JPS60125948A - Thermomagnetic recording medium - Google Patents

Thermomagnetic recording medium

Info

Publication number
JPS60125948A
JPS60125948A JP58232658A JP23265883A JPS60125948A JP S60125948 A JPS60125948 A JP S60125948A JP 58232658 A JP58232658 A JP 58232658A JP 23265883 A JP23265883 A JP 23265883A JP S60125948 A JPS60125948 A JP S60125948A
Authority
JP
Japan
Prior art keywords
layer
film
recording
thin film
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58232658A
Other languages
Japanese (ja)
Inventor
Yoichi Osato
陽一 大里
Ichiro Saito
一郎 斉藤
Kozo Arao
荒尾 浩三
Hidekazu Fujii
英一 藤井
Yoshio Takasu
高須 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58232658A priority Critical patent/JPS60125948A/en
Priority to US06/679,314 priority patent/US4675767A/en
Publication of JPS60125948A publication Critical patent/JPS60125948A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Abstract

PURPOSE:To improve both the S/N and the existing stability for a thermomagnetic recording medium by laminating a heat-sensitive magnetic layer consisting of a rare earth-transition metallic amorphous magnetic thin film and a layer having the reflecting and phase modulating function on a light transmitting substrate, and adding an auxiliary layer such as a reflection preventing layer, a protecting layer, etc. when necessary. CONSTITUTION:A rare earth-transition metallic amorphous thin film 12 having a magnetization facilitating axis vertical to the film surface is provided on a light transmitting substrate 11. A layer 13 having the reflecting and phase modulating functions is formed on the film 12 by vapor-depositing simultaneously a compound of one or more types of metallic elements showing a high reflection factor to the recording/reproducing light of a medium and an element having a small absorption factor of the recording/reproducing light. The phase difference of the reflected light is controlled by varying the composition ratio between said both elements of a compound and the film thickness of the layer 13. In addition, an auxiliary layer is provided such as a protecting layer 14 or a reflection preventing layer between the substrate 11 and the film 12.

Description

【発明の詳細な説明】 本発明は、熱磁気記録媒体の改良に関し、更に詳しくは
熱磁気記録特性向上のための反射並びに位相変調機能を
有する層に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in thermomagnetic recording media, and more particularly to a layer having reflection and phase modulation functions for improving thermomagnetic recording characteristics.

各種記録材料上にヒートモードでピット記録を行ない光
学的に読み出す光メモリが実用化されつつあり、特に最
近はレーザー光源や光学装置の発展に伴ない大容量レー
ザーメモリとして脚光をおびてきた。このような記録材
料の一種として磁性ンμ膜を用いたAフシ磁気記録媒体
が知られている。すなわち、Mn13i の如き磁性多
結晶薄膜に外部磁界を作用させるレーザービームのスポ
ット照射による照射部の温度上昇で、キューリ一点を越
える加熱が行なわれると照射部では磁化の反転が生ずる
Optical memories in which pits are recorded in a heat mode on various recording materials and read out optically are being put into practical use, and recently, with the development of laser light sources and optical devices, they have been in the spotlight as large-capacity laser memories. As a type of such recording material, an A-shaped magnetic recording medium using a magnetic μ film is known. That is, when the temperature of the irradiated part is increased by spot irradiation of a laser beam that applies an external magnetic field to a magnetic polycrystalline thin film such as Mn13i, and heating exceeds the Curie point, magnetization reversal occurs in the irradiated part.

