JPS60131553A - Developing method - Google Patents

Developing method

Info

Publication number
JPS60131553A
JPS60131553A JP58240070A JP24007083A JPS60131553A JP S60131553 A JPS60131553 A JP S60131553A JP 58240070 A JP58240070 A JP 58240070A JP 24007083 A JP24007083 A JP 24007083A JP S60131553 A JPS60131553 A JP S60131553A
Authority
JP
Japan
Prior art keywords
particles
developer
carrier
image
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58240070A
Other languages
Japanese (ja)
Other versions
JPH0414793B2 (en
Inventor
Satoru Haneda
羽根田 哲
Hisafumi Shoji
尚史 庄司
Seiichiro Hiratsuka
平塚 誠一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP58240070A priority Critical patent/JPS60131553A/en
Publication of JPS60131553A publication Critical patent/JPS60131553A/en
Publication of JPH0414793B2 publication Critical patent/JPH0414793B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

PURPOSE:To form a fine particle developer layer forming a good tuft and to obtain an image high in quality by forming a developer in a cloud state with a repulsing magnetic field and regulating the binary magnetic developer layer with a tuft-pressing member. CONSTITUTION:A binary developer moving together with a sleeve 2 is formed into a cloud state by a repulsing magnetic field caused by the same polarity magnets, such as N poles of a magnets 3, and the top of the tuft is made higher. This height is regulated with a pressing plate 21 to smooth the developer layer of a roughened state, and to form a uniform and good tuft, and when the fine particles of both toner and carrier are vibrated and moved, the toner particles do not attach to the background of an image, agglomeration of the toner particles is prevented, and further, the carrier particles do not attach to the electrostatic image parts, thus permitting a sharp high-quality image having delicate lines and points and density differences, etc. reproduced in high fidelity to be formed.

Description

【発明の詳細な説明】 〔産業上の利用公費〕 本発明は、電子写真複写装置等における静電潜像あるい
は磁気潜像の像現偉方法の改良に関し、□詳し″くは、
磁性ヰヤ・す・中粒子とトナー粒子とが混合した二成分
現像剤・t′IA像剤搬体刑体面に供給して、該現像剤
搬送担体・上に現像剤層を形成させ。
[Detailed description of the invention] [Public funds for industrial use] The present invention relates to an improvement in a method for developing an electrostatic latent image or a magnetic latent image in an electrophotographic copying device, etc.
A two-component developer, t'IA, containing a mixture of magnetic media particles and toner particles is supplied to the surface of the developer carrier to form a developer layer on the developer carrier.

その現像剤層によって像担持体面上の静電像あるいは磁
気像を現会する方法の改良に関する。
The present invention relates to an improvement in a method of developing an electrostatic or magnetic image on the surface of an image carrier using the developer layer.

□し従来技術□〕 ・ □゛ 一例とし・て、電子写真′複写装置における現像方□・
法の概略゛について説明する。まず、一般的な磁気ブラ
シ現像・一ついて述べると、二成分現像剤を用いた磁気
ブラシ現像方法は、トナー粒子の摩擦帯電制御が比較的
容易で、トナー粒子の凝集が起りK・くぐ、磁気ブラシ
の穂立ちがよくて、像担持体面の摺擦性に優れ、クリー
ニングとの兼用においても十分なりリーニング効果が発
揮される等の特長を有することから、キャリヤ粒子に対
するトナー粒子の量の管理を必要とするにも拘らず、多
く用いられている。なお、この現像方法には、従来一般
に平均粒径が数十〜数百μの磁性キャリヤ粒子と平均粒
径が十数μmの非磁性トナー粒子とからなる現像剤が用
いられており、そのような現像剤では、トナー粒子やさ
らには中ヤリャ粒子が粗いために、繊細な線や点あるい
は濃淡差等を再現する高画質画像が得られにくいと言っ
た問題がある。
□Prior art□〕・ □゛As an example, developing method in an electrophotographic copying machine□・
An overview of the law will be explained. First of all, general magnetic brush development.In the magnetic brush development method using a two-component developer, it is relatively easy to control the triboelectric charging of toner particles, and the agglomeration of toner particles occurs. The brush's bristles stand out well, it has excellent abrasion properties on the surface of the image carrier, and it has a sufficient cleaning effect even when used for cleaning, so it is important to manage the amount of toner particles relative to carrier particles. Although it is necessary, it is widely used. Note that this developing method has conventionally used a developer consisting of magnetic carrier particles with an average particle size of several tens to several hundreds of micrometers and non-magnetic toner particles with an average particle size of tens of micrometers. Developers have a problem in that it is difficult to obtain high-quality images that reproduce delicate lines, dots, shading differences, etc. because the toner particles and even the intermediate particles are coarse.

そこで、この現像方法において高画質画像を得るために
、、従来例えば、キャリヤ粒子の樹脂コーティングとか
、現像剤搬送担体i”5gける磁石体の改良とか、現像
剤搬送担体へのバイアス電圧の検討とか、多くの努力が
払われてぎたが、それでも未だ安定して十分KW11足
し得る画像が得られないのが実情である。したがって、
高画質画像を得るためには、トナー粒子及びキャリヤ粒
子をより微粒子にすることが必要であると考えられる。
Therefore, in order to obtain high-quality images using this developing method, conventional methods have been used, such as coating the carrier particles with resin, improving the magnet body that supports the developer transport carrier, and examining the bias voltage for the developer transport carrier. Although much effort has been made, the reality is that it is still not possible to obtain images that are stable enough to add KW11.
In order to obtain high quality images, it is believed that it is necessary to make the toner particles and carrier particles finer.

しかし、トナー粒子を平均粒径がmμm以下、特に、1
01g+rlL以下の微粒子にすると、■現像時のクー
ロン力に対してファンデルワールス力の彰響が現われて
、像背景の地部分にもトナー粒子が付着する所謂かぶり
が生ずるようになり、現像剤搬送担体への直流バイアス
電圧の印加によってもかぶりを防ぐことが困難となる、
■トナー粒子の摩擦帯電制御が離しくなって、凝集が起
り易くなる。また、キャリヤ粒子を微粒子化してい(と
、■キャリヤ粒子も像担持体の静電像部分に付着するよ
うになる。この原因としては、磁気バイアスの力が低下
して、キャリヤ粒子がトナー粒子と共に像担持体側に付
着したためと考えられる。なお、バイアス電圧が大きく
なると、僚背景の地部分にもキャリヤ粒子が付着するよ
うになる。
However, toner particles with an average particle diameter of mμm or less, especially 1
If the particle size is less than 01 g + rlL, ■ Van der Waals force will be affected by the Coulomb force during development, and so-called fog will occur where toner particles will adhere to the ground area of the image background, which will hinder the developer transport. It is difficult to prevent fogging even by applying a DC bias voltage to the carrier.
- Frictional charging of toner particles is less controlled and agglomeration is more likely to occur. In addition, the carrier particles become fine particles (and the carrier particles also become attached to the electrostatic image area of the image bearing member. The reason for this is that the force of the magnetic bias decreases, causing the carrier particles to form together with the toner particles. This is thought to be due to the carrier particles adhering to the image carrier side. Note that as the bias voltage increases, carrier particles also begin to adhere to the ground portion of the background.

微粒子化には、上述のような副作用の方が目立って、解
明な画像が得られないと言う問題があるので、そのため
にトナー粒子及びキャリヤ粒子を微粒子化することは実
際に用いるのが困難であった。
Micronization has the problem that the above-mentioned side effects are more noticeable and clear images cannot be obtained, so it is difficult to actually use micronization of toner particles and carrier particles. there were.

〔発明の目的〕[Purpose of the invention]

本発明は、トナー粒子やキャリヤ粒子が微粒子化されて
いる現像剤を用いても・上述の問題が生ずることのない
、即ち、、平均粒径を加μm以下、さらには10μm以
下としたトナー粒子を用いても前記■および■の問題が
発生せず、また、平均粒径を9μm以下、さらには□□
□μ扉以、下と17たキャリヤ粒子を用いても前記■に
よるトラブルが発生することなく、したがって、繊細な
線や点あるいは濃淡差等を忠実に再現した鮮明な高画質
画像を得ることができる現像方法を提供す、る、もので
ある。
The present invention provides toner particles that do not cause the above-mentioned problems even when using a developer in which toner particles and carrier particles are finely divided, that is, toner particles having an average particle size of 1 μm or less, further 10 μm or less. The above problems of ■ and ■ do not occur even when using
□ Even if the carrier particles below and below the μ door are used, the trouble caused by ② does not occur, and therefore, it is possible to obtain clear, high-quality images that faithfully reproduce delicate lines, points, and differences in shading. This is to provide a developing method that can be used.

〔発明の構成〕 ・1 。[Structure of the invention]・1.

