JPS6012678A - Solid electrolyte secondary battery - Google Patents

Solid electrolyte secondary battery

Info

Publication number
JPS6012678A
JPS6012678A JP58120549A JP12054983A JPS6012678A JP S6012678 A JPS6012678 A JP S6012678A JP 58120549 A JP58120549 A JP 58120549A JP 12054983 A JP12054983 A JP 12054983A JP S6012678 A JPS6012678 A JP S6012678A
Authority
JP
Japan
Prior art keywords
solid electrolyte
battery
copper ion
mixture
ion conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58120549A
Other languages
Japanese (ja)
Inventor
Tadashi Tonomura
外「村」 正
Satoshi Sekido
聰 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58120549A priority Critical patent/JPS6012678A/en
Publication of JPS6012678A publication Critical patent/JPS6012678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an all solid state solid electrolyte secondary battery which is easy to make small and thin, leakage resistant, and has less self discharge by using solid electrolyte having high ionic conductivity at normal temperature. CONSTITUTION:A solid electrolyte secondary battery consists of a positive layer 1 mainly comprising the mixture of an inorganic compound indicated by CunWS2 (n=0.4-0.8) and copper ion (Cu<+>) conductive solid electrolyte, and a copper ion conductive solid electrolyte layer 2 which serves as a separator, and a negative electrode layer 3 comprising a reversible copper electrode, for example, the mixture of an inorganic compound indicated by CumMX2 (m=0.1-0.8, M is Ti, W, Mo, or Nb, X is S or Se) and a substance selected from a group comprising metal copper and Cu2S and copper ion conductive solid electrolyte. Voltage of the battery varies by negative material and a value of m and is selected from values between about 0.5V and 0.2V. Current to be used is limited by thickness of copper ion conductive solid electrolyte layer, area of electrolyte layer facing positive and negative electrodes, and ionic conductivity of electrolyte.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、常温で高イオン導電性を有する固体電解質を
用いた、オールソリッド・ステイトの固体電解質二次電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an all-solid-state solid electrolyte secondary battery using a solid electrolyte having high ionic conductivity at room temperature.

従来例の構成とその問題点 常温で、高イオン導電性を有する固体電解質を用いた電
池は、電池のオールソリッド・ステイト化が可能なこと
から、液もれがなく、保存中の自己放電のきわめて少な
い高信頼性を具備した電池となる。イオン導電率は、液
体電解質に較べると1桁ないし2桁劣り、取り出せる電
流の大きさは比較的小さいけれども、低消費電力化が急
速に進みつつある超LSIに代表されるマイクロエレク
トロニクス分野の電源としては、高信頼性という観点か
ら、固体電解質電池は、大いにその実用化が期待されて
いる。
Conventional structure and its problems Batteries using solid electrolytes with high ionic conductivity at room temperature can be made into an all-solid state, so there is no leakage and no self-discharge during storage. This results in a battery with extremely high reliability. Although the ionic conductivity is one to two orders of magnitude lower than that of liquid electrolytes, and the amount of current that can be extracted is relatively small, it is useful as a power source for microelectronics fields such as ultra-LSIs, where power consumption is rapidly decreasing. From the viewpoint of high reliability, solid electrolyte batteries are highly expected to be put into practical use.

電気回路素子の小形化が特徴であるマイクロエレクトロ
ニクス分野では、当然のことながら、その電源の1つで
ある電池にも小形化が必要とされる。電池の容量は、正
極あるいは負極の活物質の量により決定されるから、1
回の放電で寿命が尽きてしまう一次電池では、小形化す
ればするほど、機器の電源として必要な容量を十分供給
できなくなり、電池の小形化の限界につき当たるという
問題がある。
In the field of microelectronics, which is characterized by miniaturization of electric circuit elements, it goes without saying that batteries, which are one of its power sources, also need to be miniaturized. Since the capacity of a battery is determined by the amount of active material in the positive or negative electrode, 1
The problem with primary batteries, whose lifespan ends after one discharge, is that the more they are made smaller, the less they are able to supply sufficient capacity as a power source for devices, and the problem is that the miniaturization of batteries is reaching its limits.

このような問題を解決する1つの方法として、二次電池
を太陽電池とかの外部電源と併用して使う方法がある。
One way to solve these problems is to use a secondary battery in combination with an external power source such as a solar battery.

このような用途の二次電池としては、従来は、専ら溶液
電解質を用いるニッケルーカドミウム電池とか、正極に
T I S 2等の層間化合物を用いる有機電解質リチ
ウム二次電池とかが提案されているが、いずれも、液体
電解質を用いているため、前述したように液もれの恐れ
もあるし、金属等よりなる電池容器を用いなければなら
ないことから、小形化にはやはり限界があった。例えば
、厚さはせいぜい1龍まで、大きさは外径が6〜7mm
までである。
As secondary batteries for such uses, nickel-cadmium batteries that use exclusively solution electrolytes, and organic electrolyte lithium secondary batteries that use interlayer compounds such as TIS 2 for the positive electrode have been proposed. Both of these systems use a liquid electrolyte, so as mentioned above, there is a risk of liquid leakage, and because a battery container made of metal or the like must be used, there is still a limit to miniaturization. For example, the thickness is at most 1 dragon, and the size is 6 to 7 mm in outer diameter.
That's it.

発明の目的 本発明は、小形・薄形化がきわめて簡便にでき、しかも
、原理的に液もれがなく、自己放電のきわめて少ない固
体電解質二次電池を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a solid electrolyte secondary battery that can be extremely easily made small and thin, has no leakage in principle, and has extremely low self-discharge.

発明の構成 本発明の固体電解質二次電池は、Cu nW S 2(
n=o、4〜o、8)で表される無機化合物と銅イオン
(Cu+)導電性固体電解質との混合物を主体とする正
極層と、セパレータの役割をする銅イオン導電性固体電
解質層と、可逆性銅電極、例えばCu mMX2 (r
n−0−’ 1〜O−8;MはTi、’W、Mo まだ
はNb;XはSまたはSs) で表される無機化合物、
金属銅およびCu 2 Sよりなる群から選ばれる物質
と銅イオン導電性固体電解質との混合物よりなる負極層
、とで構成される。
Structure of the Invention The solid electrolyte secondary battery of the present invention consists of Cu nW S 2 (
A positive electrode layer mainly composed of a mixture of an inorganic compound represented by n=o, 4 to o, 8) and a copper ion (Cu+) conductive solid electrolyte, and a copper ion conductive solid electrolyte layer that serves as a separator. , a reversible copper electrode, e.g. Cu mMX2 (r
n-0-' 1 to O-8; M is Ti, 'W, Mo is Nb; X is S or Ss) An inorganic compound represented by
It is composed of a negative electrode layer made of a mixture of a substance selected from the group consisting of metallic copper and Cu 2 S and a copper ion conductive solid electrolyte.

正極の電池反応は、 で表され、 負極の電池反応は、 で表される。The battery reaction at the positive electrode is It is expressed as The battery reaction of the negative electrode is It is expressed as

電池電圧は、負極に用いる材料と、m値によシ変化し、
約o、s V〜0.2vの間の値を選ぶことができる。
The battery voltage varies depending on the material used for the negative electrode and the m value.
Values between approximately o,s V and 0.2v can be chosen.

電池容量は、正・負極の活物質の重量とδ値により決ま
る。δの値は、良好な充・放電特性を維持するには、約
0.1以下であることが好ましい。
Battery capacity is determined by the weight and δ value of the positive and negative active materials. The value of δ is preferably about 0.1 or less in order to maintain good charge/discharge characteristics.

とり出せる電流の大きさは、銅イオン導電性固体電解質
層の厚さと、正・負極に接する電解質層の面積と、電解
質のイオン導電率により決まる。
The magnitude of the current that can be taken out is determined by the thickness of the copper ion conductive solid electrolyte layer, the area of the electrolyte layer in contact with the positive and negative electrodes, and the ionic conductivity of the electrolyte.

銅イオン導電性固体電解質としては、N、N’−ジメチ
ルトリメチレンジアミンジブロマイドをドープしたCu
Br系、7CuBr−C6H6N4CH3Brあるいは
RbCu I C1l 系などを用いる42−x3+x ことができる。これらの中でも、特に、RbCu I 
Cll 系は、正極活物質材料で42−x3+χ あるC u n’W S 2 と長期間に渡って接して
いても、化学的な変化を起こし難く、長期間使用の電池
用には、最も好適に用いることができる。
As the copper ion conductive solid electrolyte, Cu doped with N,N'-dimethyltrimethylenediamine dibromide is used.
42-x3+x using Br system, 7CuBr-C6H6N4CH3Br, or RbCu I C11 system can be used. Among these, especially RbCu I
Cll-based materials are the positive electrode active material and are difficult to cause chemical changes even if they are in contact with 42-x3+χ Cu n'W S 2 for a long period of time, making them the most suitable for batteries that are used for long periods of time. It can be used for.