概して、磁気的ビット記録の行なわれた媒体は、磁気カ
ー効果やンァラデー効果等の磁気光学効果により偏光子
を介して光学的に読み出すことが可能である。又、消去
は一様な外部磁界を印加して部分又は全面を加熱すれば
行なわれる。最近では、磁気的に均一な組成、適当なキ
ューリ一温度、そして比較的大きな磁気光学効果の得ら
れるFeTbGdの3元系薄膜に代表されるFe、Co
、 Ni 等の遷移金属とTb、 Dy、Gd、−Ho
等の希土類金属とをスパッタリングにより共蒸着した非
晶質薄膜が検討されている。
In general, a medium on which magnetic bit recording has been performed can be optically read out via a polarizer due to magneto-optic effects such as the magnetic Kerr effect and the Naraday effect. Erasing can also be performed by applying a uniform external magnetic field to heat a portion or the entire surface. Recently, Fe, Co, as typified by ternary thin films of FeTbGd, which have a magnetically uniform composition, an appropriate Curie temperature, and a relatively large magneto-optical effect, have been developed.
, Ni and other transition metals and Tb, Dy, Gd, -Ho
Amorphous thin films co-deposited by sputtering with rare earth metals such as

一方、この熱磁気記録媒体には再生信号レベルが低いと
いう欠点がある。特に、カー効果再生方式においては、
カー回転角が小さいため信号雑音比(S/N)を大きく
することが困難であった。
On the other hand, this thermomagnetic recording medium has a drawback in that the reproduced signal level is low. In particular, in the Kerr effect reproduction method,
Since the Kerr rotation angle is small, it is difficult to increase the signal-to-noise ratio (S/N).

そのため従来は、記録磁性材料を改良したり、あるいは
記録媒体上に一酸化ケイ素(siO〕や二酸化ケイ素(
5iOz)の誘電体薄膜を形成して磁性層面上への多重
反射を利用してカー回転角を大きくする工夫がなされて
きた。又、特開昭58−6541号公報及び特開昭58
−6542 号公報に開示されているように、非晶質磁
性膜を充分薄(し、裏面に金属反射層を設ける仁とによ
り、カー効果とファラデー効果を利用して大きなカー回
転角を得る方法も得られている。あるいは、上記非晶質
磁性膜層と反射層の間に透明誘電体膜層を設けて、これ
ら3層の材料と膜厚を最適に選ぶことにより、更に効率
良く大きな回転角を得ることができるという報告もある
( J、 Appl、 Phys、VOI −53、y
ti 6p 44.85〜44.94 )。しかじなあ
tら、いずれの方式においても反射層及び透明誘電体膜
層の膜厚を例えば20〜50X以内の精度で精密に制御
する必要があり、記録媒体の高感度、高信号雑音比(S
/N)を実現するためには、反射層に用いる金属薄膜層
を例えば100〜600A程度の薄さに設定しなければ
ならなかった。ところが、現在知られている希土類−遷
移金属非晶質膜と同様に金R薄膜も酸素の存在下で高温
高湿の環境に放置すると容易に酸化されて、結果的に媒
体の記録感度の低下、記録再生時のエラーの増加、信号
の劣化等を招く。
For this reason, it has conventionally been necessary to improve the recording magnetic material or to add silicon monoxide (siO) or silicon dioxide (SiO) to the recording medium.
Efforts have been made to increase the Kerr rotation angle by forming a dielectric thin film of 5 iOz) and utilizing multiple reflections on the surface of the magnetic layer. Also, JP-A-58-6541 and JP-A-58
As disclosed in Japanese Patent No. 6542, a method of obtaining a large Kerr rotation angle by making an amorphous magnetic film sufficiently thin and providing a metal reflective layer on the back surface makes use of the Kerr effect and Faraday effect. Alternatively, a transparent dielectric film layer may be provided between the amorphous magnetic film layer and the reflective layer, and the material and film thickness of these three layers may be optimally selected to achieve even more efficient and large rotation. There is also a report that it is possible to obtain horns (J, Appl, Phys, VOI-53, y
ti 6p 44.85-44.94). However, in any method, it is necessary to precisely control the film thickness of the reflective layer and the transparent dielectric film layer with an accuracy of, for example, within 20 to 50X, and the recording medium has a high sensitivity and a high signal-to-noise ratio ( S
/N), the metal thin film layer used for the reflective layer had to be set to a thickness of, for example, about 100 to 600 Å. However, like the currently known rare earth-transition metal amorphous films, the gold R thin film is easily oxidized when left in a high-temperature, high-humidity environment in the presence of oxygen, resulting in a decrease in the recording sensitivity of the medium. This leads to an increase in errors during recording and reproduction, signal deterioration, etc.