本発明は、磁性キャリヤ粒子1とトナー粒子とから成る
二成分現像剤を現像剤搬送担体面上に供給して現像剤層
を、形成させ1.該現像剤搬送担体面上の現像剤層を振
動、電界下に置き、もって像担持体面の潜像を現像する
方法において、反、発磁界を形成、すると共[穂立ち押
え部材を設けたことを特徴とする現像方法、即ち、本発
明の現像方法は、二成分現像剤の磁性キャリヤ粒子を用
い、振動電界下で現像を行うようにしたことによって、
卜2プルなく微粒子化した磁性ギヤリヤ粒子やトナー粒
子の使用を可能にしたものであり、なお本発明の方法に
おいて用いられる現像剤に、ギヤリャ及びトナーが以下
述べる適正条件にあるものが鎚まLい。 、。
In the present invention, a two-component developer consisting of magnetic carrier particles 1 and toner particles is supplied onto the surface of a developer transporting carrier to form a developer layer.1. In the method of developing a latent image on the image bearing surface by placing the developer layer on the surface of the developer transporting carrier under vibration and an electric field, a counter-magnetic field is formed, and a holding member is provided. The developing method of the present invention is characterized by using magnetic carrier particles of a two-component developer and performing development under an oscillating electric field.
This makes it possible to use micronized magnetic gear particles and toner particles without any pull, and it should be noted that the developer used in the method of the present invention must have the gear and toner under the appropriate conditions described below. stomach. ,.

〔実施例〕、、。〔Example〕,,.

先ス、キャリヤにつ・い、て述べると、磁性キャリヤ粒
子を用いることにより、トナーとキャリヤの攪拌性及び
現像剤の搬送性ン向上させ、さらにトナーの荷電制御性
を向上させて、トナー粒子同思やトナー・粒子とキャリ
ヤ粒子の凝集を起りに((する。しかし、・一般忙磁性
キャリャ粒子の平均粒径が大きいと、Φ現像剤搬送担体
上に形成される磁気プラ:シの穂の状態が、荒い冗めに
、電界により振動を与えながら静電像を現像しても、ト
ナー像にム2が現われ易(、■穂におけるトナー洟度か
低くなるので高濃度の現像が行われない、等の問題が起
る。・このΦの間Mを解消する和は、キャリヤ粒子の平
均粒径な小さくすれはよく、実験の結果、平均粒径(資
)μm以下でその効果が現われ初め。
Regarding carriers, by using magnetic carrier particles, it is possible to improve the agitation performance of toner and carrier and the transportability of developer, and also to improve the charge control performance of toner, and toner particles. However, if the average particle size of general magnetic carrier particles is large, the magnetic plastic particles formed on the Φ developer transporting carrier may Even if an electrostatic image is developed while being vibrated by an electric field, it is easy for the toner image to have smear (2) The toner level in the ears is low, so high-density development is not possible. Problems such as not being able to be used occur.・The sum that eliminates M during this Φ can be made as small as the average particle size of the carrier particles, and as a result of experiments, the effect is effective when the average particle size (factor) is less than μm. beginning to appear.

特に田μm以下になると、実質的に°Oの問題が生じな
くなることが判明した。また、@の問題も、■の問題に
対する磁性キャリヤの微粒子化によって、穂のトナー濃
度が高くなり、高濃度の現像が行われるようになって解
消する。しかし、午ヤリャ粒子が細か過ぎると、Oトナ
ー粒子と共に像担持体面に付着するようになったり、O
飛散し易くなったりする。これらの現象は、キャリヤ粒
子に作用する磁界の強さ、それKよるキャリヤ粒子の磁
化の強さにも関係するが、一般的には、キャリヤ粒子の
平均粒径が15βm以下になると次第に傾向が出初め、
5μm以下で顕着に現われ志よ5になる。そして、像担
持体面に付着したキャリヤ粒子は、一部はトナーと共に
記録紙上に移行し、残部はブレードやファーブラシ等に
よるクリーニング装置によって残留トナーと共に像担持
体面から除かれることになるが、従来の磁性体のみから
成るキャリヤ粒子では、■記録紙上に移行したキャリヤ
粒子が、それ自体では記録紙に定着されないので、脱落
し易いと言う問題があり、またθ像担持体面に残った中
ヤリャ粒子がクリーニング装置によって除かれる際に、
感光体から底る像担持体面を傷付は易いと言う問題があ
る。この■、○の問題は、磁性キャリヤ粒子を樹脂等記
録紙に定着し得る物質と共に形成することによって解消
し得る。即ち、磁性キャリヤ粒子が記録紙に定着し得る
物質によって磁性体粒子を被覆することにより、あるい
は磁性体粉を分散含有した記録紙に定着し得る物質によ
って形成されていることで、記録紙に付着したキャリヤ
粒子も熱や圧力で定着されるようになり、また、クリー
ニング装置によって像担持体面からキャリヤ粒子が除か
れる際にも像担持体面を傷付けたりすることが無くなる
。このような磁性キャリヤ粒子では、キャリヤ粒子を平
均5〜15μm以下の粒径にして、たとえ、キャリヤ粒
子が像担持体面や記録紙に移行するようなことがあって
も前記Oの問題は実際上殆んどトラブルを生ぜしめない
。なお、前記Oのよ5な午ヤリャ付着が起る場合は、リ
サイクル機構を設けることが有効である。
In particular, it has been found that when the temperature is less than 1 μm, the problem of °O does not substantially occur. In addition, the problem @ is also solved by making the magnetic carrier finer particles, which increases the toner concentration in the spikes and enables high-density development. However, if the particles are too fine, they may adhere to the image bearing surface together with the O toner particles, or
It may become easier to scatter. These phenomena are also related to the strength of the magnetic field acting on the carrier particles and the strength of the magnetization of the carrier particles due to the magnetic field K, but in general, the tendency gradually increases when the average particle size of the carrier particles becomes 15βm or less. At the beginning,
If it is less than 5 μm, it will appear on the surface and become 5. A portion of the carrier particles adhering to the image bearing surface is transferred onto the recording paper together with the toner, and the remaining part is removed from the image bearing surface along with the residual toner by a cleaning device such as a blade or fur brush. With carrier particles made only of magnetic material, there is a problem that (1) the carrier particles that have migrated onto the recording paper are not fixed on the recording paper by themselves and are likely to fall off, and that the intermediate particles remaining on the surface of the θ image carrier are When removed by cleaning equipment,
There is a problem in that the surface of the image bearing member located at the bottom from the photoreceptor is easily damaged. These problems of ◯ and ◯ can be solved by forming magnetic carrier particles together with a substance that can be fixed to recording paper, such as resin. In other words, the magnetic carrier particles adhere to the recording paper by coating the magnetic particles with a substance that can be fixed to the recording paper, or by being formed of a substance that can be fixed to the recording paper containing dispersed magnetic powder. The carrier particles that have been removed are also fixed by heat and pressure, and the surface of the image carrier is not damaged even when the carrier particles are removed from the surface of the image carrier by a cleaning device. In such magnetic carrier particles, the carrier particles have an average particle size of 5 to 15 μm or less, and even if the carrier particles migrate to the image bearing surface or the recording paper, the problem of O mentioned above can be practically avoided. It hardly causes any trouble. Incidentally, in the case where the above-mentioned slag adhesion occurs, it is effective to provide a recycling mechanism.

以′上から、磁性キャリヤの粒径は、平均粒径が父μm
以下、特に好ましくは30−以下5μm以上が適正条件
であり、また、磁性キャリヤ粒子が記録紙に定着し得る
物質も含むものであることが好ましい。尚、平均粒径は
重量平均粒径で、コールタ−カウンタ(コールタ社製)
、オムニコンアルファ(ポジーロム社製)を用いて測定
した。
From the above, the average particle size of the magnetic carrier is μm.
The appropriate conditions are particularly preferably 30-5 μm or more, and it is also preferred that the magnetic carrier particles contain a substance that can be fixed on the recording paper. The average particle size is the weight average particle size, and the average particle size is the weight average particle size.
, was measured using Omnicon Alpha (manufactured by Posilom).

このような磁性キャリヤ粒子は、磁性体として従来の磁
性キャリヤ粒子におけると同様の、鉄、り四ム、−ツナ
ル、コバルト等の金属、あるいはそれらの化合物や合金
、例えば、四三酸化鉄、r−酸化第二鉄、二酸化クロム
、酸化マンガン、フェライト、マンガン−銅系合金、と
言った強磁性体乃至は常磁性体の粒子、又はそれら磁性
体粒子の表面ヲスナレン系樹脂、ビニル系樹脂、エチル
系樹脂、ロジン変性樹脂、アクリル系樹脂、ポリアミド
樹脂、工ぎキシ樹脂、lリエステル樹脂等tn [1m
 ヤバルミ千ン酸、ステアリツ酸等の脂肪酸を分散して
含有した樹脂や脂肪酸ワックスの粒子を作るかして得ら
れた粒子を従来公知の平均粒径別手段で粒径選別するこ
とKよって得られる。
Such magnetic carrier particles may contain metals such as iron, lithium, cobalt, etc., or compounds or alloys thereof, such as triiron tetroxide, r - Particles of ferromagnetic or paramagnetic substances such as ferric oxide, chromium dioxide, manganese oxide, ferrite, manganese-copper alloy, or the surface of these magnetic particles, such as snarene resin, vinyl resin, ethyl resins, rosin modified resins, acrylic resins, polyamide resins, resin resins, polyester resins, etc. tn [1m
It can be obtained by making particles of a resin or fatty acid wax containing dispersed fatty acids such as balmicinic acid and stearic acid, and sorting the particles by particle size using a conventionally known mean particle size classification method. .

