JP3216311B2 - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP3216311B2
JP3216311B2 JP06854493A JP6854493A JP3216311B2 JP 3216311 B2 JP3216311 B2 JP 3216311B2 JP 06854493 A JP06854493 A JP 06854493A JP 6854493 A JP6854493 A JP 6854493A JP 3216311 B2 JP3216311 B2 JP 3216311B2
Authority
JP
Japan
Prior art keywords
lithium
lithium battery
solid electrolyte
negative electrode
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06854493A
Other languages
Japanese (ja)
Other versions
JPH06283156A (en
Inventor
和也 岩本
登 青谷
和典 ▲高▼田
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP06854493A priority Critical patent/JP3216311B2/en
Publication of JPH06283156A publication Critical patent/JPH06283156A/en
Application granted granted Critical
Publication of JP3216311B2 publication Critical patent/JP3216311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムイオン導電性
固体電解質を用いたリチウム電池の負極材料に関する。
The present invention relates to a negative electrode material for a lithium battery using a lithium ion conductive solid electrolyte.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR・携帯電話等
のポータブル機器の小型化・軽量化が進むなかで、その
電源としての電池に対して、高エネルギー密度化が望ま
れている。特に、リチウム電池は、リチウムが小さな原
子量を持ちかつイオン化エネルギーが大きな物質である
ことから、高エネルギー密度を得ることができる電池と
して各方面で盛んに研究が行われている。
2. Description of the Related Art In recent years, as portable devices such as camera-integrated VTRs and mobile phones have become smaller and lighter, batteries having a higher power density have been demanded as a power source. In particular, a lithium battery is being actively studied in various fields as a battery capable of obtaining a high energy density since lithium has a small atomic weight and a large ionization energy.

【0003】その一方、これらの用途に用いられるリチ
ウム二次電池には、電解質に有機電解質が使用されてい
るため、充電時におけるリチウムデンドライトの発生
や、電解質中を不純物が拡散し易いためによる電池の自
己放電等の問題を皆無とすることができない。こうした
問題を解決し信頼性を高めるため、負極材料をLi−A
l合金負極やリチウム−炭素負極を用いたり、電解液に
デンドライト抑制剤を添加するなどの方法がとられてい
る。しかしながら、こうした方法をとった場合でも、大
電流で充電を行った場合においては完全にデンドライト
の発生を抑制することができず、また、あわせて電解質
の漏液といった問題もあることから、液体電解質に代え
て固体電解質を用い、電池を全固体化する試みが各方面
でなされている。特に先に述べたリチウム電池に関して
は、そのエネルギー密度の高さのために、リチウムデン
ドライトの発生により短絡が生じた際には電池が発火す
るなどの恐れがある。そのため、電池の安全性を確保す
るために、不燃性の固体で構成される固体電解質を用い
た全固体リチウム電池の開発が望まれている。
On the other hand, lithium secondary batteries used in these applications use an organic electrolyte as an electrolyte, so that lithium dendrite is generated during charging and impurities are easily diffused in the electrolyte. Problems such as self-discharge cannot be eliminated. In order to solve these problems and improve reliability, the negative electrode material must be Li-A
Methods such as using a 1-alloy negative electrode or a lithium-carbon negative electrode and adding a dendrite inhibitor to an electrolytic solution have been adopted. However, even when such a method is employed, the generation of dendrite cannot be completely suppressed when charging is performed with a large current, and there is also a problem such as electrolyte leakage. Attempts have been made in various fields to use solid electrolytes instead of solid electrolytes to make batteries solid. In particular, with respect to the above-described lithium battery, due to the high energy density, when a short circuit occurs due to the generation of lithium dendrite, the battery may be ignited. Therefore, in order to ensure battery safety, development of an all-solid lithium battery using a solid electrolyte composed of a nonflammable solid is desired.

【0004】[0004]

【発明が解決しようとする課題】先に述べた電解液を用
いたリチウム電池において、負極に金属リチウム、もし
くはリチウム合金を用いた場合、電解液にデンドライト
抑制のための添加剤を加えても完全にリチウムデンドラ
イトの生成を抑制することができず、デンドライドの生
成により内部で短絡し発火するといった危険性があっ
た。
In a lithium battery using the above-mentioned electrolyte, when metallic lithium or a lithium alloy is used for the negative electrode, the electrolyte can be completely added even if an additive for suppressing dendrite is added to the electrolyte. However, the formation of lithium dendrites could not be suppressed, and there was a risk that the formation of dendrites would cause a short circuit and fire.