本発明は、従来の熱磁気記録媒体に見られる上記の欠点
を改善して、より大きなS/Nと優れた存在安定性を有
する熱磁気記録媒体を提供することを目的とするもので
ある。
An object of the present invention is to improve the above-mentioned drawbacks found in conventional thermomagnetic recording media and to provide a thermomagnetic recording medium having a larger S/N and excellent existence stability.

本発明の熱磁気記録媒体の構成例を第1図の略断面図を
用いて示す。プラスチック又はガラス等からなる透光性
基板]」上にGd Tb Fe 、 Tb Dy Fe
 。
An example of the structure of the thermomagnetic recording medium of the present invention is shown using the schematic cross-sectional view of FIG. Gd Tb Fe, Tb Dy Fe on a transparent substrate made of plastic or glass, etc.
.

GdDyFe等の膜面に垂直な磁化容易軸を有する希土
類−遷移金属非晶質薄膜12を設ける。その上に、本発
明の反射並びに位相変調機能を有する層13を設け、更
に保護層14を設ける。保護層は有機高分子膜を塗工し
て設けても良いし、酸化物、硫化物のような無機材料あ
るいは金属材料を蒸着により設けても良い。
A rare earth-transition metal amorphous thin film 12 having an axis of easy magnetization perpendicular to the film surface is provided, such as GdDyFe. Thereon, a layer 13 having reflection and phase modulation functions according to the present invention is provided, and a protective layer 14 is further provided. The protective layer may be provided by coating an organic polymer film, or may be provided by vapor deposition of an inorganic material such as an oxide or sulfide, or a metal material.

以下に、反射並びに位相変調機能を有する層13につい
て、従来技術と比較対照する。第2図及び第3図は、反
射層を有する従来技術−よる熱磁気記録媒体の構成例を
示す。第2図において、21は透光性基板、22は非晶
質磁性薄膜、23は金属反射層、24は保護層を示す。
Below, the layer 13 having reflection and phase modulation functions will be compared and contrasted with the prior art. FIGS. 2 and 3 show an example of a conventional thermomagnetic recording medium having a reflective layer. In FIG. 2, 21 is a transparent substrate, 22 is an amorphous magnetic thin film, 23 is a metal reflective layer, and 24 is a protective layer.

第3図においては、31は透光性基板、32は非晶質磁
性薄膜、33は透明誘電体膜、34は金属反射層、35
は保護層を示す。
In FIG. 3, 31 is a transparent substrate, 32 is an amorphous magnetic thin film, 33 is a transparent dielectric film, 34 is a metal reflective layer, and 35 is a transparent dielectric film.
indicates a protective layer.

第2図及び第3図の構成では、いずれも金属反射層を利
用して、非晶質磁性薄膜で得られるファラデー効果を併
用して高いS/Nを得ることを目的としている。更に、
第3図の構成では透明誘電体膜層33を伺加することに
よって、非晶質磁性薄膜層32と透光性基板31の界面
での反射光と金属反射層34で反射された後非晶質磁性
薄膜層32と透光性基板31の界面に到達する光とに位
相差を与えて媒体の反射率を低減させる効果を得ている
In the configurations shown in FIGS. 2 and 3, the purpose is to obtain a high S/N by using a metal reflective layer in combination with the Faraday effect obtained with an amorphous magnetic thin film. Furthermore,
In the configuration shown in FIG. 3, by adding the transparent dielectric film layer 33, the reflected light at the interface between the amorphous magnetic thin film layer 32 and the transparent substrate 31 and the amorphous light after being reflected by the metal reflective layer 34 are A phase difference is imparted to the light reaching the interface between the highly magnetic thin film layer 32 and the transparent substrate 31, thereby achieving the effect of reducing the reflectance of the medium.

本発明の第1図の反射並びに位相変調機能を有する層1
3は、単層膜でありながら第3図の金属反射層34と透
明誘電体膜層33の積層膜と同様、位相変調が可能で媒
体の反射率を変え得る特徴を有する。更に、第2図及び
第3図の金属反射層では、直線偏光で入射した光はその
まま直線偏光で反射されるが、本発明の反射層ではこれ
をだ円偏光で格射するので、記録媒体の再生時に位相板
を利用して偏光子と最適位置合わせすることにより更に
高いS/Nを得ることが可能になる。
Layer 1 having reflection and phase modulation functions according to FIG. 1 of the present invention
Although it is a single layer film, it has the feature that it can perform phase modulation and change the reflectance of the medium, similar to the laminated film of the metal reflective layer 34 and transparent dielectric film layer 33 shown in FIG. Furthermore, in the metal reflective layer of FIGS. 2 and 3, the incident linearly polarized light is directly reflected as linearly polarized light, but in the reflective layer of the present invention, this is reflected as elliptically polarized light, so that the recording medium By optimally aligning the position with the polarizer using a phase plate during reproduction, it becomes possible to obtain an even higher S/N.

次に、本発明の反射並びに位相変調機能を有する層13
の製膜方法を述べる。第1図において、透光性基板11
上にスパッタリング、蒸着等により設けられた非晶質磁
性薄膜12上に、スパッタリング、電子ビーム蒸着、抵
抗加熱蒸着等の方法により、媒体の記録再生光に対して
高い反射率を示す金属元丸の1種以上と、記録再生光の
吸収の小さい元素、例えば酸化物、フン化物、硫化物、
ヨウ物、有機高分子等の化合物を同時蒸着して得られる
。反射光の位相差を調整するには、金属元素及び光吸収
の小さい元素、化合物の組成比の変更及び層13の膜厚
の変更によって達成することができる。
Next, the layer 13 having reflection and phase modulation functions of the present invention
The method for forming the film is described below. In FIG. 1, a transparent substrate 11
On the amorphous magnetic thin film 12 provided by sputtering, evaporation, etc., a metal base circle that exhibits a high reflectance for the recording and reproducing light of the medium is coated by sputtering, electron beam evaporation, resistance heating evaporation, etc. one or more elements, and elements with low absorption of recording and reproducing light, such as oxides, fluorides, sulfides,
Obtained by simultaneous vapor deposition of compounds such as iodine and organic polymers. Adjustment of the phase difference of the reflected light can be achieved by changing the composition ratio of metal elements, elements with low light absorption, and compounds, and changing the film thickness of the layer 13.

本発明の熱磁気記録媒体においては、使用する記録再生
装置に合わせて補助層が設けられたり、両面に記録層が
被着された構成においても反射並びに位相変調機能を有
する層13を適用することができる。例えば、第1図の
透光性基板11と非晶質磁性薄膜120間に補助層とし
て反射防止層や熱伝導率の小さい有機高分子等による断
熱層を設けることも可能である。補助層としては上記以
外にインデックスマークやトラッキングマークを書き込
んだ層等も含んでよい。
In the thermomagnetic recording medium of the present invention, the layer 13 having reflection and phase modulation functions can be applied even in a configuration in which an auxiliary layer is provided depending on the recording/reproducing device used, or recording layers are deposited on both sides. I can do it. For example, it is also possible to provide an auxiliary layer between the transparent substrate 11 and the amorphous magnetic thin film 120 shown in FIG. 1, such as an antireflection layer or a heat insulating layer made of an organic polymer with low thermal conductivity. In addition to the above, the auxiliary layer may also include a layer on which index marks or tracking marks are written.

以下、比較例及び実施例を挙げて本発明を具体的に説明
する。
Hereinafter, the present invention will be specifically explained with reference to comparative examples and examples.

比較例1 以下の工程により、熱磁気記録媒体を作製した。Comparative example 1 A thermomagnetic recording medium was manufactured through the following steps.

