JPS60127774A - Perpendicular gas laser oscillator - Google Patents

Perpendicular gas laser oscillator

Info

Publication number
JPS60127774A
JPS60127774A JP23655683A JP23655683A JPS60127774A JP S60127774 A JPS60127774 A JP S60127774A JP 23655683 A JP23655683 A JP 23655683A JP 23655683 A JP23655683 A JP 23655683A JP S60127774 A JPS60127774 A JP S60127774A
Authority
JP
Japan
Prior art keywords
laser
discharge
gas
output
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23655683A
Other languages
Japanese (ja)
Inventor
Eikichi Hayashi
林 栄吉
Yoshihiko Kobayashi
嘉彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23655683A priority Critical patent/JPS60127774A/en
Publication of JPS60127774A publication Critical patent/JPS60127774A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain an extremely stable laser output by varying the velocity of gas flow of laser medium gas in response to the variation in the discharge exciting input to a discharge exciting range, thereby controlling so that the optical axis of the laser light becomes always constant. CONSTITUTION:The output state of an exciting input power source 2 is converted by a controller 9 into an electric signal according to the fact that the amplitude or the state of a discharge exciting output from the power source 2 is continuous or pulse state, the electric signal is outputted by the controller 9 to an inverter 10 as a signal calculated according to the prescribed law, the inverter 10 drives a blower 3 at the rotating speed proportional to the input signal, with the result that the velocity of the laser medium gas flow 7 in the discharge gap between the discharge electrodes 1 is varied. Calculation by the prescribed rule of the controller 9 is performed so that the optical axis of the laser light which is laser oscillated for the variation in the all discharge exciting input is always held constantly.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、直交型ガスレーザ発振器におけるレーザ出
力の′/l、111]の安定化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to stabilization of the laser output '/l, 111] in an orthogonal gas laser oscillator.

〔従来技術〕[Prior art]

従来この釉の直交型ガスレーザ発振器としては第1図に
示すものがあった。第1図は従来の直交型ガスレーザ発
振器の概略構成を示す斜視図である。図において、1は
対向的にある放電空隙を置いて設けられた放電電極、2
は放電電極1へ放電励起入力を出力する励起入力用電源
、3は各放電電極1間の放電空隙へレーザ媒質ガスを圧
送するだめの送風機である。4は部分反射鏡、5は全反
射鏡、6は放電励起範囲、7はレーザ媒質ガスのガス流
、8はレーザ出力である。そして、各部分反射鏡4及び
全反射鏡5は、互いに対向的に配設され、レーザ媒質ガ
スのガス流7の方向に直角方向が共振元軸となる様な光
共振器を構成している。
A conventional glazed orthogonal gas laser oscillator is shown in FIG. FIG. 1 is a perspective view showing a schematic configuration of a conventional orthogonal gas laser oscillator. In the figure, 1 is a discharge electrode provided oppositely with a certain discharge gap, 2
Reference numeral denotes an excitation input power source that outputs a discharge excitation input to the discharge electrodes 1, and 3 a blower that pumps the laser medium gas into the discharge gap between the discharge electrodes 1. 4 is a partial reflection mirror, 5 is a total reflection mirror, 6 is a discharge excitation range, 7 is a gas flow of a laser medium gas, and 8 is a laser output. Each of the partial reflection mirrors 4 and the total reflection mirrors 5 are arranged to face each other, and form an optical resonator in which the direction perpendicular to the direction of the gas flow 7 of the laser medium gas is the original axis of resonance. .

次に、上記第1図に示す従来の直交型ガスレーザ発振器
の動作について説明する。レーザ媒質ガスとしては、量
子効率の良いCO2を含む混合ガスが用いられ、この混
合ガスを約20〜100 Torr程度の圧力下におい
て放電励起範囲6に流通させる。
Next, the operation of the conventional orthogonal gas laser oscillator shown in FIG. 1 will be explained. A mixed gas containing CO2 with good quantum efficiency is used as the laser medium gas, and this mixed gas is passed through the discharge excitation range 6 under a pressure of about 20 to 100 Torr.

放電励起方法としては、各放電電極1に陰極ビン。As a discharge excitation method, each discharge electrode 1 is provided with a cathode bin.