【0005】また、全固体リチウム電池においては深い
充放電によって、体積が膨張、収縮し、活物質と固体電
解質との間の接合が阻害されたり、電池ケースに膨れ、
クラックを生じる懸念があった。
[0005] Further, in an all-solid lithium battery, the volume expands and contracts due to deep charge / discharge, so that the junction between the active material and the solid electrolyte is hindered or the battery case swells.
There was a concern about cracks.

【0006】本発明は、以上の課題を解決し、負極にリ
チウム合金繊維成形体を用いた全固体リチウム電池を提
供することを目的とする。
An object of the present invention is to solve the above problems and to provide an all-solid lithium battery using a lithium alloy fiber molded body for a negative electrode.

【0007】本発明は、上記目的を達成するためにリチ
ウムイオン伝導性固体電解質を用いたリチウム電池の、
負極がリチウム合金である活物質と固体電解質からなる
繊維成形体であることを構成上の特徴とするものであ
る。
[0007] In order to achieve the above object, the present invention provides a lithium battery using a lithium ion conductive solid electrolyte.
The constitution is characterized in that the negative electrode is a fibrous formed body composed of an active material which is a lithium alloy and a solid electrolyte.

【0008】金属繊維の成形法としては、加圧成形、織
布、不織布といった方法をとる。また、金属繊維成形体
としては、金属繊維のみを織布、不織布として得られる
ものと、金属繊維とガラス繊維状リチウムイオン導電性
固体電解質を配して織布もしくは不織布として得られる
ものがある。
[0008] As a molding method of the metal fiber, a method such as pressure molding, woven fabric or non-woven fabric is used. Further, as the metal fiber molded body, there are a metal fiber only obtained as a woven fabric and a nonwoven fabric, and a metal fiber molded product obtained as a woven fabric or a nonwoven fabric by disposing a metal fiber and a glass fiber lithium ion conductive solid electrolyte.

【0009】さらに、金属繊維成形体をリチウムイオン
導電性固体電解質上に載せ、シンタリングし、負極を形
成し、電解質と負極の一体化を図りリチウム電池を構成
する。
Further, the metal fiber molded body is placed on a lithium ion conductive solid electrolyte, sintered to form a negative electrode, and the electrolyte and the negative electrode are integrated to constitute a lithium battery.

【0010】なお、リチウム合金としては50at%以
上の金属リチウムと、Bi,Pb,Sn,Cd,Ag,
In,Zn,Sb,Hg,C,Si,B,P,Be,G
a,TiO2,TiS2,Al,Hf,Y,Nb,Mgよ
り選ばれる一つまたはそれ以上の金属を含む合金を用い
る。
[0010] As a lithium alloy, metallic lithium of 50 at% or more, Bi, Pb, Sn, Cd, Ag,
In, Zn, Sb, Hg, C, Si, B, P, Be, G
An alloy containing one or more metals selected from a, TiO 2 , TiS 2 , Al, Hf, Y, Nb, and Mg is used.

【0011】[0011]

【作用】電解質層にリチウムイオン導電性固体電解質を
用いることにより、負極に金属リチウム、もしくはリチ
ウム合金を用いてリチウム電池を構成した場合でも、負
極上にリチウムデンドライトが発生しないため、電池の
内部短絡が起こりにくく、発火の危険性のないリチウム
電池を得ることができる。また、リチウム合金を繊維化
し、金属繊維成形体とすることで見かけ面積の大面積化
が可能となる上、反応有効面積を増大させることができ
るので、リチウム電池の高出力化が可能となる。
[Function] By using a lithium ion conductive solid electrolyte for the electrolyte layer, even if a lithium battery is formed using lithium metal or a lithium alloy for the negative electrode, no lithium dendrite is generated on the negative electrode. Is less likely to occur and a lithium battery having no danger of ignition can be obtained. In addition, by forming a lithium alloy into fibers and forming a metal fiber molded body, the apparent area can be increased, and the effective reaction area can be increased, so that the output of the lithium battery can be increased.

【0012】さらに、織布、不織布として用いた場合に
は、その弾性によって、固体電池の深い充放電にともな
う体積変化を吸収することができる。
Further, when used as a woven or non-woven fabric, the elasticity thereof can absorb a change in volume due to deep charge / discharge of the solid state battery.