直径1.20m、厚さ1.5mmの平滑なガラス基板を
清浄し、この片面にスピンナー塗布機で硬化型シリコー
ン樹脂(S R−2410レジン、トーレ・シリコーン
社製)を乾燥膜厚0.5μとなるように塗工した。乾燥
条件は150℃、2時間であった。シリコーン樹脂は磁
気記録層にビーム照射されて発生する熱の散逸を防止す
るためのものである。
A smooth glass substrate with a diameter of 1.20 m and a thickness of 1.5 mm was cleaned, and a curable silicone resin (SR-2410 resin, manufactured by Toray Silicone Co., Ltd.) was coated on one side with a spinner coater to a dry film thickness of 0.5 μm. It was coated so that The drying conditions were 150°C for 2 hours. The silicone resin is used to prevent the dissipation of heat generated when the magnetic recording layer is irradiated with a beam.

次に上記シリコーン樹脂層の表面に反射防止層として一
酸化ケイ素(5iO1純度99.9%)を電子ビーム蒸
着により反射率が最小となる所定の厚さに形成した。こ
の厚さは、現在使用されている半導体レーザー(Ga 
As Al)の波長820nmを一酸化ケイ素の屈折率
の4倍の値で割った値で、約0.1μmの厚さである。
Next, silicon monoxide (5iO1 purity 99.9%) was formed as an antireflection layer on the surface of the silicone resin layer by electron beam evaporation to a predetermined thickness that minimized the reflectance. This thickness is different from the currently used semiconductor laser (Ga
The thickness is approximately 0.1 μm, which is the value obtained by dividing the wavelength of 820 nm of AsAl) by 4 times the refractive index of silicon monoxide.

次に熱磁気記録層としてFe76Gd12 Tolzの
組成の非晶質薄膜をスノくツタリング装置により0.0
2μmに形成した。更に保護層として一酸化ケイ素(S
iO純度99.9%)を電子ビーム蒸着により0.3μ
mの厚さに形成した。
Next, as a thermomagnetic recording layer, an amorphous thin film with a composition of Fe76Gd12 Tolz was heated to 0.0
It was formed to have a thickness of 2 μm. Furthermore, silicon monoxide (S) is used as a protective layer.
iO purity 99.9%) by electron beam evaporation to 0.3μ
It was formed to a thickness of m.

この熱磁気記録媒体にガラス面側より光学ヘッドを用い
てピット記録及び再生を行った。記録用光学ヘッドは出
力20mWの半導体レーザー(820nm’)を光源と
し、記録層表面に〜1,2μmΩの微小スポットとして
照射される構成になっている。
Pit recording and reproduction were performed on this thermomagnetic recording medium using an optical head from the glass surface side. The recording optical head uses a semiconductor laser (820 nm') with an output of 20 mW as a light source, and is configured to irradiate the surface of the recording layer as a minute spot of ~1.2 μmΩ.

又記録層の面に垂直方向の磁界を印加できるように電磁
石を配している。円板状の熱磁気記録媒体を回転駆動し
て記録層を一杯に磁化し、次いでレーザーをパルス発振
して5MHzの信号をピット記録した。読み出し再生は
10mwの半導体レーザーを光源とし、記録時と同様に
記録層を照射し、て反射光を偏光子を介して検出した。
Further, electromagnets are arranged so as to apply a magnetic field perpendicular to the surface of the recording layer. A disk-shaped thermomagnetic recording medium was rotated to fully magnetize the recording layer, and then a laser was pulsed to record a 5 MHz signal in pits. For reading and reproducing, a 10 mw semiconductor laser was used as a light source, and the recording layer was irradiated in the same manner as during recording, and the reflected light was detected via a polarizer.

良好な再生信号が得られ、C/N値は24dBであった
A good reproduced signal was obtained, and the C/N value was 24 dB.

実施例1 比較例1と同様の方法で本発明の熱磁気記録媒体を作製
した。すなわち、熱磁気記録層としてFe76Gd12
Tb12の組成の非晶質膜を製膜後、電子ビーム蒸着、
スパッタリングあるいは抵抗加熱蒸着によって、表−■
に示す金属元素と半導体レーザー光の吸収の小さい元素
、化合物類を表−■の組成比、膜厚で形成した。製膜の
終った媒体にはそれぞれ比較例1と同様に厚さ0.3μ
mの一酸化ケイ素の保護層を設けた。
Example 1 A thermomagnetic recording medium of the present invention was produced in the same manner as in Comparative Example 1. That is, Fe76Gd12 is used as the thermomagnetic recording layer.
After forming an amorphous film with a composition of Tb12, electron beam evaporation,
By sputtering or resistance heating vapor deposition,
The metal elements, elements and compounds that have low absorption of semiconductor laser light were formed in the composition ratio and film thickness shown in Table 1. Each medium after film formation has a thickness of 0.3μ as in Comparative Example 1.
A protective layer of silicon monoxide was applied.

次に表−■の各サンプル媒体1〜20について実験した
記録再生特性(再生C/N値)を表−Hに示す。実験条
件は比較例と同様記録のレーザー出力は媒体面上で7 
mW 、記録信号は50%デユーティ、5MHz のパ
ルス信号であり、再生のレーザー出力は媒体面上で2m
W、C/N値はバンド巾30KH7で評価した。C/N
値は記録ピットの大きさと媒体の磁気光学効果の大きさ
との両方の効果を示すものと考えられる。
Next, Table H shows the recording and reproducing characteristics (reproducing C/N values) tested for each sample medium 1 to 20 in Table 1. The experimental conditions were the same as in the comparative example, and the laser output for recording was 7 on the medium surface.
mW, the recording signal is a 5MHz pulse signal with 50% duty, and the reproduction laser output is 2m on the medium surface.
The W and C/N values were evaluated using a band width of 30KH7. C/N
The value is considered to indicate the effect of both the size of the recording pit and the magnitude of the magneto-optic effect of the medium.

又、表−Hには、各サンプル媒体1〜20を温度45℃
、相対湿度95%の環境下に2箇月間放置した後のC/
N値を示す(記録再生の実験条件は前述した条件と同一
である)。
Table H also lists each sample medium 1 to 20 at a temperature of 45°C.
, C/ after being left in an environment with relative humidity of 95% for 2 months.
The N value is shown (the experimental conditions for recording and reproduction are the same as those described above).

以上、表−■及び表−Hの結果から、本発明の感熱磁性
層と反射並びに位相変調機能を有する層を積層した構成
よりなる媒体は、感熱磁性層と金属反射層を積層した構
成よりなる媒体に比べて、より優れた記録再生特性並び
に保存安定性を示すことが確認された。
From the results shown in Tables 1 and 2 above, it can be seen that the medium of the present invention has a laminated configuration of a thermosensitive magnetic layer and a layer having reflective and phase modulation functions, and a medium that has a laminated configuration of a thermosensitive magnetic layer and a metal reflective layer. It was confirmed that the recording/reproducing characteristics and storage stability were superior to those of other media.

表−■ 表 −■Table - ■ Table −■

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱磁気記録媒体の構成例の略断面図、
第2図及び第3図は従来技術による熱磁気記録媒体の構
成例の略断面図を示す。 11.21.31・・・透光性基板 12.22.32・・・感熱磁性層 13・・・反射並びに位相変調機能を有する層23 、
34・・・金属反射層 33・・・透明誘電体層 14.24.35・・・保護層 第1図 第2図 弗 3 図
FIG. 1 is a schematic cross-sectional view of a configuration example of a thermomagnetic recording medium of the present invention;
FIGS. 2 and 3 show schematic cross-sectional views of examples of the configuration of thermomagnetic recording media according to the prior art. 11.21.31... Transparent substrate 12.22.32... Thermosensitive magnetic layer 13... Layer 23 having reflection and phase modulation functions,
34...Metal reflective layer 33...Transparent dielectric layer 14.24.35...Protective layer Fig. 1 Fig. 2 弗 3