なお、キャリヤ粒子を樹脂等によって形成することは、
先に述べた効果の他に、現像剤搬送担体に形成される現
像剤層が均一となり、また現像剤搬送担体に高いバイア
ス電圧を印加することが可能となると言う効果も与える
。即も、キャリヤ粒子が樹脂等によって粒子化されてい
ることは、(1)一般に、キャリヤ粒子は長軸方向に磁
化吸着され易いが、球形化によってその方向性が無(な
り、したがって、現像剤層が均一に形成され、局所的に
抵抗の低い領域や層厚のムラの発生を防止する、C)中
ヤリャ粒子の高抵抗化と共に、従来のキャリヤ粒子に見
られるようなエッヂ部が無くなって、エッヂ部への電界
の氷中が起らなくなり、その結果、3J1gII剤搬送
担体に高いバイアス電圧を印加しても、像担持体面に放
電して静電潜像を乱したり、バイアス電圧がブレークダ
ウンしたりすることが紀らたい−)!へ蝕墨を4壷り一
との惠いバイ丁スミ圧な印加できると言うことは、本発
明における振動電界下での現像が振動するバイアス電圧
の印加によって行われるものである場合に、それによる
−後述する効果を十分圧発揮させることかできると言う
ことである。
Note that forming the carrier particles from resin etc.
In addition to the effects described above, the developer layer formed on the developer transport carrier becomes uniform, and a high bias voltage can be applied to the developer transport carrier. The reason why the carrier particles are made into particles by resin etc. is that (1) Generally, carrier particles tend to be magnetized and attracted in the long axis direction, but when they become spherical, the directionality becomes non-existent, and therefore, the developer The layer is formed uniformly, preventing the occurrence of locally low resistance areas and uneven layer thickness.C) Along with the high resistance of the medium particles, the edge parts seen in conventional carrier particles are eliminated. As a result, even if a high bias voltage is applied to the 3J1gII agent transport carrier, the electric field will not be applied to the edge part, and the electrostatic latent image will be disturbed due to discharge on the image bearing surface, or the bias voltage will be reduced. I don't want to break down!) The fact that it is possible to apply the erodible ink at a high pressure of 4 to 1 ink means that when the development under an oscillating electric field in the present invention is performed by applying an oscillating bias voltage, This means that the effects described below can be fully exerted.

以上のような効果′4を奏するキャリヤ粒子には前述の
ようにワックスも用いられるが、しかし、キャリヤの耐
久性等からすると、前述のような樹脂を用いたものが好
ましい。さらに、キャリヤ粒子の抵抗率が10’Ωα以
上、特に1091以上であるように絶縁性の磁性粒子を
形成したものが好ましい。
As mentioned above, wax can also be used as the carrier particles that produce the above-mentioned effect '4, but from the viewpoint of the durability of the carrier, it is preferable to use resin as mentioned above. Further, it is preferable that insulating magnetic particles are formed so that the carrier particles have a resistivity of 10'Ωα or more, particularly 1091 or more.

この抵抗率は、粒子を0.50mの断面積を有する容器
に入れてタッピングした後、飴められた粒子上に1kg
/c:の荷重を掛け、荷重と底面電極との間に1000
 V/はの電界が生ずる電圧を印加したときの電流値を
読み取ることで得られる値であり、この抵抗率が低いと
、現像剤搬送担体にバイアス電圧を印加した場合に、キ
ャリヤ粒子Km荷が注入されて、像担持体面にキャリヤ
粒子が付着し易(なったり、あるいはバイアス電圧のブ
レークダウンが起り易(なったりする。
This resistivity is calculated by applying 1 kg onto the candied particles after placing the particles in a container with a cross-sectional area of 0.50 m and tapping.
Apply a load of /c: and set a distance of 1000 between the load and the bottom electrode.
V/ is a value obtained by reading the current value when applying a voltage that generates an electric field.If this resistivity is low, when a bias voltage is applied to the developer transport carrier, the carrier particles Km charge will be When injected, carrier particles tend to adhere to the surface of the image carrier, or breakdown of the bias voltage tends to occur.

以上を総合して、磁性キャリヤ粒子は、長軸と短軸の比
が3倍以下であるように球形化されており、針状部やエ
ッヂ部等の突起が無(、抵抗率が10’Ωα以上好まし
くは、0saΩ偏以上であることが適正条件である。そ
し゛〔、このような磁性午ヤリャ粒子は、高抵抗化され
た球状の磁性粒子や樹脂液W1午ヤリャでは、磁性体粒
子にできるだけ球形のものを選んでそれに樹脂の被覆処
理を施すこと、磁性体微粒子分散系のキャリヤでは、で
きるだけ磁性体の微粒子を用いて、分散樹脂粒子形成後
に球形化処理を施すこと、あるいはスプレードライの方
法によって分散樹脂粒子を得ること等によって製造され
る。
Taking all the above into account, the magnetic carrier particles are spherical so that the ratio of the long axis to the short axis is 3 times or less, and there are no protrusions such as needles or edges (and the resistivity is 10'). The appropriate condition is Ωα or more, preferably 0saΩ or more.Then, such magnetic particles are spherical magnetic particles with high resistance or magnetic particles in the resin liquid W1. For carriers with magnetic fine particle dispersions, use magnetic fine particles as much as possible and perform spheroidization treatment after forming the dispersed resin particles, or spray dry. It is manufactured by obtaining dispersed resin particles by the method described in the following.

次にトナーについて述べると、一般にトナー粒子の平均
粒径が小さくなると、定性的に粒径の二乗に比例して帯
電量が減少し、相対的にファンデルワールス力のよ5な
付着力が太き(なって、トナー粒子がキャリヤ粒子から
闇れにく(なったり、またトナー粒子が一旦像担持体面
の非画像部に付着すると、それが従来の磁気プツシによ
る摺擦では容易に除去されずにかぶりな生ぜしめるよう
になる。従来の磁気ブラシ現像方法では、トナー粒子の
平均粒径が10μm以下になると、このような問題が顕
著になった。この点を本発明の現像方法は、現像剤層、
所謂磁気ブラシによや現像を振動電夢下で行うよ5tC
したことで解消するようにしている。即ち、現像剤層に
付着しているトナー粒子は、、電気的に与えられる振動
によって現像剤層から離れて像担持体面の画像部及び非
画像部に移行し易(、かつ、離れ易くなる。そして、現
像剤層で像担持体面を摺擦するようにした場合は、像担
持体の非画像部に付着したトを一粒子は容易に除去乃至
画像部に移動させられる本うになるし、現像剤層厚を像
担持体面と現像剤搬送担体面の間隙よりシ薄く形成した
場合は、帯電量の低いトナー粒子が画像部や非画像部に
移行す、ることが殆んどなくなり、また、像担持体面と
擦ら、れることがないために摩擦帯電により像担持体に
付着することもなくなって、l−程度のトナー粒子のも
のまで用いられるよ5になる。したがって、静電潜像を
忠実に現像した再現性のよい鮮明なトナー像を得ること
ができる。さらに、振動電界はトナー粒子とキャリヤ粒
子の結合を弱めるので、トナー粒子に伴う、キャリヤ粒
子の像担持体面への付着も減少する。
Next, regarding toner, in general, as the average particle size of toner particles becomes smaller, the amount of charge qualitatively decreases in proportion to the square of the particle size, and the adhesion force such as van der Waals force increases. This makes it difficult for the toner particles to be separated from the carrier particles, and once the toner particles adhere to the non-image area of the image bearing surface, they cannot be easily removed by rubbing with a conventional magnetic pusher. In the conventional magnetic brush development method, this problem became noticeable when the average particle size of the toner particles became 10 μm or less.The development method of the present invention solves this problem. agent layer,
Developing with a so-called magnetic brush is done under a vibrating electric beam at 5tC.
I'm trying to resolve it by doing this. That is, the toner particles adhering to the developer layer are easily moved (and easily separated) from the developer layer to the image area and non-image area on the image carrier surface due to electrically applied vibrations. If the surface of the image carrier is rubbed with the developer layer, particles attached to the non-image area of the image carrier can be easily removed or moved to the image area, and the developer layer can be easily removed or moved to the image area. When the agent layer thickness is formed to be thinner than the gap between the image carrier surface and the developer transport carrier surface, toner particles with a low charge amount will hardly migrate to the image area or non-image area, and Because it does not rub against the surface of the image carrier, it does not adhere to the image carrier due to triboelectric charging, and even toner particles of about 1-100 g can be used.5 Therefore, it is possible to form an electrostatic latent image with high fidelity. It is possible to obtain a clear toner image with good reproducibility that is developed with high reproducibility.Furthermore, since the oscillating electric field weakens the bond between toner particles and carrier particles, the adhesion of carrier particles to the image bearing surface due to toner particles is also reduced. .

