratio y is set smaller than x and z. Generally, the thickness of the n-type and p-type cladding layers 2゜4 is about 1 μm, and the mixed crystal ratio x
, z is 0.3 or more, whereas the active layer 3 has a thickness of 0.
, is as thin as about 1 μm, and the mixed crystal ratio y is as small as about 0.1.

このようなダブルへテロ接合構造をMOCVD法で形成
する場合、従来はTMGを充填したバブラを一台、TM
Aを充填したバブラを一台、アルシンを充填したバブラ
を一台およびドーピングガス源を用意する。そしてこれ
らからの原料ガスの反応装置への流量を質量流量コント
ローラにより調整することにより、連続的にクラッド層
2、活性層3、クラッド層4を成長させる。ところがこ
のような従来法では、活性層3とクラッド層2,4との
界面におけるAt組成の厚み方向分布に異常が見られる
。その様子を第2図に示す。第2図の破線は実現しよう
とするAt組成分布であり、実際には実線で示したよう
になり、クラッド層2と活性層3の界面近傍にAt組成
の1低い異常層Aが現われ、又活性層2とクラッド層4
の界面近傍にAt組成の高い異常層Bが形成される。こ
れは、質量流量コントローラによるTMA流量の制御に
おいて、急激な流量変化に対する過渡応答が存在するこ
とに起因する。
When forming such a double heterojunction structure by the MOCVD method, conventionally one bubbler filled with TMG was
Prepare one bubbler filled with A, one bubbler filled with arsine, and a doping gas source. By adjusting the flow rate of the raw material gases from these to the reaction device using a mass flow controller, the cladding layer 2, active layer 3, and cladding layer 4 are grown continuously. However, in such a conventional method, an abnormality is observed in the thickness direction distribution of the At composition at the interface between the active layer 3 and the cladding layers 2 and 4. The situation is shown in Figure 2. The broken line in FIG. 2 is the At composition distribution that is to be realized, and in reality it will be as shown by the solid line, and an abnormal layer A with one lower At composition will appear near the interface between the cladding layer 2 and the active layer 3, and Active layer 2 and cladding layer 4
An abnormal layer B having a high At composition is formed near the interface. This is due to the existence of a transient response to sudden changes in flow rate in controlling the TMA flow rate by the mass flow controller.

このよりなAt組成の異常層A、Bは、薄い活性層を含
むダブルへテロ接合構造を再現性よく形成する上で大き
な障害となる。しかもこのような異常層A、Bは成長の
都度変動して再現性がなく、このようなウェハから半導
体レーザを製作するとウェハ′毎に特性のばらつきがで
る。
These abnormal layers A and B having a relatively thin At composition become a major obstacle in forming a double heterojunction structure including a thin active layer with good reproducibility. Moreover, such abnormal layers A and B vary each time they grow and are not reproducible, and when semiconductor lasers are manufactured from such wafers, the characteristics vary from wafer to wafer.

特に活性層内に形成される異常層Aは、半導体レーザの
発振波長に直接影響を与えるため、このようなウェハを
用いると発振波長の精密な制御が困難になる。
In particular, the abnormal layer A formed in the active layer directly affects the oscillation wavelength of the semiconductor laser, so if such a wafer is used, precise control of the oscillation wavelength becomes difficult.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、MOCVD法により高精度の
かつ再現性のよい金属組成分布をもつダブルへテロ接合
構造を形成することを可能とした化合物半導体の気相成
長方法を提供することを目的とする。
In view of the above points, it is an object of the present invention to provide a method for vapor phase growth of compound semiconductors that makes it possible to form a double heterojunction structure having a highly accurate and reproducible metal composition distribution by MOCVD. purpose.

〔発明の概要〕[Summary of the invention]