Claims (1)

【特許請求の範囲】[Claims] 透光性基板」二に、希土類−遷移金属非晶質磁性薄膜か
らなる感熱磁性層と反射並びに位相変調機能を有するこ
とを特徴とする層を積層し、必要に応じ反射防止層、保
護層等の補助層を設けることが可能な熱磁気記録媒体。
A thermosensitive magnetic layer made of a rare earth-transition metal amorphous magnetic thin film and a layer characterized by having reflection and phase modulation functions are laminated on the "transparent substrate", and an antireflection layer, a protective layer, etc. are laminated as necessary. A thermomagnetic recording medium that can be provided with an auxiliary layer.
JP58232658A 1983-12-12 1983-12-12 Thermomagnetic recording medium Pending JPS60125948A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58232658A JPS60125948A (en) 1983-12-12 1983-12-12 Thermomagnetic recording medium
US06/679,314 US4675767A (en) 1983-12-12 1984-12-07 Opto-magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58232658A JPS60125948A (en) 1983-12-12 1983-12-12 Thermomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60125948A true JPS60125948A (en) 1985-07-05

Family

ID=16942753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58232658A Pending JPS60125948A (en) 1983-12-12 1983-12-12 Thermomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60125948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051819A1 (en) * 1999-03-02 2000-09-08 Ricoh Company, Ltd. Image recording body and image forming device using the image recording body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3583932A (en) * 1968-04-05 1971-06-08 Gen Tire & Rubber Co Water based coatings
JPS49107377A (en) * 1973-02-13 1974-10-11
JPS5143857A (en) * 1974-10-14 1976-04-14 Hitachi Ltd Jukiseihaisuino shorihoho

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3583932A (en) * 1968-04-05 1971-06-08 Gen Tire & Rubber Co Water based coatings
JPS49107377A (en) * 1973-02-13 1974-10-11
JPS5143857A (en) * 1974-10-14 1976-04-14 Hitachi Ltd Jukiseihaisuino shorihoho

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051819A1 (en) * 1999-03-02 2000-09-08 Ricoh Company, Ltd. Image recording body and image forming device using the image recording body
US6589708B1 (en) 1999-03-02 2003-07-08 Ricoh Company, Ltd. Image recording body and image forming device using the image recording body
US6961074B2 (en) 1999-03-02 2005-11-01 Ricoh Company, Ltd. Image recording body and image forming apparatus by use of the same
US7061513B2 (en) 1999-03-02 2006-06-13 Ricoh Company, Ltd. Image recording body and image forming apparatus by use of the same

Similar Documents

Publication Publication Date Title
US5654058A (en) Magneto-optical disk
JPH0350341B2 (en)
US4675767A (en) Opto-magnetic recording medium
JP2000306271A (en) Optical recording medium and its production
JPS6148148A (en) Thermooptical magnetic recording medium
JP2001216686A (en) Optical recording medium
JPS61196445A (en) Photomagnetic disk
JPH036582B2 (en)
JPS60125948A (en) Thermomagnetic recording medium
US6017620A (en) Magneto-optical recording medium
JPS5830656B2 (en) magneto-optical recording medium
KR890004262B1 (en) Optical magnetic disk
JPH0350344B2 (en)
JPH04335231A (en) Single plate optical disk for magneto-optical recording
JPS61131257A (en) Photomagnetic recording medium
JP2817505B2 (en) Single-plate optical disk for magneto-optical recording and its recording / reproducing method
JPS6332748A (en) Information recording medium
JPH0462140B2 (en)
JPH04318346A (en) Magneto-optical recording medium
JPS6332753A (en) Information recording method
JP2636694B2 (en) Recording / reproducing method and recording / reproducing apparatus for magneto-optical recording medium
JPS61202352A (en) Photomagnetic recording medium
JPS62121944A (en) Optical recording medium
JPS5952442A (en) Photomagnetic recording medium
JPH0660458A (en) Single plate optical disk and recording and reproducing method for the same