@ K s現像剤層の厚さを像担持体面と現像剤搬送担
体面の間隙よりも薄くした場合は、画像部及び非111
8部領域において、大きな帯電量を持つトナー粒子が振
動電界下で振動し、電界の強さKよってはキャリヤ粒子
も構動することにより、トナー粒子が選択的に像担持体
面の画像部に移行するよ5、にな、る針5ら、 、 滲
葛ギ4ト手子も、キャリヤ粒子の像担持体面への 付着は大幅(軽減さ些る。電界により非画像部領竺への
ト大−粒子は非画像部へ到達する場合もある。牛ヤリャ
についても同様である。このために現像剤が飛赦しやす
い問題がある。現像部へ搬入さ、れる現像剤はでき5る
限り搬送速度を小さくするよう1界、する必要がある。
@ K s If the thickness of the developer layer is made thinner than the gap between the image carrier surface and the developer transport carrier surface, the image area and non-111
In the 8-part area, toner particles with a large amount of charge vibrate under the oscillating electric field, and depending on the strength of the electric field K, the carrier particles also move, so that the toner particles selectively transfer to the image area on the image carrier surface. In addition, the adhesion of carrier particles to the surface of the image bearing member is greatly reduced (not significantly reduced). - Particles may reach the non-image area. The same is true for cow yaya. Therefore, there is a problem that the developer is likely to fly away. The developer transported to the developing section is transported as fast as possible It is necessary to make the first world smaller.

一方、ト1ナーの平均粒径が大き(なると、先にも述べ
たよjKlI像の荒れが目立つようKなる。
On the other hand, if the average particle size of the toner is large (as mentioned earlier, the roughness of the jKlI image becomes noticeable).

通常、10本/雪璽程度のピッチで並んだ細線の解像力
ある現像には、平均粒径加μm程度(73)ナーでも実
用上は問題ないが、しかし、平均粒径10μm以下の微
粒子化したトナーを用いると、解像力は格段に向上して
、濃淡差等も忠実に再現した鮮明な高画質画像を与える
ようになる。以上の理由からトナーの粒径は平均粒径が
加μm以下、好ましくは10μm以下が適正条件である
。また、トナー粒子が電界に追随するために、トナー粒
子の平均帯電量が1〜3μC/11より大きいこと(好
ましくは3〜300μC/11 )が望ましい。$に粒
径の小さい場合は高い帯電量が必要である。
Normally, for developing fine lines arranged at a pitch of about 10 lines/snow seal with high resolution, there is no practical problem with a powder having an average particle size of about 1 μm (73). When toner is used, resolving power is significantly improved, and it becomes possible to provide clear, high-quality images that faithfully reproduce differences in shading and the like. For the above reasons, the appropriate condition for the particle size of the toner is that the average particle size is 10 μm or less, preferably 10 μm or less. Further, in order for the toner particles to follow the electric field, it is desirable that the average charge amount of the toner particles be larger than 1 to 3 μC/11 (preferably 3 to 300 μC/11). If the particle size is small, a high charge amount is required.

そして、このようなトナーは、従来のトナーと同様の方
法で得られる。即ち、従来のトナーにおける球形や不定
形の非磁性または磁性のトナー粒子を平均粒径選別手段
によって選別したようなトナーを用いることができる。
Such toner can be obtained in the same manner as conventional toner. That is, it is possible to use a toner in which spherical or amorphous nonmagnetic or magnetic toner particles in conventional toners are sorted by an average particle size sorting means.

中でも、トナー粒子が磁性体粒子を含有した磁性粒子で
あることは好ましく、特に磁性体微粒子の量が0重量%
を超えないものが好ましい。トナー粒子が磁性粒子を含
有したものである場合は、トナー粒子が現像剤搬送担体
に含まれる磁石の磁力の影響を受けるようKなるから、
磁気ブラシの均一形成性が一層向上して、しかも、かぶ
りの発生が防止され、さらにトナー粒子の飛散も起りに
くくなる。しかし、含有する磁性体の量を多(シ過ぎる
と、キャリヤ粒子との間の磁気力が大きくなり過ぎて、
十分な現像濃度を得ることができなくなるし、また、磁
性体微粒子がトナー粒子の表面に現われるようにもなっ
て、摩擦帯電制御が難しくなったり、トナー粒子が破損
し易くなったり、キャリヤ粒子との間で凝集し易くなっ
たりする。特にカラートナーを用いる場合、磁性体重は
、加重量%以下にしな〜・と鮮明な色画像は得られない
Among these, it is preferable that the toner particles are magnetic particles containing magnetic particles, particularly when the amount of magnetic fine particles is 0% by weight.
Preferably, it does not exceed . When the toner particles contain magnetic particles, the toner particles are affected by the magnetic force of the magnet included in the developer transport carrier.
The ability to uniformly form the magnetic brush is further improved, fogging is prevented, and toner particles are less likely to scatter. However, if the amount of magnetic material contained is too large, the magnetic force between it and the carrier particles will become too large.
It will not be possible to obtain a sufficient developing density, and fine magnetic particles will appear on the surface of the toner particles, making it difficult to control triboelectric charging, making it easier to damage the toner particles, and causing damage to the carrier particles. It becomes easy to aggregate between the two. In particular, when using color toners, the magnetic weight must be less than % of the weighted amount or a clear color image cannot be obtained.

以上を纏めると、本発明の現像方法において好ましいト
ナーは、キャリヤについて述べたような樹脂及びさらに
は磁性体の微粒子を用い、それにカーボン等の着色成分
や必要に応じて帯電制御等を加えて、従来公知のトナー
粒子製造方法と同様の方法によって作ることが、できる
平均粒径が20−以下、特に好ましくは10μm以下の
粒子から成るものである。更にトナーの球形化は、流動
性の向上・現像剤の攪拌・搬送・帯電について好ましい
結果をもたらす。
To summarize the above, a preferable toner in the developing method of the present invention uses a resin as described above for the carrier and further fine particles of a magnetic material, and a coloring component such as carbon and, if necessary, charge control etc. are added thereto. The toner particles can be produced by a method similar to a conventionally known method for producing toner particles, and consist of particles having an average particle diameter of 20 μm or less, particularly preferably 10 μm or less. Furthermore, spherical toner brings about favorable results in terms of improved fluidity, agitation, transport, and charging of the developer.

本発明の現像方法においては、以下述べたよ5なキャリ
ヤ粒子とトナー粒子とが従来の二底分現・体刑における
と同様の割合で混合した現像剤が好ましく用いられるが
、これKはまた、必要に応じて粒子の流動滑りをよくす
るための流動化剤や像担持体面の清浄化に役立つクリー
ニング剤等が混合される。流動化剤とし・では、コ四イ
ダルシリヵ、シリコンフェス、金属石−ある6い、は非
イオン表面活性剤等を用いることができ、クリーニング
剤としては、脂肪酸金属塩、有機基置換シリコンあるい
は弗素等表面活性剤等tf@′いることができる。
In the developing method of the present invention, it is preferable to use a developer in which carrier particles and toner particles as described below are mixed in the same proportions as in the conventional two-base development process, but this K is also necessary. Depending on the conditions, a fluidizing agent for improving the fluidity and sliding of particles, a cleaning agent for cleaning the surface of the image bearing member, etc. are mixed. As a fluidizing agent, cotetraidal silica, silicon face, metal stone, or a nonionic surfactant can be used, and as a cleaning agent, fatty acid metal salt, organic group-substituted silicon, fluorine, etc. can be used. Surfactants and the like can be used.

以上が現像剤についての条件・であり、次に、このよう
な現像剤で現像剤層を形成して像担持体上の静電像を現
像する現像剤搬送担体に関する条件について述べる。
The above are the conditions for the developer, and next, the conditions for the developer transport carrier that forms a developer layer with such developer to develop the electrostatic image on the image carrier will be described.

現像剤搬送担体には、バイアス電圧を印加し得る従来の
現像方法におけると同様の現像剤搬送担体が用いられる
が、特に、表面に現像剤層が形成されるスリーブの内部
に複数の磁極ケ有する回転磁石体が設けられている構造
のものが好ましく用いられる。:このような現像剤搬送
担体においては、回転磁石体の回転によりて、スリーブ
の表面に形成される現像剤層が波状に起伏して移動する
よ5になるから、新しい現像剤が次々と供給され、スリ
ーブ表面の現像剤層に多少の層厚の不均一があっても、
その影響は上記波状の起伏によって実際上問題とならな
いように十分カバーされる。
A developer transport carrier similar to that used in conventional development methods to which a bias voltage can be applied is used, but in particular, a developer transport carrier having a plurality of magnetic poles inside a sleeve on which a developer layer is formed is used. A structure in which a rotating magnet is provided is preferably used. : In such a developer transport carrier, the developer layer formed on the surface of the sleeve moves in an undulating manner due to the rotation of the rotating magnet, so new developer is supplied one after another. Even if there is some unevenness in the developer layer on the sleeve surface,
This effect is sufficiently covered by the above-mentioned wave-like undulations so that it does not become a problem in practice.

しかしこ・の現像剤搬送手段では磁石体を高速回転する
ため、その回転機・構に於ては、高い回転トルクを必要
とすることや、振動が生じ易い等の問題が生じる。それ
放磁・方体固定でスリーブを回転する搬送法が望ましい
、が従来の磁極構成によったときは磁石体回転に相当す
る均一な層形成を得ることはliLい。
However, in this developer conveying means, since the magnet body is rotated at high speed, problems arise in the rotating mechanism, such as requiring high rotational torque and being susceptible to vibration. It is desirable to use a conveyance method in which the sleeve is rotated while the sleeve is demagnetized and fixed to the rectangular shape, but when the conventional magnetic pole configuration is used, it is difficult to obtain uniform layer formation equivalent to the rotation of the magnet body.