【0013】また、リチウムイオン導電性ガラス状固体
電解質は高温においても安定であるので上記金属繊維成
形体をリチウムイオン導電性ガラス状固体電解質上に載
せ、シンタリングを行うことによって、負極と固体電解
質の一体化が可能となり、界面における接合を確保し、
接触抵抗の軽減を図ることができる。
Further, since the lithium ion conductive glassy solid electrolyte is stable even at a high temperature, the above-mentioned metal fiber molded body is placed on the lithium ion conductive glassy solid electrolyte and sintering is performed, whereby the negative electrode and the solid electrolyte are formed. Can be integrated, securing bonding at the interface,
The contact resistance can be reduced.

【0014】[0014]

【実施例】以下、本発明について実施例を用いて詳細に
説明するが、これらの実施例における操作は全て不活性
ガスを満たしたドライボックス中にて行った。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples, but all operations in these Examples were performed in a dry box filled with an inert gas.

【0015】(実施例1)負極に0.6Li−0.4A
l合金繊維の不織布を、リチウムイオン導電性固体電解
質として0.5Li2S−0.5SiS2を正極に二硫化
チタン(TiS2)を用いて、リチウム電池を構成し
た。以下にその詳細を示す。
(Example 1) 0.6Li-0.4A was used for the negative electrode.
The l alloy fibers of the nonwoven, using titanium disulfide (TiS 2) a 0.5Li 2 S-0.5SiS 2 as a lithium-ion conductive solid electrolyte to the positive electrode, to constitute a lithium battery. The details are shown below.

【0016】先ず、0.6Li−0.4Al合金繊維の
不織布を以下の方法で作製した。繊維径150〜200
μm、繊維長5.0〜10.0mmの0.6Li−0.4
Al合金繊維を脱水トルエン中に分散させ、ステンレス
製のメッシュで抄紙した後、ローラーを通し、乾燥させ
て、厚さ0.5mmの0.6Li−0.4Al合金不織布
を得、20mmφに切り抜いて負極とした。
First, a nonwoven fabric of 0.6Li-0.4Al alloy fiber was produced by the following method. Fiber diameter 150-200
μm, 0.6Li-0.4 with a fiber length of 5.0 to 10.0 mm
After dispersing the Al alloy fiber in dehydrated toluene and papermaking with a stainless steel mesh, it is passed through a roller and dried to obtain a 0.6 Li-0.4 Al alloy nonwoven fabric having a thickness of 0.5 mm, which is cut out to 20 mmφ. A negative electrode was used.

【0017】つぎに、0.5Li2S−0.5SiS2
表されるリチウムイオン導電性ガラス状固体電質を乳
鉢で100メッシュ以下に粉砕し、200mmφ、厚さ
0.2mmに加圧成形した。
[0017] Next, 0.5Li 2 pulverizing the S-0.5SiS lithium ion conductivity is represented by 2 glassy solid electrolytic electrolyte mortar to 100 mesh or less, 200 mm, the thickness of 0.2mm pressure Molded.

【0018】また、二硫化チタン(TiS2)と上記リ
チウムイオン導電性ガラス状固体電解質粉末を重量比で
1:1に混合、加圧成形し厚さ0.1mm、20mmφの正
極とした。
Titanium disulfide (TiS 2 ) and the above-mentioned lithium ion conductive glassy solid electrolyte powder were mixed at a weight ratio of 1: 1 and pressed to form a positive electrode having a thickness of 0.1 mm and a diameter of 20 mmφ.

【0019】上記で得られた固体電解質成形体を正極、
および負極で挟み圧接し、リチウム電池とした。
The solid electrolyte molded article obtained above is used as a positive electrode,
Then, the battery was pressed and sandwiched between negative electrodes to obtain a lithium battery.

【0020】このリチウム二次電池の開回路電圧は2.
8V、短絡電流は700μA/cm2であり、また100
μA/cm2の電流密度で放電させたところ図1のような
放電曲線を示した。
The open circuit voltage of this lithium secondary battery is 2.
8 V, short-circuit current is 700 μA / cm 2 , and 100
When discharge was performed at a current density of μA / cm 2 , a discharge curve as shown in FIG. 1 was shown.