陽極板を用いた直流ダロー放電励起方法や、誘電体を介
在させた金属電極間に発生させる交流無声放電励起方法
等咥周知であシ、適宜に放電形式に合った励起入力用電
源2が用いられる。光共振器としては、第一1図に示す
様な最も簡単な構成を有する1バス安定型元共振器が主
流をなしているが、折シ返し型光共振器や不安定型光共
振器が用いられる場合もある。レーザ媒質ガスとしてC
O7を含む混合ガスが使用される場合、部分反射鏡4に
用いられる透過型光学素子としては、Zn S e−′
pGa As等の半導体材料に出力波長(10,6μm
)に合った指定の反射率の得られるコーティングを施し
たものが使用される。
A direct current Darrow discharge excitation method using an anode plate, an AC silent discharge excitation method generated between metal electrodes with a dielectric interposed, etc. are well known, and an excitation input power source 2 suitable for the discharge type is used as appropriate. It will be done. The mainstream optical resonator is a one-bus stable original resonator with the simplest configuration as shown in Figure 11, but folded optical resonators and unstable optical resonators are also used. In some cases, C as laser medium gas
When a mixed gas containing O7 is used, the transmission type optical element used for the partially reflecting mirror 4 is Zn S e-'
Output wavelength (10.6 μm) for semiconductor materials such as pGaAs
) is used with a coating that provides the specified reflectance.

従来の直交型ガスレーザ発振器は以上の様に構成されて
いるが、第1図の直交型ガスレーザ発振器において、元
弁振器光軸に直角方向の断面拡大図である第2図に示す
様に、放電励起範囲6は、相対向する各放電電極1の電
極中心Eを基準に対称的な位置に存在しているにもかか
わらず、レーザ光の光軸中心Oは、上記電極中心Eに対
してレーザ媒質ガスのガス流7の運動方向下流1fll
lにある。
The conventional orthogonal gas laser oscillator is constructed as described above, but in the orthogonal gas laser oscillator shown in FIG. 1, as shown in FIG. Although the discharge excitation range 6 exists in a symmetrical position with respect to the electrode center E of each discharge electrode 1 facing each other, the optical axis center O of the laser beam is symmetrical with respect to the electrode center E. 1 flll downstream in the movement direction of the gas flow 7 of the laser medium gas
It is in l.

ガス流7の流速及び放電励起入力を一定にして動作させ
る場合には、レーザ光の光軸中心0Fi変化しないが、
ガス流7の流速を一定にして放電励起入力を変化させた
場合や、レーザ出力8が発振しきい値の近傍よシ最大と
なる範囲で、放電励起入力の平均値全一定にして時間的
にパルス状の放電励起入力音した場合等に、レーザ出力
8が最大となるレーザ光の光軸中心0は、放電励起範囲
6が変化するために、主としてガス流7の運動方向側に
変化するという欠点があった。理論上では、レーザ光の
元軸は元共振器全構成する各部分反射鏡4及び全反射鏡
5の角度によって決定芒れ、上述した様な外部状況の変
動に対して何ら変化しないが、実際にはレーザ発振モー
ドが変わるために各部分反射鏡4及び全反射鏡5Vc対
する熱負荷が変化したり、レーザ光の元軸方向よシ見て
ガス温度分布が変化したシするので、レーザ光は曲げら
れた9、ゆがんだジしてレーザ光の元@が変動して不安
定なものになる欠点かあった〇 〔発明の概要〕 この発明は、上記の様な従来のものの欠点を改善する目
的でなされたもので、放電励起範囲への放電励起入力の
′変化に相応して、レーザ媒質ガスのガス流の流通全変
化させる手段を備えて成る構成を有し、レーザ光の光軸
を常に一定となる様に制御し、安定したレーザ出力の得
られる直交型ガスレーザ発振器を提供するものである。
When operating with the flow velocity of the gas flow 7 and the discharge excitation input constant, the optical axis center 0Fi of the laser beam does not change, but
When the discharge excitation input is varied while keeping the flow velocity of the gas flow 7 constant, or when the laser output 8 is at its maximum near the oscillation threshold, the average value of the discharge excitation input is kept constant over time. When a pulsed discharge excitation input sound is applied, the optical axis center 0 of the laser beam at which the laser output 8 becomes maximum changes mainly in the direction of movement of the gas flow 7 because the discharge excitation range 6 changes. There were drawbacks. In theory, the original axis of the laser beam is determined by the angles of the partial reflection mirrors 4 and total reflection mirrors 5 that make up the entire original resonator, and does not change at all due to changes in the external situation as described above, but in reality Since the laser oscillation mode changes, the heat load on each partial reflection mirror 4 and total reflection mirror 5Vc changes, and the gas temperature distribution changes when viewed from the direction of the original axis of the laser beam. There was a drawback that the laser beam was bent and distorted, causing the source @ of the laser beam to fluctuate and become unstable. [Summary of the Invention] This invention improves the above-mentioned drawbacks of the conventional device. This system was developed for the purpose of changing the optical axis of the laser beam, and has a structure that includes means for completely changing the flow of the gas flow of the laser medium gas in response to changes in the discharge excitation input to the discharge excitation range. The object of the present invention is to provide an orthogonal gas laser oscillator that is controlled so that the laser output is always constant and can obtain stable laser output.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図はこの発明の一実施例である直交型ガスレーザ発
振器の概略構成を示す斜視図で、第1図と同一部分は同
一符号を用いて表示し1あシ、その詳細な説明は省略す
る。図において、10は送風機3を駆動させるインバー
タ、9はインバータ10と励起入力用電源2との間に接
続された制御装置である。その他の構成は、上記第1図
に示す従来例のものと同様に構成されている。
FIG. 3 is a perspective view showing a schematic configuration of an orthogonal gas laser oscillator which is an embodiment of the present invention. The same parts as in FIG. . In the figure, 10 is an inverter that drives the blower 3, and 9 is a control device connected between the inverter 10 and the excitation input power source 2. The rest of the structure is similar to that of the conventional example shown in FIG. 1 above.