本発明は、第1の■族金属有機化合物ガス、第2の■族
金属有機化合物ガスおよび■族元素化合物ガスをそれぞ
れ流量調整して所定基板上に供給し、熱分解法により第
2の■族金属の少ない混晶組成の中間層を含むダブルへ
テロ接合構造を形成するに際して、前記第2の■族金属
有機化合物ガスを供給する原料容器を少くとも二台設け
、そのうちの一台から、前記ダブルへテロ接合構造の全
成長工程を通じて前記中間層の混晶組成に必要な一定流
量の第2の■族金属有機化合物ガスを連続的に供給し、
残りの原料容器からの第2の■族金属有機金属化合物ガ
スの供給をオンオフ制御することを特徴としている。
In the present invention, a first group (III) metal organic compound gas, a second group (III) metal organic compound gas, and a group (III) element compound gas are each adjusted in flow rate and supplied onto a predetermined substrate, and the second group (III) is processed by a pyrolysis method. When forming a double heterojunction structure including an intermediate layer with a mixed crystal composition containing less group metal, at least two raw material containers are provided for supplying the second group metal organic compound gas, and from one of them, Continuously supplying a second group (III) metal organic compound gas at a constant flow rate necessary for the mixed crystal composition of the intermediate layer throughout the entire growth process of the double heterojunction structure;
The present invention is characterized in that the supply of the second group (Ⅰ) metal organometallic compound gas from the remaining raw material container is controlled on and off.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ダブルへテロ接合の中間層での混晶比
を決定する第2の■族金属有機化合−物ガスは、二台以
上の原料容器のうち一台から全成長工程を通じて一定流
量をもって供給され、残シの原料容器からの第2の■族
金属有機化合物ガスのオンオフによって中間層の上下層
の混晶、比が決定される。従って従来のように各原料ガ
スにつきそれぞれ一台の原料容器からの流量制御でダブ
ルへテロ接合構造を作る場合と異なり、接合界面近傍で
の第2の■族金属組成分布の異常発生を防止することが
できる。
According to the present invention, the second group (III) metal organic compound gas, which determines the mixed crystal ratio in the intermediate layer of the double heterojunction, is kept constant throughout the entire growth process from one of the two or more raw material containers. The mixed crystal and ratio of the upper and lower layers of the intermediate layer are determined by turning on and off the second group (1) metal organic compound gas from the remaining raw material container. Therefore, unlike the conventional method of creating a double heterojunction structure by controlling the flow rate from one raw material container for each raw material gas, this method prevents the occurrence of abnormalities in the second group II metal composition distribution near the junction interface. be able to.

従って本発明を例えば、化合物半導体レーザ・ウェハの
製造に適用すれば、薄い活性層の混晶比を精度よくかつ
再現性よく決定することができ、発振波長の制御性向上
、特性の均一性向上を図ることができる。
Therefore, if the present invention is applied to, for example, the manufacture of compound semiconductor laser wafers, it is possible to determine the mixed crystal ratio of a thin active layer with high precision and high reproducibility, improving the controllability of the oscillation wavelength and improving the uniformity of the characteristics. can be achieved.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。第3図は実、施例に使用
した気相成長装置の模式図である。
The present invention will be explained in detail below. FIG. 3 is a schematic diagram of the vapor phase growth apparatus used in the example.

この実施例では、第1の■族金属有機化合物としてTM
G 、第2の■族金属有機化合物としてTMAを用い、
■族元素化合物としてAsH3を用いてGaAtAsヘ
テロ接合レーザ・ウニノーを作る。第3図において、1
1がTMGを充填したバッジ、121および122がT
MAを充填したバブラであり、13はp型ドーピング源
であるジエチル亜鉛(DEZ )を充填したバッジであ
る。AsH3およびn型ドーピング源であるセレン化水
素(H2Se )はそれぞれ高圧容器14および15か
ら供給されるようになっている。16は原料ガスの希釈
用およびキャリアガスとしてのH2ガス精製装置であり
、171〜177は質量流量コントローラである。各原
料容器からのガスおよび蒸気は質量流量コントローラ1
71〜177によりH2ガスを所定流量に制御すること
により反応容器18に供給される。そして反応容器18
内の高周波加熱台19上で熱分解し、この上に載置され
たGaAs基板20上にGaAtAaが堆積することに
なる。
In this example, TM
G, using TMA as the second group II metal organic compound,
(2) A GaAtAs heterojunction laser unino is made using AsH3 as a group element compound. In Figure 3, 1
1 is a badge filled with TMG, 121 and 122 are T
It is a bubbler filled with MA, and 13 is a badge filled with diethyl zinc (DEZ), which is a p-type doping source. AsH3 and hydrogen selenide (H2Se), which is an n-type doping source, are supplied from high pressure vessels 14 and 15, respectively. 16 is an H2 gas purification device for diluting raw material gas and as a carrier gas, and 171 to 177 are mass flow controllers. Gas and steam from each raw material container are controlled by mass flow controller 1
H2 gas is controlled to a predetermined flow rate by 71 to 177 and supplied to the reaction vessel 18. and reaction vessel 18
GaAtAa is thermally decomposed on the high-frequency heating table 19 inside, and GaAtAa is deposited on the GaAs substrate 20 placed thereon.

このような装置構成として、第1図に示したベテロ接合
構造のレーザ・ウェハを作る場合、二台のTMAバブラ
121.122のうち一方、例えばTMAバッジ121
に流入するH2.fス流量は、常に活性層3のAt組成
に必要な一定流量に設定しておく。他方のTMAバブラ
12□は、。
With such an apparatus configuration, when manufacturing a laser wafer with a betero junction structure shown in FIG. 1, one of the two TMA bubblers 121 and 122, for example,
H2 flowing into The f gas flow rate is always set to a constant flow rate necessary for the At composition of the active layer 3. The other TMA bubbler 12□ is.