【0021】さらに、比較的電圧の安定している範囲を
考慮し放電終止電圧を1.9Vとして電流密度100μ
A/cm2で充放電サイクル試験を続けたが、500サイ
クル続けたが充放電曲線は全く変化せず、また短絡電流
の変化も認められず安定に動作することがわかった。
Further, considering the relatively stable voltage range, the discharge end voltage is set to 1.9 V and the current density is set to 100 μm.
The charge / discharge cycle test was continued at A / cm 2 , but after 500 cycles, the charge / discharge curve did not change at all, and no change in the short-circuit current was observed.

【0022】また、電池を充電状態で解体し、負極と電
解質の界面を顕微鏡観察を行ったが、デンドライトの生
成は認められなかった。
The battery was disassembled in a charged state, and the interface between the negative electrode and the electrolyte was observed under a microscope. No dendrite formation was observed.

【0023】以上のように、本発明によるとリチウムデ
ンドライトの生成のない、リチウム電池を得ることがで
きることがわかった。
As described above, according to the present invention, it was found that a lithium battery without generation of lithium dendrite can be obtained.

【0024】(実施例2)負極に0.6Li−0.4A
l合金繊維と0.5Li2S−0.5SiS2で表される
リチウムイオン導電性ガラス繊維状固体電解質を交互に
配し、織布として、成形体としたものを用いた以外は、
実施例1と同様の方法でリチウム電池を得た。
(Example 2) 0.6Li-0.4A was used for the negative electrode.
arranged alternately l alloy fibers and 0.5Li 2 S-0.5SiS 2 a lithium ion conductive glass fibrous solid electrolyte represented, as fabric, except that used was a molded body,
A lithium battery was obtained in the same manner as in Example 1.

【0025】まず、繊維径150〜200μmの0.6
Li−0.4Al合金の長繊維と同じ繊維径の0.5L
2S−0.5SiS2で表されるリチウムイオン導電性
ガラス状固体電解質の長繊維を作製し、図2に示すよう
に交互に配して織布とした。この織布を3層に積層した
後、ローラーを通して厚さ0.5mmとし、20mmφに切
り抜いて、負極とした。該負極と実施例1と同様の正極
並びに固体電解質を用いてリチウム電池を作製した。
First, a fiber having a fiber diameter of 150-200 μm of 0.6
0.5L of the same fiber diameter as long fiber of Li-0.4Al alloy
i 2 to produce a long fiber of the S-0.5SiS lithium ion conductivity is represented by 2 glassy solid electrolyte was woven by disposing alternately as shown in FIG. After laminating this woven fabric in three layers, it was made to have a thickness of 0.5 mm through a roller and cut out to 20 mmφ to obtain a negative electrode. A lithium battery was manufactured using the negative electrode, the same positive electrode as in Example 1, and a solid electrolyte.

【0026】このリチウム電池の初期特性は、開回路電
圧2.8V、短絡電流800μA/cm2でありまた、こ
のリチウム電池を100μA/cm2の電流密度で放電さ
せたところ、放電曲線は図1に示す実施例1と同様のも
のが得られた。
The initial characteristics of the lithium battery, the open circuit voltage 2.8V, a short-circuit current 800 .mu.A / cm 2 Further, when the lithium battery was discharged at a current density of 100 .mu.A / cm 2, discharge curves 1 Was obtained in the same manner as in Example 1 shown in FIG.

【0027】さらに、放電終止電圧1.9V、電流密度
100μA/cm2で充放電サイクル試験を行ったとこ
ろ、700サイクルに到達しても初期の放電容量を維持
し、充放電曲線にも変化は起こらなかった。
Further, when a charge / discharge cycle test was conducted at a discharge end voltage of 1.9 V and a current density of 100 μA / cm 2 , the initial discharge capacity was maintained even after 700 cycles, and the charge / discharge curve did not change. Did not happen.

【0028】また、このリチウム電池を充電状態で解体
し、負極と固体電解質の界面の状態を顕微鏡で観察した
ところ、デンドライトの生成は認められなかった。
Further, when this lithium battery was disassembled in a charged state and the state of the interface between the negative electrode and the solid electrolyte was observed with a microscope, no formation of dendrites was observed.

【0029】(実施例3)実施例2で得られた負極を実
施例1で得られたリチウムイオン導電性固体電解質成形
体の上に載せ、圧接し、さらに不活性ガス雰囲気のもと
で170〜180℃で1時間シンタリングを行った。
(Example 3) The negative electrode obtained in Example 2 was placed on the lithium ion conductive solid electrolyte molded article obtained in Example 1, pressed, and further pressed under an inert gas atmosphere. Sintering was performed at 180 ° C. for 1 hour.