次に、上記第3図に示すこの発明の一実施例である直交
型ガスレーザ発振器の動作について説明する。一般的な
レーザ発振動作は、上述した第1図に示す従来例のもの
と同様である。この発明の実施例のものでは、励起入力
用電源2による放電励起出力の大小、あるいは放電励起
出力の状態が連続的であるかパルス状であるか等によっ
て、励起入力用電源2の出力状況を制御装置9により電
気信号に変換し、この電気信号をある一定の法則によシ
演算した信号として、制御装置9よシインバータ10に
出力する。インバータ10は入力信号に比例した回転数
で送風機3を駆動し、その結果、各放電電極1間の放電
間隙におけるレーザ媒質ガスのガス流7の流速が変化す
る様に動作させる。上記した制御装置9のある一定の法
則による演算処理は、レーザ発振出力範囲において、あ
らゆる放電励起入力、すなわち励起入力用電源2の電源
出力の変化に対してレーザ発掘するレーザ光の光軸が常
に一定に保持される様に行われる。この演算式は、レー
ザ発振器の構造及びその動作条件によシ決定されるもの
である。本出願人は、高周波無声放電励起三軸直交型C
02レーザ発振器を使用して種々の実験を行った結果、
従来例のものにおいて、レーザ媒質ガスのガス流7の流
速ヲ一定にして放電励起入力を変化させた場合に・レー
ザ光の元軸のずれは最大1.5 mであったものが、こ
の発明の実施例のものでは、レーザ光の光軸のずれを約
0.2鵡以下にすることが可能となり、再現性も良好な
結果を得ている。
Next, the operation of the orthogonal gas laser oscillator shown in FIG. 3, which is an embodiment of the present invention, will be described. The general laser oscillation operation is similar to that of the conventional example shown in FIG. 1 mentioned above. In the embodiment of the present invention, the output status of the excitation input power source 2 is determined depending on the magnitude of the discharge excitation output from the excitation input power source 2, or whether the state of the discharge excitation output is continuous or pulsed. The control device 9 converts it into an electric signal, and outputs the electric signal to the control device 9 and the inverter 10 as a signal calculated according to a certain law. The inverter 10 drives the blower 3 at a rotational speed proportional to the input signal, and as a result operates the blower 3 so that the flow velocity of the gas flow 7 of the laser medium gas in the discharge gap between each discharge electrode 1 changes. The arithmetic processing according to a certain law of the control device 9 described above is such that in the laser oscillation output range, the optical axis of the laser light excavated by the laser is always fixed for any discharge excitation input, that is, for any change in the power output of the excitation input power supply 2. This is done so that it is held constant. This calculation formula is determined by the structure of the laser oscillator and its operating conditions. The applicant has proposed a high-frequency silent discharge excitation triaxial orthogonal type C
As a result of various experiments using the 02 laser oscillator,
In the conventional example, when the flow velocity of the gas flow 7 of the laser medium gas was kept constant and the discharge excitation input was varied, the deviation of the original axis of the laser beam was at most 1.5 m, but the present invention In the example, it is possible to reduce the deviation of the optical axis of the laser beam to about 0.2 mm or less, and good reproducibility is obtained.

なお、上記実施例では、直交型ガスレーザ発振器として
、高周波無声放電励起三軸直交型C02レーザ発振器を
用いた場合について説明したが、各放電電極1間の放電
間隙における放電方向とレーザ媒質ガスのガス流7の方
向とが同一の場合や、放電励起方法が直流ダロー放電励
起の場合であっても良く、1だ、レーザ媒質ガスが00
2以外のガスであっても良く、いずれも上記実施例と同
様の効果を奏する。
In the above embodiment, a high frequency silent discharge excited triaxial orthogonal C02 laser oscillator is used as the orthogonal gas laser oscillator. However, the discharge direction in the discharge gap between each discharge electrode 1 and the laser medium gas The direction of the flow 7 may be the same, or the discharge excitation method may be DC Darrow discharge excitation.
Gases other than 2 may also be used, and any of them will produce the same effects as in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した様に、直交型ガスレーザ発振器
において、放電励起範囲への放電励起入力の変化に相応
して、レーザ媒質ガスのガス流の流速を変化させる手段
を備えて成る構成としたので、レーザ光の光軸を常に一
定となる様に制御でき、これにより、極めて安定したレ
ーザ出力を得ることができるという優れた効果を奏する
ものである。
As explained above, the present invention has a configuration in which an orthogonal gas laser oscillator is provided with means for changing the flow velocity of the gas flow of the laser medium gas in accordance with the change in the discharge excitation input to the discharge excitation range. , it is possible to control the optical axis of the laser beam so that it is always constant, and as a result, an excellent effect is achieved in that extremely stable laser output can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直交型ガスレーザ発振器の概略構成を示
す斜視図、第2図は、第1図の直交型ガスレーザ発振器
において、光弁振器光軸に直角方向の断面拡大図、第3
図はこの発明の一実施例である直交型ガスレーザ発振器
の概略構成を示す斜視図である。 図において、1・・・放電電極、2・・・励起入力用電
源、3・・−送風機、4・・・部分反射鏡、5・・・全
反射焼、6・・・放電励起範囲、7・・・ガス流、8・
・・レーザ出力、9・・・制御装置、10・・・インノ
(−夕である。 なお、各図中、同一符号は同一、又は相当部分を示す。 代理人 大岩増雄 第1図 第3 図゛
FIG. 1 is a perspective view showing a schematic configuration of a conventional orthogonal gas laser oscillator, FIG. 2 is an enlarged cross-sectional view of the orthogonal gas laser oscillator shown in FIG.
FIG. 1 is a perspective view showing a schematic configuration of an orthogonal gas laser oscillator which is an embodiment of the present invention. In the figure, 1...Discharge electrode, 2...Power source for excitation input, 3...Blower, 4...Partial reflection mirror, 5...Total reflection baking, 6...Discharge excitation range, 7 ...gas flow, 8.
... Laser output, 9 ... Control device, 10 ... Inno (-). In each figure, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 3゛

Claims (1)

【特許請求の範囲】[Claims] レーザ媒質ガスを放電励起範囲に流通させ、前記レーザ
媒質ガスのガス流方向と直角方向に元弁振器光軸を構成
して、レーザ出力を取シ出す直交型ガスレーザ発振器に
おいて、前記放電励起範囲への放電励起入力の変化に相
応して、前記レーザ媒質ガスのガス流の流速を変化させ
る手段を備えて成ることを特徴とする直交型ガスレーザ
発振器。
In an orthogonal gas laser oscillator that circulates a laser medium gas in a discharge excitation range and configures a main valve oscillator optical axis in a direction perpendicular to the gas flow direction of the laser medium gas to extract laser output, the discharge excitation range An orthogonal gas laser oscillator, comprising means for changing the gas flow velocity of the laser medium gas in response to a change in discharge excitation input to the oscillator.
JP23655683A 1983-12-15 1983-12-15 Perpendicular gas laser oscillator Pending JPS60127774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23655683A JPS60127774A (en) 1983-12-15 1983-12-15 Perpendicular gas laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23655683A JPS60127774A (en) 1983-12-15 1983-12-15 Perpendicular gas laser oscillator

Publications (1)

Publication Number Publication Date
JPS60127774A true JPS60127774A (en) 1985-07-08

Family

ID=17002394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23655683A Pending JPS60127774A (en) 1983-12-15 1983-12-15 Perpendicular gas laser oscillator

Country Status (1)

Country Link
JP (1) JPS60127774A (en)

Similar Documents

Publication Publication Date Title
JPS60127774A (en) Perpendicular gas laser oscillator
JPS61276387A (en) Gas laser apparatus
JPS639393B2 (en)
JPS6028288A (en) Orthogonal gas laser oscillator
JPH02240984A (en) Ring laser gyroscope
JPS6052070A (en) Coaxial type laser oscillator
JPS6088485A (en) Laser resonator
JPS61247082A (en) Laser unit
JPS6185881A (en) Laser oscillator
JPS61284984A (en) Gas laser
JPH02199883A (en) Gas laser device
JP2997606B2 (en) Narrowband excimer laser equipment
JPS58151083A (en) Transverse flow type gas laser device
JPS6378587A (en) Gas laser device
JPS6175576A (en) Gas laser device
JP3475662B2 (en) Gas laser oscillator
JPH0239871B2 (en)
JPH07122798A (en) Preparatory discharge method of discharge excitation laser oscillator, and discharge excitation laser oscillator
JPS6175577A (en) Axial flow laser oscillator
JPS5917875B2 (en) gas laser device
JPH04335584A (en) Carbon dioxide laser device
JPS6086886A (en) Argon ion laser
JPS59147477A (en) Laser oscillator
JPH07154011A (en) Laser crystal
JPH04245685A (en) Gas laser