JPS6013036Y2 - heat treatment furnace - Google Patents

heat treatment furnace

Info

Publication number
JPS6013036Y2
JPS6013036Y2 JP1981112824U JP11282481U JPS6013036Y2 JP S6013036 Y2 JPS6013036 Y2 JP S6013036Y2 JP 1981112824 U JP1981112824 U JP 1981112824U JP 11282481 U JP11282481 U JP 11282481U JP S6013036 Y2 JPS6013036 Y2 JP S6013036Y2
Authority
JP
Japan
Prior art keywords
furnace
combustion gas
guide plate
heat treatment
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981112824U
Other languages
Japanese (ja)
Other versions
JPS5820200U (en
Inventor
敬 石田
健次 渡辺
修 竹内
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP1981112824U priority Critical patent/JPS6013036Y2/en
Publication of JPS5820200U publication Critical patent/JPS5820200U/en
Application granted granted Critical
Publication of JPS6013036Y2 publication Critical patent/JPS6013036Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Tunnel Furnaces (AREA)

Description

【考案の詳細な説明】 本考案は鋼材を圧延工程は供給する為加熱する加熱路、
或は鋼材等の材 を行う炉等の熱処理炉特に連続熱
処理炉に 。
[Detailed description of the invention] The invention consists of a heating path for heating the steel material during the rolling process;
Or for heat treatment furnaces such as furnaces for processing materials such as steel, especially continuous heat treatment furnaces.

連続熱処理炉のうち例−連続加熱炉は連続的に供給され
る鋼塊を圧延に適する温度(1100℃〜1250℃程
度)まで加熱する。
An example of continuous heat treatment furnaces is a continuous heating furnace that heats continuously supplied steel ingots to a temperature suitable for rolling (approximately 1100°C to 1250°C).

′1従来の連続加熱炉を第1 いて概説すると、加
熱炉1はその内 2、加熱帯3、均熱帯4に分
れ、鋼塊5 口6より炉内に装入され〈予熱帯2、
加熱帯3、均熱帯4を経る間に加熱され、所定の温度と
な・つた鋼塊5は抽出ロアより取出される様になつ寸い
る。
1. To give an overview of the conventional continuous heating furnace, the heating furnace 1 is divided into 2, a heating zone 3, and a soaking zone 4. A steel ingot 5 is charged into the furnace through the opening 6.
The steel ingot 5 is heated while passing through a heating zone 3 and a soaking zone 4 and reaches a predetermined temperature, and is then taken out from the extraction lower.

図中、8はバーナ、9は癲焼ガス出口である。In the figure, 8 is a burner and 9 is a roasting gas outlet.

予熱帯2には均熱帯4及び加熱帯3で生成した燃焼ガス
が流入し、燃焼ガスは輻射伝熱、対流伝熱により直接、
又熱した炉壁からの輻射伝熱により間接に鋼塊5を熱す
る。
The combustion gas generated in the soaking zone 4 and the heating zone 3 flows into the preheating zone 2, and the combustion gas is directly heated by radiation heat transfer and convection heat transfer.
Also, the steel ingot 5 is indirectly heated by radiant heat transfer from the heated furnace wall.

この際の燃焼ガスの温度は例えば予熱帯入口で800℃
〜1000℃、出口で500℃〜700℃と低く、更に
該ガスの流量も流速でせいぜい1m、/secであるの
で、輻射伝熱量及び対流伝熱量が小さく、予熱帯2に於
いて燃焼ガスのもつ熱エネルギを十分利用し得ない。
The temperature of the combustion gas at this time is, for example, 800°C at the entrance of the preheating zone.
~1000℃, and as low as 500℃~700℃ at the outlet, and the flow rate of the gas is at most 1m/sec, so the amount of radiant heat transfer and convective heat transfer is small, and the amount of combustion gas in the preheating zone 2 is low. The thermal energy available cannot be fully utilized.

斯かる傾向は在来の炉即ち生産量の高い装置で小量生産
を行う場合、生産量に合わせて省エネルギ操業する場合
特に顕著である。
Such a tendency is particularly noticeable when small-scale production is performed using a conventional furnace, that is, a device with a high production rate, and when energy-saving operation is performed in accordance with the production volume.

更に燃焼ガスの熱エネルギを有効利用し得ない原因とし
て温度成層が生じ伝熱効果を低下させることが挙げられ
る。
Furthermore, one of the reasons why the thermal energy of the combustion gas cannot be used effectively is that temperature stratification occurs, which reduces the heat transfer effect.