【0030】この負極・電解質一体構造のものと、二硫
化チタン(TiS2)と上記リチウムイオン導電性ガラ
ス状固体電解質粉末を重量比で1:1に混合、加圧成形
し、厚さ0.1mm、20mmφの正極としたものを圧接
し、リチウム電池を得た。
This negative electrode / electrolyte integrated structure, titanium disulfide (TiS 2 ) and the above lithium ion conductive glassy solid electrolyte powder were mixed at a weight ratio of 1: 1 and pressed and formed to a thickness of 0.1: 1. A positive electrode having a diameter of 1 mm and 20 mmφ was press-contacted to obtain a lithium battery.

【0031】このリチウム電池の初期特性は、開回路電
圧2.8V、短絡電流850μA/cm2であった。
The initial characteristics of this lithium battery were an open circuit voltage of 2.8 V and a short circuit current of 850 μA / cm 2 .

【0032】つぎに、このリチウム電池を電流密度10
0μA/cm2で放電したところ、図3に示す放電曲線が
得られた。シンタリングを行ったリチウム電池の放電曲
線は、圧接のみで構成した電池の放電曲線に比べて、放
電直後の電圧降下が小さくなっている。
Next, this lithium battery was charged at a current density of 10
When discharge was performed at 0 μA / cm 2 , a discharge curve shown in FIG. 3 was obtained. In the discharge curve of the sintered lithium battery, the voltage drop immediately after the discharge is smaller than that of the battery formed only by pressure welding.

【0033】このことから、負極と固体電解質との界面
の接合がシンタリングによって向上し、内部抵抗の小さ
なリチウム電池を得ることができることがわかった。
From this, it was found that the bonding at the interface between the negative electrode and the solid electrolyte was improved by sintering, and a lithium battery having a small internal resistance could be obtained.

【0034】(実施例4)繊維径150〜200μmの
0.6Li−0.4Al合金の短繊維と同じ繊維径の
0.5Li2S−0.5SiS2で表されるリチウムイオ
ン導電性ガラス状固体電解質の短繊維を不活性ガス気流
により混合し、その混合物をツインローラーを通して圧
縮し、厚さ0.5mmの不織布を得た。
(Example 4) Lithium ion conductive glass represented by 0.5Li 2 S-0.5SiS 2 having the same fiber diameter as the 0.6Li-0.4Al alloy short fiber having a fiber diameter of 150 to 200 μm. The short fibers of the solid electrolyte were mixed by an inert gas stream, and the mixture was compressed through a twin roller to obtain a nonwoven fabric having a thickness of 0.5 mm.

【0035】この金属繊維成形体不織布を負極とした以
外は、実施例3と同様の方法によりリチウム電池を得
た。
A lithium battery was obtained in the same manner as in Example 3 except that this metal fiber molded nonwoven fabric was used as a negative electrode.

【0036】このリチウム電池の初期特性は、開回路電
圧2.8V、短絡電流850μA/cm2であった。
The initial characteristics of this lithium battery were an open circuit voltage of 2.8 V and a short circuit current of 850 μA / cm 2 .

【0037】つぎに、このリチウム電池を厚さ0.2mm
のAS樹脂で挟んで封止し、放電終止電圧1.2V、電
流密度200μA/cm2で充放電を繰り返したところ、
1000サイクルを経過しても、AS樹脂にクラックは
生じることもなく、図4に示すように電池素子の積層方
向の厚さに変化はなかった。
Next, this lithium battery was placed in a thickness of 0.2 mm.
When the charge and discharge were repeated at a discharge end voltage of 1.2 V and a current density of 200 μA / cm 2 ,
Even after 1000 cycles, no cracks occurred in the AS resin, and there was no change in the thickness of the battery element in the stacking direction as shown in FIG.

【0038】さらに、顕微鏡により、負極と固体電解質
界面の接合を観察したが、密着は良好で、デンドライト
の発生も認められなかった。
Further, the junction between the negative electrode and the solid electrolyte interface was observed under a microscope, and the adhesion was good, and no generation of dendrite was observed.

【0039】(比較例1)実施例1で得られたリチウム
イオン導電性固体電解質成形体を、同じく実施例1で得
られた正極と、厚さ0.5mmのLiシート負極で挟み、
圧接してリチウム電池を作製した。
(Comparative Example 1) The lithium ion conductive solid electrolyte molded body obtained in Example 1 was sandwiched between the positive electrode similarly obtained in Example 1 and a Li sheet negative electrode having a thickness of 0.5 mm.
Pressure welding was performed to produce a lithium battery.