実施例の説明 第1図は、本発明の効果を見るために用いた固体電解質
二次電池の断面図を示している。
DESCRIPTION OF EXAMPLES FIG. 1 shows a cross-sectional view of a solid electrolyte secondary battery used to examine the effects of the present invention.

1は正極層、2は固体電解質層、3は負極層、4゜5は
集電体、6,7は電極リード、8は樹脂製の電池容器で
ある。
1 is a positive electrode layer, 2 is a solid electrolyte layer, 3 is a negative electrode layer, 4.5 is a current collector, 6 and 7 are electrode leads, and 8 is a resin battery container.

正極活物質であるCunWS2(n =0.4〜0.8
 )の粉末と銅イオン導電性固体電解質の粉末と若干の
導電材粉末とを混合した正極合剤粉末と、銅イオン導電
性固体電解質粉末と、負極活物質粉末と銅イオン導電性
固体電解質と若干の導電材とを混合した負極合剤粉末と
を、層状に加圧プレスして電池ペレットとし、次に、正
極および負極側に集電体と電極リードとを接着した後、
電池全体を熱硬化性樹脂あるいは、紫外線硬化性樹脂等
で被膜することによって電池が与えられる。
CunWS2 (n = 0.4 to 0.8
) powder, copper ion conductive solid electrolyte powder, and some conductive material powder, positive electrode mixture powder, copper ion conductive solid electrolyte powder, negative electrode active material powder, copper ion conductive solid electrolyte, and some amount. A negative electrode mixture powder mixed with a conductive material is pressed under pressure in a layered manner to form battery pellets, and then a current collector and an electrode lead are bonded to the positive and negative electrode sides.
A battery is provided by coating the entire battery with a thermosetting resin, an ultraviolet curable resin, or the like.

正極活物質であるCunWS2は、あらかじめ、与えら
れたモル比で混合されだCu粉とWS2 粉の混合物を
、約2ooKpA−の圧力でプレス成形して混合物のペ
レットとし、これを、石英管に真空封入して、55o℃
で約72時間加熱することによって得られる。
CunWS2, which is a positive electrode active material, is made by press-molding a mixture of Cu powder and WS2 powder, which have been mixed in advance at a given molar ratio, at a pressure of about 2oo KpA- to form pellets of the mixture, which is then placed in a quartz tube under vacuum. Enclose and heat at 55oC
It is obtained by heating for about 72 hours.

CunWS2は、WS2 同様、常温で〜1oΩ’fi
の抵抗率を有していることから、以下の実施例では、正
極合剤中に導電材として黒鉛を添加しだが、正極合剤層
が薄くなれば、導電材の混合は必ずしも必要でない。
CunWS2, like WS2, has ~1oΩ'fi at room temperature.
In the following examples, graphite was added as a conductive material to the positive electrode mixture. However, if the positive electrode mixture layer becomes thinner, mixing of the conductive material is not necessarily necessary.

実施例1 電解質層: RbCu411.s”3.sを0.05 
g負極合剤:Cu粉末4.76重量部とCu 2 S 
1重量部と上記の電解質1.25重量部の 混合物0.10g 正極合剤:第1表に示す活物質1重量部と上記の電解質
1重量部及び黒鉛0.016 重量部の混合物0.0517 以 下 余 白 第 1 表 上記の材料を2トン/cr!の圧力で加圧成形して、第
1図のような構造の直径7mm、厚さ0.6m、の電池
を組み立てた。
Example 1 Electrolyte layer: RbCu411. s”3.s to 0.05
g Negative electrode mixture: 4.76 parts by weight of Cu powder and Cu 2 S
0.10 g of a mixture of 1 part by weight of the above electrolyte and 1.25 parts by weight of the above electrolyte Positive electrode mixture: 0.0517 of a mixture of 1 part by weight of the active material shown in Table 1, 1 part by weight of the above electrolyte and 0.016 parts by weight of graphite Margin below 1 2 tons/cr of the above materials! A battery having a structure as shown in FIG. 1 and having a diameter of 7 mm and a thickness of 0.6 m was assembled.

第2図は、これらの電池を約20℃で100μAの電流
値で充電3時間、放電3時間の1サイクル6時間の充・
放電をくり返した後の、放電サイクル数と、電池放電電
圧が電池開路電圧よりも0.2V低い値になるまでの放
電容量との関係を示している。
Figure 2 shows these batteries being charged and discharged for 6 hours at a current value of 100 μA at approximately 20°C for 3 hours and 3 hours for discharging.
The graph shows the relationship between the number of discharge cycles and the discharge capacity until the battery discharge voltage reaches a value 0.2 V lower than the battery open circuit voltage after repeated discharges.

本発明に従う正極活物質を用いた電池A3.A4゜A5
は、充・放電サイクル数が300回においても、放電容
量0.3mAhをほぼ与えていることから、実用電池と
して十分使用に耐える電池であるということができる。
Battery A3 using the positive electrode active material according to the present invention. A4゜A5
Since the battery provided a discharge capacity of approximately 0.3 mAh even after 300 charge/discharge cycles, it can be said that the battery is sufficiently usable as a practical battery.

なお、電池の開路電圧はA1が0.53V 、 A2カ
0.45V、 A 3が0.40 V 、 A4が0.
35V。
The open circuit voltage of the batteries is 0.53V for A1, 0.45V for A2, 0.40V for A3, and 0.4V for A4.
35V.

A5が0.32 V 、 A eが0.25■である。A5 is 0.32 V and Ae is 0.25 ■.

実施例2 電解質層:RbCu411.5C13,5を0.05 
g正極合剤:Cuo、6WS21重量部と上記の電解質
1重量部及び黒鉛0.016重量部 の混合物0.05,9 負極合剤:第2表に示す2種の活物質者0.5重量部と
上記の電解質1重量部の混合 物0.10g 以 下 余 白 第 2 表 上記の材料を用い、実施例1と同様にして直径7+im
、厚さ0.6龍の電池を組み立てた。
Example 2 Electrolyte layer: 0.05 RbCu411.5C13,5
g Positive electrode mixture: 0.05.9 parts by weight of a mixture of 21 parts by weight of Cuo, 6WS, 1 part by weight of the above electrolyte and 0.016 parts by weight of graphite Negative electrode mixture: 0.5 parts by weight of the two types of active materials shown in Table 2 0.10 g of a mixture of 1 part by weight of the above electrolyte and 1 part by weight of the above-mentioned electrolyte.
, assembled a battery with a thickness of 0.6 mm.

第3図は、これらの電池を約20℃で100μAの電流
値で、充電3時間・放電3時間の1サイクル6時間の充
・放電をくり返した後の充・放電サイクル数と、電池放
電電圧がそれぞれの電池の開路電圧より0.2V低い値
になるまでの放電容量との関係を示している。
Figure 3 shows the number of charge/discharge cycles and the battery discharge voltage after repeating charging and discharging of these batteries for 6 hours, each cycle consisting of 3 hours of charging and 3 hours of discharging, at a current value of 100 μA at approximately 20°C. shows the relationship between the discharge capacity and the discharge capacity until the value becomes 0.2 V lower than the open circuit voltage of each battery.

いずれの電池も、充・放電サイクルが300 回におい
ても、放電容量は0.3mAh に近い値を与えており
、実用電池として十分使用に耐える電池であるというこ
とができる。なお、各々の電池の開路電圧は、o、46
〜0.40Vの間の値を示す。
Even after 300 charge/discharge cycles, both batteries had a discharge capacity close to 0.3 mAh, and can be said to be batteries that can be used as practical batteries. Note that the open circuit voltage of each battery is o, 46
-0.40V.

実施例3 電解質層: RbCu411.5C13,sを0.05
 !!正極合剤:Cu0.4WS21重量部と上記の電
解質1重量部及び黒鉛0.016重量部 の混合物0.059 負極合剤:第2表に示す活物質1重量部と上記の電解質
1重量部の混合物0.10〜 0.15.9 以 下 余 白 第 3 表 上記の材料を用いて直径7關、厚さ0.6〜0.7朋の
電池を組み立てた。
Example 3 Electrolyte layer: RbCu411.5C13,s 0.05
! ! Positive electrode mixture: A mixture of 21 parts by weight of Cu0.4WS, 1 part by weight of the above electrolyte, and 0.016 parts by weight of graphite.Negative electrode mixture: A mixture of 1 part by weight of the active material shown in Table 2 and 1 part by weight of the above electrolyte. Mixture 0.10 to 0.15.9 Below Margin Table 3 A battery with a diameter of 7 mm and a thickness of 0.6 to 0.7 mm was assembled using the above materials.

第4図は、これらの電池を約20’Cで1o○μAの電
流値で、充電3時間・放電3時間の1サイクル6時間の
充・放電をくシ返した後の充・放電サイクル数と、電池
放電電圧がそれぞれの電池開路電圧よりo、2V低くな
るまでの放電容量との関係を示している。
Figure 4 shows the number of charge/discharge cycles after these batteries are charged/discharged for 6 hours, each cycle consisting of 3 hours of charging and 3 hours of discharging, at a current value of 1o○μA at approximately 20'C. and the discharge capacity until the battery discharge voltage becomes o, 2V lower than the respective battery open circuit voltage.

いずれの電池も、充・放電サイクルが300 回におい
ても、放電容量は0.3mAh 近い値を与えており、
実用′電池として十分使用に耐える電池であるというこ
とができる。
Even after 300 charge/discharge cycles, the discharge capacity of both batteries was close to 0.3 mAh.
It can be said that the battery is sufficiently usable as a practical battery.

なお、各々の電池の皿路電圧は、0,2sV〜0.35
Vの間の値を示す。
In addition, the plate voltage of each battery is 0.2 sV to 0.35 sV.
Indicates a value between V.

実施例4 電解質層:第4表に示す電解質o、os g正極合剤:
Cuo、4WS21重量部と第4表の電解質1重量部及
び黒鉛0.016重量 部の混合物0.06I 負極合剤:Cu粉末1.2重量部とCu 2 S 0.
8重量部及び第4表の電解質1重量部の 混合物0.10g 以 下 余 白 第 4 表 以上の材料を用いて、第1図の構造の電池を組み立てた
Example 4 Electrolyte layer: Electrolyte o, osg cathode mixture shown in Table 4:
0.06I mixture of 21 parts by weight of Cuo, 4WS, 1 part by weight of the electrolyte shown in Table 4, and 0.016 parts by weight of graphite Negative electrode mixture: 1.2 parts by weight of Cu powder and 0.06 parts by weight of Cu powder.
A battery having the structure shown in FIG. 1 was assembled using the materials shown in Table 4 and above.

第5表は、これらの電池を約2o℃で100μAの電流
値で、充電3時間・放電3時間の1サイクル6時間の充
・放電を1Q回くり返しだ後、同じ電流値で3時間充電
を行ない、その後、約20’C″で60日間放置した際
の開路電圧の値と、放置60日後に10071Aで放電
した際の、開路電圧より0.2v低い値になるまでの放
電容量を示したものである。
Table 5 shows that these batteries were charged and discharged for 1Q times at a current value of 100 μA at approximately 2oC for 3 hours and 3 hours for discharging for 6 hours, and then charged for 3 hours at the same current value. After that, the open circuit voltage value when left at about 20'C'' for 60 days, and the discharge capacity until it becomes 0.2V lower than the open circuit voltage when discharged at 10071A after 60 days of storage are shown. It is something.

第6表 本発明に従う電池F2.F3.F4は、放置期間1日〜
6o日の間に渡って、はとんど開路電圧の変化は見られ
ないし、まだ、60日放置後の容量劣化もきわめて少な
い。
Table 6 Battery according to the invention F2. F3. F4 is left for 1 day or more
There is hardly any change in the open circuit voltage for 60 days, and there is still very little deterioration in capacity after 60 days of storage.

なお、実施例1〜3において、銅イオン導電性固体電解
質として、Rb Cu 4I * 、 5 Cll 3
.5を用いだが、この他にXの値が、0.26〜0.5
の間のRbCu I Cll を用いても、実施例1〜
42−x3+x 3と同様の効果が得られることは言うまでもない。
In addition, in Examples 1 to 3, Rb Cu 4I *, 5 Cll 3 was used as the copper ion conductive solid electrolyte.
.. 5 is used, but in addition to this, the value of X is 0.26 to 0.5.
Even with RbCu I Cll between Examples 1-
It goes without saying that the same effect as 42-x3+x3 can be obtained.

発明の効果 本発明によれば、小形、薄形化が簡便にでき、自己放電
の少ない実用的な固体電解質二次電池を得ることができ
る。
Effects of the Invention According to the present invention, it is possible to obtain a practical solid electrolyte secondary battery that can be easily made smaller and thinner and has less self-discharge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の電池の縦断面図、第2図、第
3図、および第4図は電池容量と充・放電サイクル数と
の関係を示す図である。 1・・・−・・正極、2・・・・・電解質層、3・・・
・・負極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 充 オ文電すイカレ(( 第3図 充R電サイクル数 第4図 充 放1とサイクル数
FIG. 1 is a longitudinal sectional view of a battery according to an embodiment of the present invention, and FIGS. 2, 3, and 4 are diagrams showing the relationship between battery capacity and the number of charge/discharge cycles. 1...--Positive electrode, 2... Electrolyte layer, 3...
...Negative electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2: Charging (Figure 3: Number of charging cycles Figure 4: Charging 1 and number of cycles)

Claims (3)

【特許請求の範囲】[Claims] (1) Cu n’W S 2 (ただし、n :0.
4〜0.8 )で表される無機化合物と銅イオン導電性
固体電解質の混合物を主体に構成した正極と、銅イオン
導電性固体電解質層と、可逆性銅電極とを備えだ固体電
解質二次電池。
(1) Cu n'WS 2 (where n: 0.
A solid electrolyte secondary comprising a positive electrode mainly composed of a mixture of an inorganic compound represented by 4 to 0.8) and a copper ion conductive solid electrolyte, a copper ion conductive solid electrolyte layer, and a reversible copper electrode. battery.
(2)銅イオン導電性固体電解質がRbCu4工、−X
C13+x (ただし、X−0,25〜0.5)で表さ
れる無機化合物である特許請求の範囲第1項記載の固体
電解質二次電池。
(2) The copper ion conductive solid electrolyte is RbCu4, -X
The solid electrolyte secondary battery according to claim 1, which is an inorganic compound represented by C13+x (X-0.25 to 0.5).
(3)負極が、Cu mMX2 (ただし、m−0,1
〜0.8、MはTi、W、MoまたはNb、XはSまた
はSe )で表される無機化合物、金属銅およびCu 
2 Sよりなる群から選ばれる物質と銅イオン導電性固
体電解質との混合物で構成された特許請求の範囲第1項
記載の固体電解質二次電池。
(3) The negative electrode is Cu mMX2 (however, m-0,1
~0.8, M is Ti, W, Mo or Nb, X is S or Se), metallic copper and Cu
2. The solid electrolyte secondary battery according to claim 1, comprising a mixture of a substance selected from the group consisting of 2S and a copper ion conductive solid electrolyte.
JP58120549A 1983-07-01 1983-07-01 Solid electrolyte secondary battery Pending JPS6012678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58120549A JPS6012678A (en) 1983-07-01 1983-07-01 Solid electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58120549A JPS6012678A (en) 1983-07-01 1983-07-01 Solid electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS6012678A true JPS6012678A (en) 1985-01-23

Family

ID=14789051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58120549A Pending JPS6012678A (en) 1983-07-01 1983-07-01 Solid electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6012678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905807A1 (en) * 1997-09-26 1999-03-31 Mitsubishi Chemical Corporation Nonaqueous secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905807A1 (en) * 1997-09-26 1999-03-31 Mitsubishi Chemical Corporation Nonaqueous secondary battery
EP1119064A3 (en) * 1997-09-26 2001-09-26 Mitsubishi Chemical Corporation Nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
JP6694133B2 (en) All solid state battery
JP3216311B2 (en) Lithium battery
JPS63239773A (en) Solid electrolyte cell
Broadhead et al. Metal chalcogenides as reversible cathodes in lithium cells and their future in telecommunications
JPS6012678A (en) Solid electrolyte secondary battery
JPS6012677A (en) Solid electrolyte secondary battery
US4751159A (en) Secondary lithium battery including a silver molybdenum cathode
JPH10144351A (en) Total solid lithium secondary battery, assembled-type battery, and charging method therefor
JPS6012665A (en) Reversible copper electrode
JPS60198068A (en) Solid electrolyte secondary battery
JPS6012676A (en) Solid electrolyte secondary battery
JPH0355028B2 (en)
JPH0522348B2 (en)
JPH0481309B2 (en)
JPS6398971A (en) Solid state thin film secondary battery
JPH0355027B2 (en)
JPS61263052A (en) Solid electrolyte secondary battery
JPH0355029B2 (en)
JPH0355026B2 (en)
JPS61263055A (en) Solid electrolyte secondary battery
JPH053050A (en) Operation method for solid secondary battery and power supply
JPS628449A (en) Solid battery using positive pole of mno2,sb2s3 or mos3
JPH01186572A (en) Sealed type lead-acid battery
JPS5990361A (en) Solid secondary battery
JPS6188468A (en) Battery