型およびp型クラッド層2および4の成長の際に、のみ
使用する。即ち、クラッド層2および4の成長は、二つ
のTMAバブラ121 r12.の両方を使用してこれ
らの層のAt組成に必要なTMA蒸気を反応容器18に
供給して行い、活性N’3の成長の際にはTMAバプラ
12□へのH2ガス供給を完全にオフにする。
It is used only during the growth of type and p-type cladding layers 2 and 4. That is, the growth of cladding layers 2 and 4 is performed using two TMA bubblers 121 r12. The TMA vapor necessary for the At composition of these layers is supplied to the reaction vessel 18 using both of the above, and the H2 gas supply to the TMA bubbler 12□ is completely turned off during the growth of active N'3. Make it.

この実施例によれば、二台のTλ仏パゾラのうち一台は
完全なオン、オフ制御であり、他の一台で活性層のAt
組成に必要な一定のTMAが供給されるから、従来のよ
うに一台のTMAバプラでTMAの流量制御を行う場合
の過渡応答によるU組成の異常層の発生が防止できる。
According to this embodiment, one of the two Tλ Buddha pasolas has complete on/off control, and the other one has the At of the active layer.
Since a certain amount of TMA necessary for the composition is supplied, it is possible to prevent the generation of an abnormal layer of U composition due to a transient response when the TMA flow rate is controlled by one TMA bubbler as in the conventional case.

具体的な数値例を挙げれば、従来の方法で形成したレー
ザ・ウェハでは、ウェハ間で発振波長のばらつきが約±
50 nmであるのに対し、この実施例では約±2.5
 nm K抑えられている。即ち発振波長の制御性、再
現性は約20倍に向上している。
To give a specific numerical example, in laser wafers formed using conventional methods, the variation in oscillation wavelength between wafers is approximately ±
50 nm, whereas in this example it is approximately ±2.5 nm.
nm K is suppressed. In other words, the controllability and reproducibility of the oscillation wavelength are improved approximately 20 times.

以上の実施例では、TMG % 、 TMAおよびAs
Hsを用いてG a AtA sを成長させる場合を説
明したが、他のliガリウム、有機アルミニウムおよび
砒素化合物を用いてGaALAaを成長させる場合にも
本発明は有効である。また上記実施例は、第1の■族金
属がGa、第2の■族金属がAt、V族元素がAsであ
ったが、■族金属がGaとIn、 V族元素がPまたは
PとAsであって、GaInPやGaInAsPを同様
のMOCVD法で成長させる場合にも本発明は有用であ
る。更に本発明は、半導体レーザ・ウェハに限らず、同
様なダブルへテロ接合構造をもつデバイスに適用するこ
とが可能である。
In the above examples, TMG %, TMA and As
Although the case where GaAtAs is grown using Hs has been described, the present invention is also effective when growing GaALAa using other li gallium, organic aluminum, and arsenic compounds. Further, in the above example, the first group Ⅰ metal was Ga, the second group Ⅰ metal was At, and the group V element was As. The present invention is also useful when growing GaInP or GaInAsP, which is As, by a similar MOCVD method. Furthermore, the present invention is applicable not only to semiconductor laser wafers but also to devices having a similar double heterojunction structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体レーザ・ウェハの一例の断面構造を示す
図、第2図はそのダブルへテロ接合構造部分のAt組成
分布を示す図、第3図は本発明の一実施例に用いた気相
成長装置の構成を示す図である。 1ノ・・・TMGバブラ(第1の■族金属有機化合物原
料容器)、121.122・・・TMA、I”う(第2
の■族金属有機化合物原料容器)、13・・・DKZバ
プラ(p型ドーピング源容器〕、14・・・HzSe高
圧容器(n型ドーピング源容器)、15・・・As H
s高圧容器(搗族元素化合物原料容器)、16・・・H
2ガス精製装置、171〜177・・・質量流量コント
ローラ、18・・・反応容器、19・・・高周波加熱台
、20・・・GaAs基板。 出願人代理人 弁理士 鈴 江 武 彦Is1属 第2図 べ長i#漢ユ
Fig. 1 is a diagram showing the cross-sectional structure of an example of a semiconductor laser wafer, Fig. 2 is a diagram showing the At composition distribution of the double heterojunction structure portion, and Fig. 3 is a diagram showing the At composition distribution of the double heterojunction structure portion. FIG. 1 is a diagram showing the configuration of a phase growth apparatus. 1 No...TMG bubbler (first group ■ metal organic compound raw material container), 121.122...TMA, I"u (second
(Group metal organic compound raw material container), 13...DKZ Bapla (p-type doping source container), 14...HzSe high pressure container (n-type doping source container), 15...As H
s High pressure container (Raw group element compound raw material container), 16...H
2 gas purifier, 171-177... mass flow controller, 18... reaction vessel, 19... high frequency heating table, 20... GaAs substrate. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】 5(1)第1の■族金属有機化合物ガス、第2の■族金
属有機化合物ガスおよび■族元素化合物ガスをそれぞれ
流量調整して所定基板上に供給し、熱分解法により第2
の■族金属の少ない混晶組成の中間層を含むダブルへテ
ロ接合構造を形成する化合物半導体の気相成長方法にお
いて、前記第2の■族金属有機化合物ガスを供給する原
料容器を少くとも二台設け、そのうちの一台から、前記
ダブルへテロ接合構造の全成長工程を通じて前記中間層
の混晶組成に必要な一定流量の第2の■族金属有機化合
物ガスを連続的に供給するようにしたことを特徴とする
化合物半導体の気相成長方法。 (2)前記第1の■族金属有機化合物ガスはアルキルガ
リウム蒸気、前記第2の■族金属有機化合物ガスはアル
キルアルミニウム蒸気であシ、前記■族元素化合物ガス
は砒化水素である特許請求の範囲第1項記載の化合物半
導体の気相成長方法。
[Claims] 5(1) The first group (III) metal organic compound gas, the second group (III) metal organic compound gas, and the group (III) element compound gas are each supplied onto a predetermined substrate with their flow rates adjusted, and thermally decomposed. According to the law, the second
In the vapor phase growth method of a compound semiconductor forming a double heterojunction structure including an intermediate layer having a mixed crystal composition with a small amount of group (2) metal, at least two raw material containers for supplying the second group (2) metal organic compound gas are used. one of which continuously supplies a constant flow rate of the second group (III) metal organic compound gas necessary for the mixed crystal composition of the intermediate layer throughout the entire growth process of the double heterojunction structure. A method for vapor phase growth of compound semiconductors characterized by the following. (2) The first group III metal organic compound gas is alkyl gallium vapor, the second group III metal organic compound gas is alkyl aluminum vapor, and the group III element compound gas is hydrogen arsenide. A method for vapor phase growth of a compound semiconductor according to scope 1.
JP24408283A 1983-12-26 1983-12-26 Vapor growth of compound semiconductor Pending JPS60136308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24408283A JPS60136308A (en) 1983-12-26 1983-12-26 Vapor growth of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24408283A JPS60136308A (en) 1983-12-26 1983-12-26 Vapor growth of compound semiconductor