【0040】このリチウム電池を実施例4と同様にAS
樹脂で挟んで封止し、放電終止電圧1.2V、電流密度
200μA/cm2で充放電を繰り返したところ、500
サイクルでAS樹脂にクラックを生じ、図4に示すよう
に、電池素子の積層方向の厚さが増大していることがわ
かった。さらに、顕微鏡により、負極と固体電解質界面
の接合を観察したところ、わずかな剥離が認められ、そ
れによって、界面の接合が阻害されているのが観察され
た。
This lithium battery was subjected to AS
The battery was sealed with a resin, and charge / discharge was repeated at a discharge end voltage of 1.2 V and a current density of 200 μA / cm 2 , and the result was 500
It was found that cracks occurred in the AS resin during the cycle, and as shown in FIG. 4, the thickness of the battery element in the stacking direction increased. Furthermore, when the bonding between the negative electrode and the solid electrolyte interface was observed with a microscope, slight peeling was observed, and it was observed that the bonding at the interface was hindered.

【0041】これらの結果から、負極を不織布状にし、
さらに、シンタリングを行うことによって、体積変化を
吸収すると共に、負極・固体電解質界面の接合状態を良
好に保つことができることがわかった。
From these results, the negative electrode was formed into a nonwoven fabric,
Furthermore, it was found that by performing the sintering, a change in volume could be absorbed and the bonding state at the interface between the negative electrode and the solid electrolyte could be kept good.

【0042】なお、本発明の実施例においては、リチウ
ム合金繊維として0.6Li−0.4Al合金の繊維径
150〜200μmのものを用いて説明したが、他のリ
チウム合金を任意の繊維径に繊維化して用いても同様の
効果が得られることは自明であり、本発明はリチウム合
金種、繊維径、合金組成比について、上記に限定される
ものではない。
In the embodiment of the present invention, the lithium alloy fiber having a fiber diameter of 0.6 to 0.4 Al alloy having a fiber diameter of 150 to 200 μm has been described. It is obvious that the same effect can be obtained even when used in the form of fibers, and the present invention is not limited to the lithium alloy type, fiber diameter, and alloy composition ratio as described above.

【0043】また、本発明の実施例においては、0.5
Li2S−0.5SiS2で表されるリチウムイオン導電
性固体電解質を用いた電解質層、並びにガラス繊維につ
いて説明を行ったが、0.03Li3PO 4 0.59L
2S−0.38SiS2、0.5Li2S−0.5P2
5、0.6Li2S−0.4B23、0.4Li3PO4
0.6Li4SiO4等のガラス化が可能な固体電解質で
あればいずれのものでも使用可能なことは周知のと
で、本発明で用いた固体電解質にのみ限定されるもので
はない。
In the embodiment of the present invention, 0.5
Li 2 S-0.5SiS 2 in the electrolyte layer comprising the lithium ion conductive solid electrolyte represented, as well as has been described for a glass fiber, 0.03Li 3 PO 4 - 0.59L
i 2 S-0.38SiS 2, 0.5Li 2 S-0.5P 2 S
5, 0.6Li 2 S-0.4B 2 S 3, 0.4Li 3 PO 4 -
0.6Li 4 that if the vitrification possible solid electrolyte SiO 4 and the like be any available for known and Contact Ride, is not limited only to the solid electrolyte used in the present invention.

【0044】また、本発明の実施例においては、リチウ
ム電池の正極として正極活物質である二硫化チタンと
0.5Li2S−0.5SiS2ガラス状固体電解質の混
合物を用いて説明を行ったが、その他上記に示す固体電
解質を用いたもの、また、二硫化チタンに代えて、二硫
化タンタル等のカルコゲン層間化合物、あるいは遷移金
属酸化物等の他の正極活物質を用いても同様の効果が得
られることもいうまでもなく、本発明におけるリチウム
電池は正極活物質として二硫化チタンと0.5Li2
−0.5SiS2ガス状固体電解質の混合物に限定され
るものではない。
In the embodiments of the present invention, a description was given using a mixture of titanium disulfide as a positive electrode active material and a glassy solid electrolyte of 0.5Li 2 S-0.5SiS 2 as a positive electrode of a lithium battery. However, the same effect can be obtained by using other solid electrolytes shown above, or by using a chalcogen intercalation compound such as tantalum disulfide or another positive electrode active material such as a transition metal oxide instead of titanium disulfide. Needless to say, the lithium battery of the present invention has titanium disulfide and 0.5Li 2 S as the positive electrode active material.
-0.5SiS is not limited to a mixture of 2 gas solid electrolyte.