本発明は磁石体固定でスリーブを回転移動させる現像剤
搬送法において、均一な現像剤層を形成する方法を提供
するものである。
The present invention provides a method for forming a uniform developer layer in a developer transport method in which a sleeve is rotatably moved while a magnet is fixed.

スリーブ内に同極の磁石体を近づけて配設すると、反発
磁界を形成し、スリーブと共に移動する現像剤はその間
でり2ウド状態に近くなって移動することが知られてい
る。この状態では現像剤層は荒れた状態で、穂高は扁く
形成されるため、現像された画像は良好ではない。更に
像担持体とスリーブとの間隙は大きくなって電極効果は
得忙くくなって、十分な画像濃度を得ることは困難とな
る。本発明は反発磁界によるクラウド状態を保持しつつ
均一な現像剤層を得るよう板状部材を反発磁界形成部の
上流部に設置するようにした現像方法である。
It is known that when magnets of the same polarity are disposed close to each other in a sleeve, a repelling magnetic field is formed, and the developer moving together with the sleeve moves in an almost diagonal state between them. In this state, the developer layer is rough and the spikes are formed flat, so the developed image is not good. Furthermore, the gap between the image carrier and the sleeve becomes larger, and the electrode effect becomes more difficult to obtain, making it difficult to obtain sufficient image density. The present invention is a developing method in which a plate-like member is installed upstream of a repulsion magnetic field forming section to obtain a uniform developer layer while maintaining a cloud state due to a repulsion magnetic field.

第1図は同極磁石体を並べた反発磁界によるスリーブ上
の現像剤層の構成を示したもので、像担持体1に対向し
て同極の磁石体3を並べ、この外周にスリーブ2を設け
たもので、現像域Aにおいてヲ讐トナーはクラウド的状
顧となる。しかしこの状態では穂立す高(かつ□荒れた
状態となっている。
FIG. 1 shows the structure of a developer layer on a sleeve due to a repulsive magnetic field in which magnets of the same polarity are arranged. Magnets 3 of the same polarity are arranged facing an image carrier 1, and a sleeve 2 is placed on the outer periphery of the magnet. In the development area A, the other toner becomes cloud-like. However, in this state, the ears are standing tall (and □ rough).

この現像域Aの上流部K11立の高さを押える部材とし
て押え板21を挿入したのが葛2図である。
Figure 2 shows a holding plate 21 inserted as a member for holding down the height of the upstream part K11 of the developing area A.

押え板21を挿入することで高くかつ荒れた状態の穂立
は無くなりクラウド状態は保存されろことが明らかとな
った。又この押え板21により穂立が形ζ 成され、像担持体1とスリーブ2とのl’!l隔が狭く
とれるようになるので、十分な電極効果を得ることがで
きる。穂立押え部材の挿入位置は現像領域をできるだけ
広くするために同極の磁極間の中心部近傍及びそれより
上流部に設けることが好ましい。又上流部の磁極より上
流に設けた場合にはその効果はでない。又現像領域では
特に限定きれないが、重力方向がスリーブの方に向いて
いることが好ましい。このようにすることにより現像剤
の飛散の程度が軽減する。第2図では、磁極3を現像領
域に対向させているが、第3図のようにずらして下流の
磁極のみを対向させてもよい。こうするととにより押え
板21を上流側に設けることかで(’4% 、 pJc
2図のよ5 hc狭い現像領域に設けなくてもよ< t
rる。スリーブの回転による現像剤の搬送速度は、gi
!担持体の移動速度と殆んど同じか、それよりも速いこ
とが好ましいが、現像剤の飛散を考慮すると像担持体の
移動速、度の4〜5倍以内に押えることが適当である。
It became clear that by inserting the presser plate 21, the tall and rough spikes would disappear and the cloud condition would be preserved. Also, the holding plate 21 forms a spike ζ, and the l'! of the image carrier 1 and sleeve 2 is formed. Since the l spacing can be made narrower, a sufficient electrode effect can be obtained. In order to widen the development area as much as possible, it is preferable to insert the ear stand presser member near the center between the magnetic poles of the same polarity and upstream thereof. Moreover, if it is provided upstream from the upstream magnetic pole, this effect will not be obtained. Further, in the developing area, although it is not particularly limited, it is preferable that the direction of gravity is directed toward the sleeve. By doing so, the degree of developer scattering is reduced. In FIG. 2, the magnetic poles 3 are opposed to the development area, but they may be shifted as shown in FIG. 3 so that only the downstream magnetic poles are opposed. In this way, by providing the holding plate 21 on the upstream side ('4%, pJc
As shown in Figure 2, 5 hc does not need to be provided in the narrow development area.
ru. The developer transport speed due to the rotation of the sleeve is gi
! It is preferable that the moving speed be almost the same as or faster than the moving speed of the image carrying member, but in consideration of developer scattering, it is appropriate to keep the moving speed within 4 to 5 times the moving speed of the image carrying member.

スリ□−プの回転方向は像担持体の回転と同方向が好ま
しい。同方向の方が反対方向の場合よりも画像再現性に
優れている。
The direction of rotation of the slip is preferably the same as the rotation of the image carrier. Image reproducibility is better in the same direction than in the opposite direction.

しかし、それらに限定されるものではない。However, it is not limited to these.

また、現像剤搬送担体上に形成する現像剤層の厚さを工
、この現像域に先行してなされる付着した現像剤が厚さ
の規制ブレード・によって十分に掻ぎ落されて均一な層
とな、る厚さ・であ゛ることか好ましく、そして、現像
剤搬送担体と像担持体との間隙は数10〜2000μm
が好ましい。現像剤搬送担体と像担持体の表面間腋、が
微10−よりも狭くなり過ぎると、それに対して均一に
現像作用する磁気ブラシの穂を形成するのが困難となり
、また、十分なトナー粒子を現像部に供給することもで
きな(なって、安定した現像が行われな(なるし、間・
陳が2000μmを大きく超すようになると、対向電極
効果が低下して十分な現像濃度・が得られないようにな
る。このように、現像剤搬送担体と像担持体の間隙か極
端になると、それに対して現像剤搬送担体上の現像剤層
の厚さを適当にすることができなくなるが、間隙が数□
10μm〜2000μmの範囲では、それに対して現像
剤層を厚さを適当に形成することができる。そこで、間
隙と現像剤層の厚さを振動電界な゛与えていない、状態
の下で磁気ブラシの穂が像担持体の表面に接触せず、し
かもできるだけ近接するような条件に設定することが特
に好ましい。□・それは、潜像のトナー現像に磁気ブ2
&′の摺擦による掃き目が生じたり、またかぶりが生゛
じたりすることが防止されるからである。
In addition, the thickness of the developer layer formed on the developer transport carrier is adjusted so that the developer that adheres to the developing area is sufficiently scraped off by the thickness regulating blade to form a uniform layer. It is preferable that the thickness be approximately 100 μm to 2000 μm.
is preferred. If the distance between the surfaces of the developer transport carrier and the image carrier becomes too narrow than 10 mm, it will be difficult to form magnetic brush ears that will uniformly develop the area, and it will also be difficult to form sufficient toner particles. cannot be supplied to the developing section (and stable development cannot be carried out).
When the thickness greatly exceeds 2000 μm, the effect of the opposing electrode decreases, making it impossible to obtain a sufficient development density. In this way, if the gap between the developer transport carrier and the image carrier becomes extreme, it becomes impossible to make the thickness of the developer layer on the developer transport carrier appropriate, but if the gap is several □
In the range of 10 μm to 2000 μm, the developer layer can be formed with an appropriate thickness. Therefore, it is necessary to set the gap and the thickness of the developer layer so that the ears of the magnetic brush do not come into contact with the surface of the image carrier under conditions where no oscillating electric field is applied, and are as close as possible to the surface of the image carrier. Particularly preferred. □・It uses magnetic plate 2 to develop latent image toner.
This is because scratches caused by the rubbing of &' and fogging are prevented.

さらに、振動電界下゛での現像は、現像剤搬送担体のス
リーブに振動するバイアス電圧を印加□することによ・
るのか好ましい。また、バイアス電圧には非画像□部分
へのトナー粒子・の付着を防止する直流電圧と卜・ナー
粒子をキャリヤ粒子から離れ易くするため、の交流電圧
との重畳した電圧を用いることが好ましい。しか:し本
発明は、スリーブへの振動電圧の印加による方法や直流
と交流の重畳電圧印加による方法に限られるものではな
い。
Furthermore, development under an oscillating electric field is achieved by applying an oscillating bias voltage to the sleeve of the developer transport carrier.
Is it preferable? Further, as the bias voltage, it is preferable to use a voltage that is a combination of a DC voltage that prevents toner particles from adhering to non-image areas and an AC voltage that makes it easier for the toner particles to separate from the carrier particles. However, the present invention is not limited to the method of applying an oscillating voltage to the sleeve or the method of applying a superimposed DC and AC voltage.