即ち、従来の予熱帯の炉内には、通常炉内の燃焼ガスを
攪拌しく例えば、バーナ、ファン等)、、ガス温度の均
一化を計る装置が無く、□又予熱帯での炉内流速は小さ
いため炉内高さく一般に2〜5m)9では、燃焼ガスの
温度の低い部分が下になり、温度の高い部分が上方にな
る、即ち燃焼ガス温度が下から上に向って高くなる現象
(温度成層)を生ずるため、下方のガス層の伝熱量は温
度が低いため低減する。
That is, in the conventional preheating zone, there is no device to stir the combustion gas in the furnace (e.g., burner, fan, etc.) or to equalize the gas temperature, and the flow rate inside the furnace in the preheating zone is Since the height inside the furnace is small, the height inside the furnace is generally 2 to 5 m)9) The lower temperature part of the combustion gas is at the bottom and the higher temperature part is at the top, that is, the phenomenon in which the combustion gas temperature increases from the bottom to the top. (temperature stratification), the amount of heat transfer in the lower gas layer is reduced due to the lower temperature.

又上方のガス層の温度は高いが、層の厚さが小さくなる
ためガスの輻射率が低くなり、炉内を均一温度化し、ガ
ス層の厚さを炉内高さと同一とした場合に比較し、伝熱
量が小さくなる。
Also, although the temperature of the upper gas layer is high, the emissivity of the gas is low because the thickness of the layer is small, compared to when the temperature inside the furnace is made uniform and the thickness of the gas layer is the same as the height inside the furnace. However, the amount of heat transfer becomes smaller.

このことから予熱帯の伝熱効率の上昇の対策として、排
ガスを高温ファンによりその流速を高めノズルを介して
鋼塊に吹付ける噴流予熱帯と称するものがあるが、高温
ファンによる設備費増、電力使用量が多くなって実用的
でなく一般に普及するに至っていない。
Therefore, as a measure to increase the heat transfer efficiency of the preheating zone, there is a method called a jet preheating zone in which the exhaust gas is increased in flow velocity using a high-temperature fan and is blown onto the steel ingot through a nozzle. However, the high-temperature fan increases equipment costs, The amount used has increased, making it impractical and not widely used.

本考案は斯かる状況を鑑み、予熱帯に於ける燃焼ガスの
熱エネルギの有効利用を図ることを目的としてなしたも
のであって、鋼塊等被処理物の搬送列で分割され形成さ
れる予熱帯の少なくとも一方の空間に、燃焼ガスの流れ
に沿い上下方向及び炉長手方向の位置をずらせて所要数
の誘導板を炉側壁に掛渡し設けたことを特徴とするもの
である。
In view of this situation, the present invention was developed with the aim of effectively utilizing the thermal energy of combustion gas in the preheating zone. The present invention is characterized in that a required number of guide plates are provided in at least one space of the preheating zone and are suspended from the side wall of the furnace, with their positions shifted in the vertical direction and the furnace longitudinal direction along the flow of combustion gas.

以下図面に基づき本考案の実施例を説明する。Embodiments of the present invention will be described below based on the drawings.

第2図、第3図は第1の実施例を示すもので、互に平行
な炉天井10、炉床11によって形成される予熱帯2の
炉内部は鋼塊5の搬送列12で上部空間13、下部空間
14に分割されている。
FIGS. 2 and 3 show the first embodiment, and the inside of the furnace of the preheating zone 2 formed by the furnace ceiling 10 and the hearth 11 which are parallel to each other is an upper space with a conveying row 12 of steel ingots 5. 13, and a lower space 14.

上部空間13、下部空間14のそれぞれに燃焼ガスの流
れに沿う如く、水平平板の誘導板15を炉長手方向、上
下方向にそれぞれ順次ずらして炉側壁16.16に掛渡
し設ける。
In each of the upper space 13 and the lower space 14, a horizontal flat guide plate 15 is sequentially shifted in the longitudinal direction of the furnace and in the vertical direction and is provided so as to extend over the furnace side wall 16, 16 so as to follow the flow of combustion gas.

而して誘導板15の取付状態は、炉長手方向に進行する
波状としである。
The guide plate 15 is attached in a wave-like manner extending in the longitudinal direction of the furnace.

又、誘導板15の炉長手方向の長さは製作上の煩雑さ、
後記する効果を有効に生ぜしめる等の理由から1rrL
〜3TILが適当である。
In addition, the length of the guide plate 15 in the longitudinal direction of the furnace is complicated in manufacturing.
1rrL for reasons such as effectively producing the effects described later.
~3TIL is appropriate.

かくの如く構成した予熱帯2では、加熱帯から流入する
燃焼ガスが誘導板15.に当る度に分流し、その流れは
図 の様になる。
In the preheating zone 2 configured as above, the combustion gas flowing from the heating zone passes through the guide plate 15. The flow is divided every time it hits a point, and the flow is as shown in the figure.

従って、燃焼ガスの流れは、 □5の存在によっ
て複雑になり燃焼ガス くなるので温度成層が
妨げられ、又混合 上下方向の速度成分を生じ燃焼
ガスの流速を させる結果となり対流熱伝達率も向上
する。
Therefore, the flow of combustion gas becomes complicated due to the presence of □5, which prevents temperature stratification as it becomes a combustion gas, and also generates a velocity component in the vertical direction of mixing, which increases the flow velocity of combustion gas and improves the convective heat transfer coefficient. do.

誘導板15は略流れに沿って設けているので 力損
失は少ない。
Since the guide plate 15 is provided substantially along the flow, force loss is small.

次に輻射熱伝達に 、誘導板15を設けることによ
り輻射面積 に増加し、輻射熱伝達量も増加する。
Next, for radiant heat transfer, by providing the guide plate 15, the radiant area increases, and the amount of radiant heat transfer also increases.

第4図、第5図は 実施例を示すものであり、第1
の実施例に加えて炉天井10.炉床11に炉長手方向に
延びる補強板17を設け、該補強板17と誘導板15と
を固着しである。
Figures 4 and 5 show examples.
In addition to the embodiment of furnace ceiling 10. A reinforcing plate 17 extending in the longitudinal direction of the furnace is provided on the hearth 11, and the reinforcing plate 17 and the guide plate 15 are fixed to each other.

第2の実施例に於ける補強板17は輻射面積を更に増加
させると共に誘導板15め補強をする。
The reinforcing plate 17 in the second embodiment further increases the radiation area and reinforces the guide plate 15.

第6図、第7図はそれぞれ第3.第4の実施例を示して
おり、誘導板「5め取付状態を変更したものである。
Figures 6 and 7 are respectively 3. This shows the fourth embodiment, in which the installation state of the guide plate "5" has been changed.

即ち第3の実施例では誘導板15を燃焼ガスの下流に向
って(装入口に向って)下降する階段状に設けたもので
あり、第4の実施例では上昇する階段状に設けたもので
ある。
That is, in the third embodiment, the guide plate 15 is provided in a step-like manner that descends toward the downstream side of the combustion gas (towards the charging port), and in the fourth embodiment, it is provided in an ascending step-like manner. It is.

第8図に示す第5の実施例では誘導板15に迎角αをつ
けたものである。
In the fifth embodiment shown in FIG. 8, the guide plate 15 is provided with an angle of attack α.

図中迎角αをつけたものは誘導板15の一部である力吻
論全部の誘導板15に迎角αをつけて、も、よい。
In the figure, the angle of attack α is attached to the entire guide plate 15, which is a part of the guide plate 15.

更に上述〔た実施例&ミおける誘導板15の取付は状態
はある傾向をもつ様規則的としたが不規則であってもよ
く、迎角の設定を可変式とし操業条件の変化に対応して
常に最大効率を得る様にしてもよい。
Furthermore, although the installation of the guide plate 15 in the above-mentioned embodiments and models was shown to be regular so as to have a certain tendency, it may be installed irregularly, and the angle of attack may be set variable to correspond to changes in operating conditions. It is also possible to always obtain the maximum efficiency.

更に又、誘導板15の形状も山形状としてもよく、誘導
板15の取付けを上部空間13、下部空間14のいずれ
か一方のみにもつけてもよいことはいうまでもなく、本
考案を他の熱処理炉に実施してもよいことは勿論である
Furthermore, the shape of the guide plate 15 may also be a mountain shape, and it goes without saying that the guide plate 15 may be attached only to either the upper space 13 or the lower space 14. Of course, the process may also be carried out in a heat treatment furnace.

以上述べた如く本考案によれば、連続熱処理炉の予熱帯
に於ける熱伝達率を向上して燃焼ガスのもつ熱エネルギ
を有効利用し、省エネルギ化を促進し得るものであり、
しかも構造が簡単で製作が容易でかつ燃焼ガスの圧力損
失も宵なく現存の熱処理炉にも追加変更が可能である。
As described above, according to the present invention, it is possible to improve the heat transfer coefficient in the preheating zone of a continuous heat treatment furnace, effectively utilize the thermal energy of combustion gas, and promote energy saving.
Moreover, the structure is simple, easy to manufacture, and there is no pressure loss of combustion gas, making it possible to add and modify existing heat treatment furnaces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の連続加熱炉の概略図、第2図は本考案の
第1の実施例を示す説明図、第3図は第2図のX矢視図
、第4図は第2の実施例を示す説明図、第5図は第4図
のY矢視図、第6図は第3の実施例の部分説明図、第7
図は第4の実施例の部分説明図、第8図は第5の実施例
の部分説明図である。 −2は予熱帯、12は搬送列、13は上部空
間、14は下部空間、15は誘導板、16は炉側壁を示
す。
Fig. 1 is a schematic diagram of a conventional continuous heating furnace, Fig. 2 is an explanatory diagram showing the first embodiment of the present invention, Fig. 3 is a view taken in the direction of the X arrow in Fig. 2, and Fig. 4 is a diagram showing the An explanatory diagram showing the embodiment, FIG. 5 is a Y arrow view in FIG. 4, FIG. 6 is a partial explanatory diagram of the third embodiment, and FIG.
The figure is a partial explanatory diagram of the fourth embodiment, and FIG. 8 is a partial explanatory diagram of the fifth embodiment. -2 is a preheating zone, 12 is a transfer line, 13 is an upper space, 14 is a lower space, 15 is a guide plate, and 16 is a furnace side wall.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 鋼塊等被処理物の搬送列で分割され形成される予熱帯の
上部空間及び下部空間の少なくとも一方の空間に、燃焼
ガスの流れ峠沿い上下方向及び炉長手方向の位置をずら
せて所要数の誘導板を炉側壁に掛渡し設けたことを特噂
とする熱処理炉。
In at least one of the upper space and lower space of the pre-preparation zone, which is divided and formed by the conveyance line of the steel ingots and other workpieces, the required number of spaces are shifted in the vertical direction along the combustion gas flow pass and in the furnace longitudinal direction. A heat treatment furnace that is famous for having a guide plate that hangs over the side wall of the furnace.
JP1981112824U 1981-07-29 1981-07-29 heat treatment furnace Expired JPS6013036Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981112824U JPS6013036Y2 (en) 1981-07-29 1981-07-29 heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981112824U JPS6013036Y2 (en) 1981-07-29 1981-07-29 heat treatment furnace

Publications (2)

Publication Number Publication Date
JPS5820200U JPS5820200U (en) 1983-02-07
JPS6013036Y2 true JPS6013036Y2 (en) 1985-04-25

Family

ID=29907140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981112824U Expired JPS6013036Y2 (en) 1981-07-29 1981-07-29 heat treatment furnace

Country Status (1)

Country Link
JP (1) JPS6013036Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557291A (en) * 1978-06-26 1980-01-19 Philagro Sa Manufacture of oomethallyloxyphenol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557291A (en) * 1978-06-26 1980-01-19 Philagro Sa Manufacture of oomethallyloxyphenol

Also Published As

Publication number Publication date
JPS5820200U (en) 1983-02-07

Similar Documents

Publication Publication Date Title
CN103557705B (en) Aluminium slab ingot hole formula heating furnace with soakage function
CN104561515B (en) Continuous way bar plate heating stove and heating means thereof
CN207050434U (en) A kind of net belt type sintering furnace
CN213147379U (en) Gas combustion mechanism for heating section of copper ingot gas walking-beam heating furnace
US4069008A (en) Method and apparatus for heating a workpiece
JPS6013036Y2 (en) heat treatment furnace
CN209960963U (en) Heat treatment kiln
CN205024288U (en) Horizontal annealing stove heating section structure
JPS6036875Y2 (en) heat treatment furnace
CN214502121U (en) Automatic control device for kiln ventilation
CN210826252U (en) Heat energy utilization system of quenching furnace
CN101225462B (en) Automobile wheel hub continuous heat-treating furnace
CN208136083U (en) A kind of traverse cycle formula toughened glass homogenizing furnace
CN200999254Y (en) Automobile wheel hub continuous heat-treating furnace
JPS6013035Y2 (en) heat treatment furnace
CN209655785U (en) Roller kilns
US2262609A (en) Furnace for coating baths
CN206160711U (en) Immediately, push away stove stove bottom water conservancy diversion injection system
CN105177272A (en) Horizontal annealing furnace heating section structure
CN204455205U (en) A kind of can the low temperature naked light heat treatment furnace of homogeneous heating
JPS6021384Y2 (en) Radiant tube heat treatment furnace
CN210736814U (en) Tempering heat treatment device of discrete self-preheating burner
JPS6040580Y2 (en) Nose heat transfer accelerator for multi-zone heating furnace
JPS6319313Y2 (en)
US2069196A (en) Method of and apparatus for making open hearth steel