【0045】[0045]

【発明の効果】以上説明したように、本発明によれば、
リチウム合金を繊維化することで成形性が向上し、織
布、不織布といった成形体として負極に用いることによ
って、リチウムデンドライトの生成のないリチウム電池
を得ることができた。
As described above, according to the present invention,
Formability was improved by converting the lithium alloy into fibers, and a lithium battery without generation of lithium dendrite could be obtained by using the negative electrode as a molded body such as a woven fabric or a nonwoven fabric.

【0046】また、この成形体中にリチウムイオン導電
性固体電解質を混在させることにより、負極・固体電解
質界面の接合が保たれ、さらにシンタリングを行えば、
いっそう界面の接合状態は良好になることがわかった。
Further, by mixing a lithium ion conductive solid electrolyte in the molded body, the junction between the negative electrode and the solid electrolyte is maintained, and further sintering is performed.
It was found that the bonding state at the interface was further improved.

【0047】また、不織布とした場合にはその弾性によ
って、固体電池における深い充放電にともなう体積変化
を吸収することができることがわかった。
It was also found that the elasticity of the non-woven fabric made it possible to absorb the change in volume due to the deep charge and discharge of the solid state battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における金属繊維成形体を用
いたリチウム電池の放電曲線図
FIG. 1 is a discharge curve diagram of a lithium battery using a metal fiber molded body according to one embodiment of the present invention.

【図2】本発明の一実施例における金属繊維とガラス繊
維状固体電解質とを用いた織布の概略図
FIG. 2 is a schematic view of a woven fabric using a metal fiber and a glass fibrous solid electrolyte in one embodiment of the present invention.

【図3】本発明の一実施例における負極に金属繊維成形
体を用いたリチウム電池の放電曲線図
FIG. 3 is a discharge curve diagram of a lithium battery using a metal fiber molded body as a negative electrode in one embodiment of the present invention.

【図4】本発明の一実施例における負極に金属繊維成形
体を用いたリチウム電池の積層方向の厚さの変化を示し
た図
FIG. 4 is a diagram showing a change in the thickness in the stacking direction of a lithium battery using a metal fiber molded body as a negative electrode in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 0.6Li−0.4Al合金繊維 2 ガラス繊維状固体電解質 3 シンタリング処理 4 シンタリング処理なし 5 金属繊維不織布 6 金属Liシート 1 0.6Li-0.4Al alloy fiber 2 Glass fibrous solid electrolyte 3 Sintering treatment 4 No sintering treatment 5 Metal fiber nonwoven fabric 6 Metal Li sheet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭63−114057(JP,A) 特開 昭61−32952(JP,A) 特開 昭63−292570(JP,A) 特開 昭63−76261(JP,A) 特開 昭59−148277(JP,A) 特開 昭61−32960(JP,A) 特開 昭63−308868(JP,A) 特開 昭63−133449(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/40 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Shigeo Kondo 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-63-114057 (JP, A) JP-A-61- 32952 (JP, A) JP-A-63-292570 (JP, A) JP-A-63-76261 (JP, A) JP-A-59-148277 (JP, A) JP-A-61-32960 (JP, A) JP-A-63-308868 (JP, A) JP-A-63-133449 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/40 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極、リチウムイオン導電性固体電解質
および負極を有してなるリチウム電池において、前記負
極がリチウム合金である活物質と固体電解質からなる繊
維成形体であることを特徴とするリチウム電池。
1. A lithium battery comprising a positive electrode, a lithium ion conductive solid electrolyte, and a negative electrode, wherein the negative electrode is a fibrous formed body made of a lithium alloy active material and a solid electrolyte. .
【請求項2】 リチウム合金が、リチウムとBi,P
b,Sn,Cd,Ag,In,Zn,Sb,Hg,C,
Si,B,P,Be,Ga,TiO2,TiS2,Al,
Hf,Y,Nb,Mg,Caの群より選ばれる一つまた
はそれ以上の合金であることを特徴とする請求項記載
のリチウム電池。
2. A lithium alloy comprising lithium and Bi, P
b, Sn, Cd, Ag, In, Zn, Sb, Hg, C,
Si, B, P, Be, Ga, TiO 2 , TiO 2 , Al,
The lithium battery according to claim 1 , wherein the lithium battery is one or more alloys selected from the group consisting of Hf, Y, Nb, Mg, and Ca.
【請求項3】維成形体が繊維を織布、もしくは不織
布としてなることを特徴とする請求項1記載のリチウム
電池。
3. A lithium battery according to claim 1, wherein the fiber維成form is characterized by comprising the textiles as woven or nonwoven.
【請求項4】 正極、リチウムイオン導電性固体電解質
および負極を有してなるリチウム電池において、前記負
は繊維成形体であり、この繊維成形体がリチウム合金
繊維とガラス繊維状リチウムイオン導電性固体電解質を
配して、織布もしくは不織布としてなることを特徴とす
るリチウム電池。
4. The positive electrode, a lithium battery comprising a lithium ion conductive solid electrolyte and a negative electrode, the negative electrode is a fiber維成form, this fiber維成form lithium alloys <br/> fibers and glass A lithium battery comprising a fibrous lithium ion conductive solid electrolyte and a woven or nonwoven fabric.
【請求項5】維成形体をリチウムイオン導電性固体
電解質上に載せ、シンタリングすることにより負極を形
成することを特徴とする請求項1〜請求項のいずれか
に記載のリチウム電池。
5. A fiber維成features placed on the lithium ion conductive solid electrolyte, lithium battery according to any one of claims 1 to 4, characterized by forming a negative electrode by sintering.
JP06854493A 1993-03-26 1993-03-26 Lithium battery Expired - Fee Related JP3216311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06854493A JP3216311B2 (en) 1993-03-26 1993-03-26 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06854493A JP3216311B2 (en) 1993-03-26 1993-03-26 Lithium battery