以上述べたような不発明の現像方法は、第4図及び第5
図に例示したような装置によって実施される。
The uninvented developing method as described above is shown in Figures 4 and 5.
This is implemented by a device such as that illustrated in the figure.

第4図及び第5図において、1は矢印方向に回転し、図
示せざる帯電露光装置によりて表面に静Irl1像を形
成されるBe等の感光体よりなるドラム状の像担持体、
2はアル1ニウム等の非磁性材料からなるスリーブ、3
はスリーブ2の内部に設けられて表面に複数のN、8a
!極を周方向に有する固定した磁石体で、このスリーブ
2と磁石体3とで絹送担体を構成している。スリーブ2
は回転可能で図はスリーブ2が矢印方向に回転するもの
であることを示している。また、磁石体3のN、S磁極
は像担持体1に対向して配置された同極性の磁石を含め
通常500〜1500ガウスの磁束密度に磁化されてお
り、その磁力によってスリーブ2の表面に先に述べたよ
うな現像剤りの層即ち、磁気プツシを形成する。4は搬
送過程および現像域Aにおける磁気ブラシの高さ、量を
規制する磁性や非磁性体からなる規制ブレード、5は現
像域A1に!I過した磁気ブラシをスリーブ2上から除
去するクリーニングブレードである。スリーブ2の表面
は現像剤溜り6において現像剤りと接触するからそ−れ
によって現像剤りの供給が行われることになり、7は現
像剤溜り6の現像剤りを攪拌して成分を均一にする攪拌
スクリユーである。現像剤虐り6の現像剤りは現像が行
われるとその中のトナー粒子が消癲されるようになるか
ら、8は先に述べたようなトナー粒子Tを補給するため
のトナーホッパー、9は現像剤溜り6にトナー粒子Tを
落す表面に凹部な有する供給ローラである。10は保護
抵抗11を介してスリーブ2にバイアス電圧を印加する
バイアス電源である。
4 and 5, reference numeral 1 denotes a drum-shaped image carrier made of a photoreceptor such as Be that rotates in the direction of the arrow and has a static Irl1 image formed on its surface by a charging exposure device (not shown);
2 is a sleeve made of a non-magnetic material such as aluminum; 3
is provided inside the sleeve 2 and has a plurality of N, 8a on the surface.
! The sleeve 2 and the magnet 3 constitute a silk feeding carrier, which is a fixed magnet body having poles in the circumferential direction. sleeve 2
is rotatable, and the figure shows that the sleeve 2 rotates in the direction of the arrow. Further, the N and S magnetic poles of the magnet body 3, including a magnet of the same polarity disposed opposite the image carrier 1, are normally magnetized to a magnetic flux density of 500 to 1500 Gauss, and the magnetic force causes the surface of the sleeve 2 to A layer of developer material, ie, a magnetic push, as described above is formed. 4 is a regulating blade made of magnetic or non-magnetic material that regulates the height and amount of the magnetic brush in the conveyance process and in the developing area A, and 5 is in the developing area A1! This is a cleaning blade that removes the damaged magnetic brush from the top of the sleeve 2. The surface of the sleeve 2 comes into contact with the developer in the developer reservoir 6, thereby supplying the developer, and the developer 7 stirs the developer in the developer reservoir 6 to uniformly distribute the components. This is a stirring screw. Since the toner particles in the developer tank 6 are erased when development is performed, 8 is a toner hopper for replenishing the toner particles T as described above, 9 is a supply roller having a concave portion on its surface that drops the toner particles T into the developer reservoir 6. A bias power supply 10 applies a bias voltage to the sleeve 2 via a protective resistor 11.

ここで本発明により新たに穂立押え部材について説明す
る。第4図において、現像域Aに挿入する穂立押え部材
である押え板21には之を支持する支持部材酋が固設し
てあり、支持部材22によって支持された押え板21は
回動軸おを回動中心として回動可能に取付けられている
、一方この押え板4には付勢された引張ばねあが設けて
あって、之を引上げる時計方向に作動し1.位置決め部
材6に当接して押え一板21の現像域人における位置精
度を保証するようになっている。 ( 一方、第5図の装置においては、穂立押え部材である押
え板311Cは之を支持する支持部材32が・固設して
あり、支持部材32によって支持された押え板31は回
動軸おを回動中心として回動可能に取付ゆられている。
Here, a new ear stand pressing member according to the present invention will be explained. In FIG. 4, a support plate 21 that is a stand-up press member to be inserted into the developing area A has a support member holder fixed thereto, and the press plate 21 supported by the support member 22 has a rotation shaft. On the other hand, this presser plate 4 is provided with an energized tension spring that operates in a clockwise direction to pull up the presser plate 4. It abuts against the positioning member 6 to ensure the positional accuracy of the presser plate 21 in the developing area. (On the other hand, in the apparatus shown in FIG. 5, a support member 32 for supporting the holding plate 311C, which is a member for holding down the ear stand, is fixedly installed, and the holding plate 31 supported by the support member 32 is rotated around a rotating shaft. It is mounted so that it can rotate around the center of rotation.

一方この押え板31には付勢された引張ばねUが設けて
あって反・時計方向に作動し、位置決め部材語に当接し
て押え、板31の現−域ムにおける位置精度を保証する
。 ゛ ここで現像スリーブ2には高圧の電圧が印加されている
ので5.押え板21.31は、絶縁性材料を用いるとか
、常に浮いた状態に保、持して放電やリークを防ぐこと
が・必要である。また押え板21.31は硬い材質のも
のよ・す′も適度の弾性を有していた方がよい。・その
他間・腋保持方法とし、ては、押え板21゜31の先端
の両側にス、ペーサ一部材を設はスリーブに当接するよ
5V’Cしてもよい。
On the other hand, this holding plate 31 is provided with a biased tension spring U which operates counterclockwise and comes into contact with the positioning member word to hold it down and ensure the positional accuracy of the plate 31 in the current range. ``Here, a high voltage is applied to the developing sleeve 2, so 5. The holding plates 21 and 31 need to be made of an insulating material or kept in a floating state at all times to prevent discharge and leakage. Furthermore, since the presser plates 21 and 31 are made of a hard material, they should also have appropriate elasticity. - As another method of holding the spacer/armpit, a spacer member may be provided on both sides of the tip of the presser plate 21, 31, and a 5V'C may be applied so that the spacer member comes into contact with the sleeve.

以上のような装置において、スリーブ2を像担持体1に
対して表面間隙が数10〜2000 IIxLの範囲に
あるようVC設定して、像担持体1の静電儂の現像を行
うと、スリー22の表面に形成された硼気ブラシは、前
記の同極性の磁石体と穂立押え部材とによって像担持体
1・・との間隙をクラウド状態で安定1.て円滑に通過
し、・その際像担持体1の表面に対し、均一な現像効果
を与えることになって・、安定して高いトナー濃度の現
像を可能にする。それには、かぶりの発生を防ぐため及
び現像効果を向上させるために、スリーブ2にバイアス
電R10によって振動する交流成分を有したバイアス電
圧が接地した像担持体1の基体1&との間に印加されて
いる。このバイアス電圧には、先に、も述べ、たよ5に
、好ましい直流電圧と交流電圧の重畳電圧が用いられ、
直流成分がかぶりの発生を防止し、、交流成分が磁気ブ
ラシK・振動を与えて現像効果を向上する。、なお、通
常直流電圧成分には弁面部電位と略等しいか、それより
も高い50〜600Vの電圧が用いられ、交流電圧成分
には100Hz〜10KH1“、好ましくは1〜5KH
zの周波数100〜rtooo vの電圧が用いられる
。な°お、直流電圧成分を寡、トナー粒子が磁性体を含
有している場合は、非am電位よりも低くてよい。交流
電圧成分の周波数が低過ぎると、振動を与える効果が得
られなくなり、高過ぎても電界の振動に現像剤が追従で
きなくなって、現像濃度が低下し、鮮明な高画質画像が
得られなくなると言う傾向が現われる。また、交流電圧
成分の電圧値は、周波数も関係するが、高い程磁気ブラ
シを振動させるよ51Cなってそれだけ効果を増すこと
になるが、その反面高い程かぶりを生じ易くし、落雷現
象のような絶縁破壊も起り易くする。しかし、現像剤り
のキャリヤ粒子が樹脂等によって絶縁化、かつ球形化さ
れていることが絶縁破壊を防止するし、かぶりの発生も
直流電圧成分で防止し得る。なお、この交流電圧を印加
するスリーブ2を表面を樹脂や酸化被膜によって絶縁乃
至は半絶縁被覆−「るよ5にしてもよい。
In the apparatus described above, when the VC is set so that the surface gap between the sleeve 2 and the image carrier 1 is in the range of several tens to 2000 II x L, and electrostatic development is performed on the image carrier 1, the sleeve 2 The boron brush formed on the surface of the image bearing member 1 is stably maintained in a cloud state by the magnetic body of the same polarity and the brush holding member. The toner particles pass through the toner smoothly, and at that time, a uniform developing effect is imparted to the surface of the image carrier 1, making it possible to stably develop with a high toner density. In order to prevent the occurrence of fogging and to improve the developing effect, a bias voltage having an alternating current component vibrating by a bias voltage R10 is applied to the sleeve 2 between the grounded image carrier 1 and the base 1&. ing. For this bias voltage, as mentioned above, a preferable superimposed voltage of DC voltage and AC voltage is used,
The DC component prevents fogging, and the AC component provides vibration to the magnetic brush to improve the developing effect. Note that, normally, a voltage of 50 to 600 V, which is approximately equal to or higher than the valve surface potential, is used for the DC voltage component, and a voltage of 100 Hz to 10 KH1'', preferably 1 to 5 KH, is used for the AC voltage component.
A voltage with a frequency of z of 100 to rtoo v is used. Note that if the DC voltage component is small and the toner particles contain a magnetic material, the potential may be lower than the non-am potential. If the frequency of the AC voltage component is too low, the effect of imparting vibration will not be achieved, and if it is too high, the developer will not be able to follow the vibrations of the electric field, resulting in a decrease in developer density and the inability to obtain clear, high-quality images. There is a tendency to say. In addition, the voltage value of the AC voltage component is also related to the frequency, but the higher the voltage value, the more effective it will be because it vibrates the magnetic brush (51C), but on the other hand, the higher the voltage value, the more likely it is to cause fogging, which is similar to the phenomenon of lightning strikes. It also makes dielectric breakdown more likely to occur. However, the carrier particles in the developer are insulated by a resin or the like and made spherical to prevent dielectric breakdown, and the occurrence of fog can also be prevented by using the DC voltage component. The sleeve 2 to which this alternating current voltage is applied may have an insulating or semi-insulating coating on its surface with a resin or oxide film.

以上、第4図及び第51ii11は現像剤の搬送方法と
現像剤搬送担体に振動するバイアス電圧を印加する例な
示しているが、本発明の現像方法はそれに限らず、例え
ば現像剤搬送担体と像担持体間の現像領域周辺に電極ワ
イヤを数本張設して、それに振動する電圧を印加するよ
うにしても磁気ブラシに振動を与えて現像効果を向上さ
せることはできる。その場合も、現像剤搬送担体には直
流バイアス電圧を印加し、あるいは、異なった振動数の
振動電圧を印加するようにしてもよい。また、本発明の
方法は反転現像など圧も同様に適用できる。
Although FIG. 4 and FIG. 51ii11 show an example of the developer transport method and the application of an oscillating bias voltage to the developer transport carrier, the developing method of the present invention is not limited thereto. The developing effect can also be improved by applying vibration to the magnetic brush by extending several electrode wires around the developing area between the image carriers and applying a vibrating voltage to them. In that case as well, a direct current bias voltage may be applied to the developer transport carrier, or oscillating voltages of different frequencies may be applied. Further, the method of the present invention can be similarly applied to pressure such as reversal development.

その場合、直流電圧成分は像担持体の非画像背景部にお
ける受容電位と略等しい電圧に設定される。
In that case, the DC voltage component is set to a voltage approximately equal to the reception potential in the non-image background portion of the image carrier.

さらに、本発明の方法は絶縁層を有する感光体の現像や
磁気潜像の現像にも同様に適用し得る、また本件出願人
が先に特願昭58−184381号、同58−1831
52 号、同58−187000号、同58−1870
01号にて記載したような潜像上にトナー像を重ね合せ
るカラー化にも適用し得る。
Furthermore, the method of the present invention can be similarly applied to the development of a photoreceptor having an insulating layer and the development of a magnetic latent image.
No. 52, No. 58-187000, No. 58-1870
It can also be applied to coloring in which a toner image is superimposed on a latent image as described in No. 01.

(実施例) キャリヤ粒子に微粒フェライトを樹脂中に(資)重量幅
分散した平均粒径が四μm、磁化か(資)・rtru/
I。
(Example) Fine ferrite particles are dispersed in a resin as carrier particles, and the average particle diameter is 4 μm, and the magnetization is rtru/
I.

抵抗率か109傷以上の熱による球形化処理を行った磁
性粒子な用い、トナー粒子に平均粒径が5μmの非磁性
粒子を用いて、@4・図に示した装置により現像剤溜り
6に−Mける現像剤りのトナー粒子比率がキャリヤ粒子
に対して15重量%になる条件で現像を行なった。この
時押え板21には金属板を絶縁樹脂コートし、像担持体
1がら押え板21までの最近接間隔を0141EIIに
設定した。トナーの平均帯電量は3DpC/I であっ
た。
Using magnetic particles that have been subjected to thermal spheroidization treatment with a resistivity of 109 scratches or more, and using non-magnetic particles with an average particle size of 5 μm as toner particles, the toner particles are placed in the developer reservoir 6 using the device shown in the figure 4. Development was carried out under conditions such that the ratio of toner particles in the developer in -M was 15% by weight relative to the carrier particles. At this time, a metal plate was coated with an insulating resin on the holding plate 21, and the closest distance from the image carrier 1 to the holding plate 21 was set to 0141EII. The average charge amount of the toner was 3DpC/I.

この場合の像担持体1の条件はCdS 74@元体、そ
の周速は180 mV−、像担持体1に形成された静電
像の最高電位は一5oo v 、最低電位は−100V
であった。スリーブ2の外径も90m’s但しその回転
数は150r、p、m、、磁石体3の現俸域Aに対向し
た磁極の最大の磁束密度Gm 1200ガウス、その中
心部は800ガウス、現像域Arc入る前の現像剤層の
厚さOAm、スリーブ2に印加するバイアス電圧は直流
電圧成分−200■、交流電圧成分2 KHz、100
OVとした。この実施例ではスリーブ2と像担持体1と
の間llIは0.7謔としてスリーブ2上の現像剤層は
像担持体1の表面に接触してない。
The conditions for the image carrier 1 in this case are CdS 74@element, its peripheral speed is 180 mV-, the highest potential of the electrostatic image formed on the image carrier 1 is -500 V, and the lowest potential is -100 V.
Met. The outer diameter of the sleeve 2 is also 90 m's, but its rotation speed is 150 r, p, m, the maximum magnetic flux density Gm of the magnetic pole facing the current radius area A of the magnet body 3 is 1200 Gauss, the center part is 800 Gauss, and the developing The thickness of the developer layer before entering the area Arc is OAm, the bias voltage applied to the sleeve 2 is DC voltage component -200■, AC voltage component 2 KHz, 100
It was set as OV. In this embodiment, the distance between the sleeve 2 and the image carrier 1 is 0.7, and the developer layer on the sleeve 2 is not in contact with the surface of the image carrier 1.

以上の条件で現像を行って、それを普通紙にコロナ放電
して転写し、表面温度140℃のヒートローラ定着装置
に通して定着した結果、得られた記録紙の画像はエッヂ
効果やかぶりのない、そして濃度が高いきわめて鮮明な
ものであり、引続いて5万枚の配鎌紙を得たが最初から
最後まで安定して変らない画像な得ることができた。
The image was developed under the above conditions, transferred to plain paper by corona discharge, and fixed by a heat roller fixing device with a surface temperature of 140°C. The resulting image on the recording paper was free from edge effects and fog. It was a very clear image with high density, and even though we subsequently produced 50,000 sheets of paper, we were able to obtain images that remained stable and unchanged from beginning to end.

(実施例2) キャリヤ粒子に微粒フェライトを樹脂中に50重量%分
散した平均粒径がIμm、磁化が(資)・mu/I。
(Example 2) 50% by weight of fine ferrite dispersed in a resin as carrier particles has an average particle diameter of I μm and a magnetization of (capital)・mu/I.

抵抗率が10Ω1以上の熱による球形化処理を行った磁
性粒子を用い、トナニ粒子に平均粒径が5xWLの非磁
性粒子を用いて、第5m示の現像装置により、現俸剤溜
り6における現像剤りのトナー粒子比率がキャリヤ粒子
に対して15重量%になる条件で現像を行った。この時
の押え板31は金属板を樹脂コート・し、スリーブ2か
らの最近接位置でOJ■に設定したトナーの平均帯電量
はIμc/Iであった。
Using magnetic particles that have been thermally spheroidized with a resistivity of 10Ω1 or more, and using non-magnetic particles with an average particle size of 5xWL as Tonani particles, development is performed in the developer reservoir 6 using the developing device shown in No. 5m. Development was carried out under conditions such that the ratio of toner particles in the agent to the carrier particles was 15% by weight. At this time, the holding plate 31 was a metal plate coated with resin, and the average charge amount of the toner was set to OJ■ at the position closest to the sleeve 2, and was Iμc/I.

この場合の像担持体1の条件は実施例1と同じ。The conditions of the image carrier 1 in this case are the same as in the first embodiment.

スリーブ2の外径も3on、但しその回転数は100r
、p、m−、現像域Aに対^した磁極の最大磁束密度は
1000ガウス、その中心部は400ガウス、現像領域
に入る前の現像剤層の厚さO,611MK、スリーブ2
と像担持体1との間fill L2tx即ち1201)
g 、スリーブ2に印加するバイアス電圧は直流電圧成
分−200■、交流電圧成分4 KHz 、 2000
 Vとした。
The outer diameter of sleeve 2 is also 3 on, but its rotation speed is 100 r.
, p, m-, the maximum magnetic flux density of the magnetic pole relative to development zone A is 1000 Gauss, its center is 400 Gauss, the thickness of the developer layer before entering the development zone O, 611MK, sleeve 2
and image carrier 1 (fill L2tx, that is, 1201)
g, the bias voltage applied to sleeve 2 is DC voltage component -200cm, AC voltage component 4KHz, 2000cm.
It was set to V.

以上の条件で現像を行って、それを普通紙にコロナ放電
して転写し、表面温度140℃のヒートローラ定着装置
く通して定着した結果、得られた記録紙のwjI像はエ
ッチ効果やかぶりのない、そして濃度が高いきわめて鮮
明なものセあり実施例2でのliIiigItより、解
像力が高い点、濃度が高い点で優れていた。引続いて5
万枚の記録紙を得たが最初から最後まで安定して変らな
い画像を得ることができた。
After developing under the above conditions, the image was transferred to plain paper by corona discharge, and then passed through a heat roller fixing device with a surface temperature of 140°C to fix it. It was superior to the liIiiigIt in Example 2 in that it had a high resolution and a high density. successively 5
Although we obtained 10,000 sheets of recording paper, we were able to obtain a stable and unchanging image from beginning to end.

以上の実施例において、二成分現像剤中のトナーが磁性
を有するものであれば、磁気潜僚に対しても同様の現像
条件により可視化できることは勿論である。
In the above embodiments, if the toner in the two-component developer has magnetism, it goes without saying that magnetic latent particles can be visualized under similar development conditions.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、現像剤の穂立の形成方法の改良がなさ
れ、鮮明なかぶりのない記碌画偉を得ることができると
言5優れた効果が得られる。
According to the present invention, the method for forming spikes of developer has been improved, and excellent effects can be obtained, such as being able to obtain a clear image without fogging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図は本発明の詳細な説明図。 第4図及び第5図はそれぞれ本発明を実施する装置の例
を示す部分概略断面図。 1・・・像担持体、 2・・・スリーブ、3・・・磁石
体、 4・・・規制ブレード、5・・・クリーニングブ
レード、 6・・・現像剤溜り、 7・・・撹拌スクリユー、8・
・・トナーホッパー、9・・・供給ローラ、10・・・
バイアス電源、 11・・・保護抵抗、21 、31・
・・押え板、 ρ、32・・・支持部材、23.33・
・・回動軸、 あ、34・・・引張ばね、6.35・・
・位置決め部材、A・・・現像域、D・・・現像剤、 
T・・・トナー粒子、N、8・・・磁 極。 代珈人 桑原義美 第1図 第2図 第3図 第4図
FIG. 1, FIG. 2, and FIG. 3 are detailed explanatory diagrams of the present invention. FIGS. 4 and 5 are partial schematic cross-sectional views showing examples of devices for carrying out the present invention, respectively. DESCRIPTION OF SYMBOLS 1... Image carrier, 2... Sleeve, 3... Magnet, 4... Regulating blade, 5... Cleaning blade, 6... Developer reservoir, 7... Stirring screw, 8・
... Toner hopper, 9... Supply roller, 10...
bias power supply, 11...protective resistor, 21, 31...
・・Pressing plate, ρ, 32・・Supporting member, 23.33・
...Rotation axis, ah, 34...tension spring, 6.35...
・Positioning member, A...Development area, D...Developer,
T...Toner particle, N, 8...Magnetic pole. Representative Yoshimi Kuwabara Figure 1 Figure 2 Figure 3 Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)トナー粒子と磁性キャリヤ粒子とから成る二成分
現像剤を現像剤搬送担体面上に供給して現像剤層を形成
させ、該現像剤搬送担体面上の現像剤層を振動電界下に
置き、もって像担持体面の潜像を現像する方法において
、反発磁界を形成すると共に、・:・穂立ち押え部材を
設けることを特徴とする現像方法。
(1) A two-component developer consisting of toner particles and magnetic carrier particles is supplied onto the developer transporting carrier surface to form a developer layer, and the developer layer on the developer transporting carrier surface is subjected to an oscillating electric field. A developing method for developing a latent image on the surface of an image carrier by forming a repelling magnetic field and providing a holding member.
(2) 前記振動電界が前記現像剤搬送担体と前記像担
持体との間に形−成される特許請求の範囲第1項記戦の
現像方法◎
(2) The developing method according to claim 1, wherein the oscillating electric field is formed between the developer transport carrier and the image carrier.
(3) 前記現像剤搬送担体面上の現像剤層厚が前記像
担持体面と現像剤搬送担体の間−よりも□ 薄く形成さ
れる特許請求の範M第′1項又は譲2項記載の現像方法
。 □
(3) The thickness of the developer layer on the developer transporting carrier surface is formed to be □ thinner than between the image carrier surface and the developer transporting carrier. Development method. □
(4) 前記磁性キャリヤ粒子が絶縁性粒子である特許
請求の範囲IE1項乃’IIE 31!1F!載の現像
方法。
(4) Claims IE1 to 'IIE 31!1F!, wherein the magnetic carrier particles are insulating particles. Development method described.
(5) 前記現像剤を振動電界により振動させる領域に
て、磁界を時間的に変動させる、特許請求の範囲の第1
項元画第4項記載の現像方法。
(5) The first aspect of claim 1, wherein a magnetic field is temporally varied in a region where the developer is vibrated by an oscillating electric field.
The developing method described in item 4 of the original image.
JP58240070A 1983-12-20 1983-12-20 Developing method Granted JPS60131553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58240070A JPS60131553A (en) 1983-12-20 1983-12-20 Developing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58240070A JPS60131553A (en) 1983-12-20 1983-12-20 Developing method

Publications (2)

Publication Number Publication Date
JPS60131553A true JPS60131553A (en) 1985-07-13
JPH0414793B2 JPH0414793B2 (en) 1992-03-13

Family

ID=17054039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58240070A Granted JPS60131553A (en) 1983-12-20 1983-12-20 Developing method

Country Status (1)

Country Link
JP (1) JPS60131553A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128971A (en) * 1984-07-20 1986-02-08 Fuji Xerox Co Ltd Non-magnetic one component developing device
JPS62136673A (en) * 1985-12-11 1987-06-19 Canon Inc Developing device
JPS62178278A (en) * 1986-01-31 1987-08-05 Konishiroku Photo Ind Co Ltd Developing method for electrostatic latent image
JPS632084A (en) * 1986-06-12 1988-01-07 Konica Corp Developing device
JPS6319856U (en) * 1986-07-17 1988-02-09
JPS6340170A (en) * 1986-08-06 1988-02-20 Konica Corp Developing method for electrostatic latent image
JPS6341863A (en) * 1986-08-07 1988-02-23 Konica Corp Developing method for electrostatic latent image
JPS6353575A (en) * 1986-08-25 1988-03-07 Canon Inc Developing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120043A (en) * 1979-03-08 1980-09-16 Canon Inc Method and device of development
JPS58117553A (en) * 1981-12-31 1983-07-13 Ricoh Co Ltd Developing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120043A (en) * 1979-03-08 1980-09-16 Canon Inc Method and device of development
JPS58117553A (en) * 1981-12-31 1983-07-13 Ricoh Co Ltd Developing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128971A (en) * 1984-07-20 1986-02-08 Fuji Xerox Co Ltd Non-magnetic one component developing device
JPS62136673A (en) * 1985-12-11 1987-06-19 Canon Inc Developing device
JPH0584905B2 (en) * 1985-12-11 1993-12-03 Canon Kk
JPS62178278A (en) * 1986-01-31 1987-08-05 Konishiroku Photo Ind Co Ltd Developing method for electrostatic latent image
JPH0582943B2 (en) * 1986-01-31 1993-11-24 Konishiroku Photo Ind
JPS632084A (en) * 1986-06-12 1988-01-07 Konica Corp Developing device
JPS6319856U (en) * 1986-07-17 1988-02-09
JPS6340170A (en) * 1986-08-06 1988-02-20 Konica Corp Developing method for electrostatic latent image
JPH0551916B2 (en) * 1986-08-06 1993-08-03 Konishiroku Photo Ind
JPS6341863A (en) * 1986-08-07 1988-02-23 Konica Corp Developing method for electrostatic latent image
JPS6353575A (en) * 1986-08-25 1988-03-07 Canon Inc Developing device

Also Published As

Publication number Publication date
JPH0414793B2 (en) 1992-03-13

Similar Documents

Publication Publication Date Title
US4841332A (en) Toner control for a developer device
JPS58184158A (en) Developing method of electrostatic image
JPH06100848B2 (en) Development method
JPS60131553A (en) Developing method
JPH0690543B2 (en) Development method
JPS60131549A (en) Developing method
JPH047505B2 (en)
JPS59222847A (en) Developing method
JPS6316738B2 (en)
JPS60131547A (en) Developing method
JPS6122355A (en) Developing device
JPS60131545A (en) Developing method
JPS59222853A (en) Developing method
JPH0256670B2 (en)
JPS60131550A (en) Developing method
JPS60125863A (en) Developing device
JPS59222852A (en) Developing method
JP2607405B2 (en) Development method
JPS62231276A (en) Developing device
JP2614817B2 (en) Development method
JPS62234175A (en) Developing device
JPS61166571A (en) Developing device
JPH04350875A (en) Developing device
JPS60154261A (en) Reversal developing method
JPS60130770A (en) Developing device