Publications (1)

Publication Number Publication Date
JPS60136308A true JPS60136308A (en) 1985-07-19

Family

ID=17113461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24408283A Pending JPS60136308A (en) 1983-12-26 1983-12-26 Vapor growth of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS60136308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643244A (en) * 1994-04-07 1997-07-01 Uni-Charm Co., Ltd. Disposable garment for absorption of body exudates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643244A (en) * 1994-04-07 1997-07-01 Uni-Charm Co., Ltd. Disposable garment for absorption of body exudates

Similar Documents

Publication Publication Date Title
US4404265A (en) Epitaxial composite and method of making
JP3879173B2 (en) Compound semiconductor vapor deposition method
US20050205873A1 (en) Method for making compound semiconductor and method for making semiconductor device
WO1998056091A9 (en) LONG WAVELENGTH DH, SCH AND MQW LASERS BASED ON Sb
JPS60136308A (en) Vapor growth of compound semiconductor
US5658825A (en) Method of making an InAsSb/InAsSbP diode lasers
JP2736655B2 (en) Compound semiconductor crystal growth method
JP2004363456A (en) Method and apparatus for manufacturing semiconductor device
JPS6129915B2 (en)
EP0477374B1 (en) Process for growing semiconductor crystal
JPS6124227A (en) Vapor growth apparatus
JPS6119120A (en) Manufacture of compound semiconductor substrate
JPH03224215A (en) Organic metal vapor phase deposition device
JPS63227007A (en) Vapor growth method
JP2793239B2 (en) Method for manufacturing compound semiconductor thin film
JPH02241030A (en) Zinc diffusion method
JPS60245214A (en) Vapor growth of compound semiconductor crystal
JPS6373617A (en) Method for vapor growth of compound semiconductor
JPH03232221A (en) Vapor growth method for compound semiconductor
JPS63186418A (en) Manufacture of compound semiconductor crystal layer
JPS61229321A (en) Vapor growth method
JPH0536397B2 (en)
JPS61205696A (en) Vapor-phase crystal growth system for group iii-v compounds
JPS60264395A (en) Vapor-phase epitaxial process for organometallic compound
JPS62137822A (en) Vapor growth method for semiconductor film