Publications (2)

Publication Number Publication Date
JPH06283156A JPH06283156A (en) 1994-10-07
JP3216311B2 true JP3216311B2 (en) 2001-10-09

Family

ID=13376811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06854493A Expired - Fee Related JP3216311B2 (en) 1993-03-26 1993-03-26 Lithium battery

Country Status (1)

Country Link
JP (1) JP3216311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657918B (en) * 2007-03-23 2013-03-13 丰田自动车株式会社 Mixed material layer, method for production of the mixed material layer, solid battery, and method for production of the solid battery

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601319D0 (en) * 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713896D0 (en) * 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
JP5285292B2 (en) * 2008-02-08 2013-09-11 株式会社オハラ All solid lithium ion secondary battery
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
EP2738839B1 (en) * 2012-11-29 2015-08-12 The Swatch Group Research and Development Ltd. Flexible electrode of an electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657918B (en) * 2007-03-23 2013-03-13 丰田自动车株式会社 Mixed material layer, method for production of the mixed material layer, solid battery, and method for production of the solid battery

Also Published As

Publication number Publication date
JPH06283156A (en) 1994-10-07

Similar Documents

Publication Publication Date Title
CA2169484C (en) Rechargeable non-aqueous lithium battery having stacked electrochemical cells
US6699619B2 (en) Negative electrode of a lithium secondary battery with a two-layered inorganic solid electrolytic material
JP3216311B2 (en) Lithium battery
JP3198828B2 (en) Manufacturing method of all solid lithium secondary battery
GB2026762A (en) Rechargeable chalcogenide cell
WO2001086748A1 (en) Nonaqueous electrolyte lithium secondary cell
JPH117942A (en) Total solid lithium battery
JPH11283664A (en) Solid-electrolyte battery
KR101512170B1 (en) Solid electrolyte based Nonwoven separator for lithium Secondary Battery and its making method
JP2002110225A (en) Non-acqueous electrolyte lithium secondary battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
CN113785427A (en) All-solid-state battery including composite electrode
JP2014007117A (en) Li BASED SECONDARY BATTERY
JP3065797B2 (en) Lithium secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP3060077B2 (en) Non-aqueous electrolyte secondary battery and method for producing active material thereof
JP2011159467A (en) Nonaqueous electrolyte battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
GB2298309A (en) Fan-folded lithium battery construction comprising lithium ion-containing polymer electrolyte sandwiched between discrete electrode plates
JPH0696759A (en) Nonaqueous electrolytic secondary battery and manufacture of active material used therefor
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JPS6259412B2 (en)
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP3163197B2 (en) Collective battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees