JPS5952442A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS5952442A
JPS5952442A JP16042182A JP16042182A JPS5952442A JP S5952442 A JPS5952442 A JP S5952442A JP 16042182 A JP16042182 A JP 16042182A JP 16042182 A JP16042182 A JP 16042182A JP S5952442 A JPS5952442 A JP S5952442A
Authority
JP
Japan
Prior art keywords
recording medium
layer
light
recording
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16042182A
Other languages
Japanese (ja)
Inventor
Fujio Tanaka
今村修武
Osatake Imamura
長尾康之
Yasuyuki Nagao
田中富士雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP16042182A priority Critical patent/JPS5952442A/en
Publication of JPS5952442A publication Critical patent/JPS5952442A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Abstract

PURPOSE:To obtain a stable medium small in recording optical power, and high in S/N ratio of regenerated output light, by limiting the thickness of each layer of a photomagnetic recording medium having a vertical axis of eacy magnetization formed by successively laminating a recording medium layer, a dielectric layer, and a reflective layer on a substrate. CONSTITUTION:In the figure, the substrate 1 is made of glass, the recording medium layer 2 is made of TbFe, the dielectric layer 3 is made of SiO, and the reflective layer 4 is made of gold. As an incident light source, an He-Ne laser having 632.8nm wavelength is used. To reduce recording light power to <=1.6mW, a 20-40nm film thickness is suitable. The min. thickness value of the reflective film 4 necessary for reflecting the total quantity of light is 40nm. The relationship between the film thickness d3 and the wavelength lambda of the light emitted from the used light source is shown by the following equation: ds=2,500Xlambda/ 632.8(nm).

Description

【発明の詳細な説明】 本発明は光磁気メモリー、磁気記録表示素子などに用い
られる光磁気記録媒体に関するもので、具体的には膜面
と垂直な方向に磁化容易方向を有し、円形あるいは任意
の形状の反転磁区を作ることにより情報を記録すること
が出来、磁気カー効果などの磁気光学効果を利用して、
読み出すことのできる磁性薄膜記録媒体に関するもので
ある。
Detailed Description of the Invention The present invention relates to a magneto-optical recording medium used in a magneto-optical memory, a magnetic recording display element, etc. Specifically, the present invention relates to a magneto-optical recording medium that has an easy magnetization direction perpendicular to the film surface, and has a circular or Information can be recorded by creating reversed magnetic domains of arbitrary shapes, and by using magneto-optical effects such as the magnetic Kerr effect,
The present invention relates to a readable magnetic thin film recording medium.

磁化容易軸が膜面と垂直な方向にある強磁性薄膜では、
S極あるいはN極に一様に磁化された膜面内の一様磁化
極性と逆向きの磁極をもつ小さな反転磁区を作ることが
できる。この反転磁区の有無をrlJ、ro」に対応さ
せれば、このような強磁性薄膜を高密度の磁気記録媒体
として用いることができる。このような強磁性薄膜のう
ち、室温にて大きな保磁力を有し、かつキューリ一点又
は磁気的補償温度が比較的室温に近い薄膜は、キューリ
一点又は磁気的補償温度を利用して光ビームによシ、任
意の位置に反転磁区を作ることによって情報を記録させ
ることができるため、一般にビーム・アトレザプルファ
イルとして用いられている。
In a ferromagnetic thin film whose axis of easy magnetization is perpendicular to the film surface,
It is possible to create a small reversal magnetic domain having a uniform magnetization polarity in the plane of the film that is uniformly magnetized to the S pole or the N pole and the magnetic pole in the opposite direction. If the presence or absence of this reversed magnetic domain corresponds to rlJ,ro, such a ferromagnetic thin film can be used as a high-density magnetic recording medium. Among such ferromagnetic thin films, thin films that have a large coercive force at room temperature and have a single Curie point or magnetic compensation temperature relatively close to room temperature can be used to direct light beams using the single Curie point or magnetic compensation temperature. Since it is possible to record information by creating reversed magnetic domains at arbitrary positions, it is generally used as a beam atrezaple file.

従来、膜面と垂直な方向に磁化容易軸を有し、かつビー
ム・アトレザプルファイルとして使用可能な強磁性薄膜
としては、MnB1に代表される′多結晶金属薄膜、G
d−Co 、 Gd −Fe 、 Tb −Fe 、 
Dy−Fe等の非晶質金属薄膜、GIGに代表される化
合物単結晶薄膜があるが、それぞれ以下に述べるような
利点及び欠点を有している。先ず、MnB1に代表され
るキューリ一点を利用して書き込みを行なう多結晶性金
属薄膜は室温で数KOeの大きな保磁力を有している点
では磁気記録媒体として優れているが、キューリ一点が
高い(MnBiではTc−360℃)ために書き込みに
大きなエネルギーを必要とする欠点がある。さらに、多
結晶体であるため化学量論的な組成の薄膜を作製する必
要があり、薄膜の作製が技術的に難しいという欠点もあ
る。また、Gd −Co 、 Gd−Feの磁気的補償
点を利用して書き込みを行なう非晶質金属薄膜は、非晶
質であるため任意の基板上に作製可能であり、多少の不
純物を加えることによっである程度磁気的補償温度を任
意に制御できる等の利点を有するが、室温における保磁
力が小さく(300〜5000e)、記録された情報が
不安定であるという欠点を有する。しかも、この程度の
保磁力を有する薄膜を作製するためにも組成をほぼ1 
atom%以内に制御する必要があり、薄膜作製面でも
容易でない。さらに、GIGに代表される化合物単結晶
薄膜は他のものにくらべ非常にコスト高になるという大
きな欠点を有する。
Conventionally, ferromagnetic thin films that have an axis of easy magnetization in the direction perpendicular to the film surface and can be used as beam attracting files include polycrystalline metal thin films represented by MnB1, G
d-Co, Gd-Fe, Tb-Fe,
There are amorphous metal thin films such as Dy-Fe and compound single crystal thin films typified by GIG, each of which has advantages and disadvantages as described below. First, polycrystalline metal thin films such as MnB1, which perform writing using a single Curie point, are excellent as magnetic recording media in that they have a large coercive force of several KOe at room temperature, but the Curie point is high. (Tc - 360° C. for MnBi) Therefore, there is a drawback that a large amount of energy is required for writing. Furthermore, since it is a polycrystalline material, it is necessary to produce a thin film with a stoichiometric composition, and it also has the disadvantage that it is technically difficult to produce a thin film. Furthermore, since the amorphous metal thin film that performs writing using the magnetic compensation points of Gd-Co and Gd-Fe is amorphous, it can be fabricated on any substrate, and it is possible to fabricate it on any substrate without adding some impurities. Although it has the advantage that the magnetic compensation temperature can be arbitrarily controlled to some extent, it has the disadvantage that the coercive force at room temperature is small (300 to 5000 e) and the recorded information is unstable. Moreover, in order to produce a thin film with this level of coercive force, the composition must be adjusted to approximately 1.
It is necessary to control the amount within atom%, which is not easy in terms of thin film production. Furthermore, compound single crystal thin films typified by GIG have a major drawback in that they are extremely expensive compared to other films.

又、これ等の欠点を除去した新しい磁性薄膜記録媒体と
して提案されだis atom%〜30 atom%の
Tb又はDyを含むTbFeやDyFeの非晶質合金薄
膜は、次のような利点を有している。
In addition, an amorphous alloy thin film of TbFe or DyFe containing Tb or Dy in an atom% to 30 atom% has been proposed as a new magnetic thin film recording medium that eliminates these drawbacks, and has the following advantages. ing.

■ 膜面と垂直な方向に磁化容易軸を有し、室温におい
て数KOeの大きな保磁力を有するだめ、高密度の情報
記録が可能で、記録された情報が極めて安定である。
(2) Since it has an axis of easy magnetization perpendicular to the film surface and a large coercive force of several KOe at room temperature, high-density information recording is possible and the recorded information is extremely stable.

■ 保磁力が大きく所望の形状の磁区を書き込むことが
可能である。
■ It has a large coercive force and can write magnetic domains in a desired shape.

■ 幅広い組成範囲にわたって大きな保磁力を有してお
り、記録媒体として優れた特性を持っている組成範囲も
また広いため、組成の厳しく限定された薄膜を作る必要
がなく非常に容易に作製でき歩留まりも良い。
■ It has a large coercive force over a wide composition range, and has excellent properties as a recording medium.The composition range is also wide, so there is no need to make a thin film with a strictly limited composition, and it can be produced very easily and has a high yield. Also good.

■ キューリ一点がTbFeでは120℃、DyFeで
は60℃と低いため、キューリ一点を利用して熱書き込
みを行なう場合には非常傾小さなエネルギーにより書き
込みを行なうことができる。
(2) Since the single Curie point is as low as 120° C. for TbFe and 60° C. for DyFe, when performing thermal writing using a single Curie point, writing can be performed with extremely small energy.

しかしながら、このTbFe 、 DyFe等の非晶質
合金薄膜は次の様な欠点がある。すなわち、キューリ一
点が低いと確かに小さなエネルギーで書き込みは出来る
が、光で読、み出す時のSiNは逆に悪くなる。図1に
は、非晶質合金薄膜の光再生時の光再生出力(S)及び
信号対雑音比(SiN)を照射レーザパワー(IO)の
関数として示しであるが、記録媒体として良い特性を有
するTbFe 、 DyFeは光再生の点では記録媒体
として良くないGdFeよシも悪いことがわかる。これ
はこの記録媒体を光磁気メモリ表して考える場合には非
常に大きな欠点となる。
However, this amorphous alloy thin film such as TbFe or DyFe has the following drawbacks. That is, if the Curie point is low, it is true that writing can be done with a small amount of energy, but SiN becomes worse when read and read with light. Figure 1 shows the optical reproduction output (S) and signal-to-noise ratio (SiN) during optical reproduction of an amorphous alloy thin film as a function of the irradiated laser power (IO). It can be seen that TbFe and DyFe are not good as recording media in terms of optical reproduction, and GdFe is also bad. This is a very serious drawback when considering this recording medium as a magneto-optical memory.

以上述べた拐料の特質から分るように、非晶質合金薄膜
は光再生時の問題さえ解決すれば光磁気記録媒体として
最も有望であるといえる。
As can be seen from the above-mentioned properties of the amorphous alloy, it can be said that amorphous alloy thin films are the most promising as magneto-optical recording media if the problems during optical reproduction can be solved.

このような観点から、非晶質合金薄膜の上記欠点を解決
しようとする試みがなされている。その一つに、磁性薄
膜の裏面に反射膜を設け、見かけ上のカー回転角を増大
させ、再生光のSiNを改善しようとするものがある。
From this point of view, attempts have been made to solve the above-mentioned drawbacks of amorphous alloy thin films. One of them is to provide a reflective film on the back surface of the magnetic thin film to increase the apparent Kerr rotation angle, thereby improving the SiN quality of the reproduction light.

この従来例を図2に示す。図において、lはガラスやプ
ラスチックなどの基板、2はTbFe 、 GdFe 
This conventional example is shown in FIG. In the figure, l is a substrate made of glass or plastic, and 2 is TbFe, GdFe.
.

GdTbFe 、 TbCoFeなどの記録媒体層、3
はSiOなどの誘電体層、4はAu 、 Ag 、 A
1. 、 Cuなとの反射膜である。この構造の作用動
作は寸だ理論的解明はなされていないが、一応次のよう
に説明されている。基板1側からの入射光5の経路は図
に示すように大別して2つに分れる。1つは、記録媒体
層2の表面付近で反射される光6aであり、他方は記録
媒体層2を通過し、記録媒体層2内または誘電体層3内
もしくは両層2,3内を多重反射する光6bである。い
ま、入射光5が記録光であるとすると、誘電体層3は記
録媒体層2に尚えられる熱が金属からなる反射膜4へ放
熱するのを防ILするため熱緩衝層として作用する。ま
だ、記録媒体層2と誘電体層3内にとじ込められた光6
bのエネルギーは、いわば蓄熱効果をもたらす。この2
つの作用から記録光のパワーを極めて小さくすることが
できる。
Recording medium layer such as GdTbFe or TbCoFe, 3
is a dielectric layer such as SiO, 4 is Au, Ag, A
1. , Cu reflective film. Although the workings of this structure have not been completely theoretically elucidated, it is tentatively explained as follows. The path of the incident light 5 from the substrate 1 side is roughly divided into two as shown in the figure. One is light 6a that is reflected near the surface of recording medium layer 2, and the other is light that passes through recording medium layer 2 and is multiplexed within recording medium layer 2, dielectric layer 3, or both layers 2 and 3. This is the reflected light 6b. Now, assuming that the incident light 5 is recording light, the dielectric layer 3 acts as a thermal buffer layer to prevent the heat contained in the recording medium layer 2 from being radiated to the reflective film 4 made of metal. The light 6 still trapped within the recording medium layer 2 and dielectric layer 3
The energy b brings about a so-called heat storage effect. This 2
Due to these two effects, the power of the recording light can be made extremely small.

また、入射光5が再生光である場合は、光6aは記録媒
体2で生起する磁気カー効果により偏光面の回転を受け
る。−力先6bは記録媒体層2を通過するときファラデ
ー効果により偏光面の回転を受ける。この両方の光6a
、’6bが互いに干渉することによって、出力光6のみ
かけ上のカー回転角が増大し、出力光のS/Nが改善さ
れる。以上の説明から分るように、記録光のパワーおよ
び再生出力光のS/Nの両観点からして各層の厚みがそ
れらの特性を大きく左右する。しかしながら従来、図1
の構成においては膜厚等の好適条件は検討されていない
Further, when the incident light 5 is reproduction light, the light 6a undergoes rotation of the plane of polarization due to the magnetic Kerr effect generated in the recording medium 2. - When the tip 6b passes through the recording medium layer 2, the plane of polarization is rotated due to the Faraday effect. Both of these lights 6a
, '6b interfere with each other, thereby increasing the apparent Kerr rotation angle of the output light 6 and improving the S/N of the output light. As can be seen from the above description, the thickness of each layer greatly influences the characteristics from the viewpoint of both the power of the recording light and the S/N of the reproduction output light. However, conventionally,
In this structure, favorable conditions such as film thickness have not been studied.

本発明は上記の従来技術に鑑みなされたもので、基板上
に記録媒体層と誘電体層と反射膜とを順次配置した垂直
磁化容易軸を有する光磁気記録媒体において、各層厚の
好適条件を有する光磁気記録媒体を提供するものである
The present invention has been made in view of the above-mentioned prior art, and is based on a magneto-optical recording medium having a perpendicular easy axis of magnetization in which a recording medium layer, a dielectric layer, and a reflective film are sequentially arranged on a substrate. The present invention provides a magneto-optical recording medium having the following.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

図3に本発明である好適条件を求めるだめのモデルを示
す。図において、基板1としてはガラス、記録媒体層2
としてけTbFe 、、誘電体層3としてはSiO、反
射膜4としてはAuを採用し、入射光源としては、波長
(λ)が6328λであるHe−Neレーザを用いるこ
ととする。なお図中、反射膜4が無い時の記録パワーを
PO1カー回転角をθKOz反射率をRO%を 反射膜4がある時の記録パワーAP1、カー回転角をθ
KI S反射率をR1で示しである。
FIG. 3 shows a model for finding suitable conditions according to the present invention. In the figure, the substrate 1 is glass, and the recording medium layer 2 is
SiO is used as the dielectric layer 3, Au is used as the reflective film 4, and a He-Ne laser having a wavelength (λ) of 6328λ is used as the incident light source. In the figure, the recording power when there is no reflective film 4 is PO1, the Kerr rotation angle is θKOz, the reflectance is RO%, the recording power when there is reflective film 4 is AP1, the Kerr rotation angle is θ
The KIS reflectance is indicated by R1.

先ず記録媒体層2の厚みd2について、記録パワーとの
関係を求めると図4に示す特性が得られる。
First, when the relationship between the thickness d2 of the recording medium layer 2 and the recording power is determined, the characteristics shown in FIG. 4 are obtained.

図は記録光照射時間を100μsec、、外部磁界を2
000e1記録媒体層2のTb組成を21〜25%とし
、横軸は層厚d2(A)、縦軸は記録光パワー(mW)
を示している。この図から分るように記録光パワー16
mW以下で記録するためには層厚は200〜400Aが
適当であるので、図3のモデルにおいてはd2−22O
Aとした。1だ、反射膜4の膜厚d4は、光を全反射す
るために必要な最低値400Aとした。
The figure shows a recording light irradiation time of 100 μsec and an external magnetic field of 2
000e1 The Tb composition of the recording medium layer 2 is 21 to 25%, the horizontal axis is the layer thickness d2 (A), and the vertical axis is the recording optical power (mW).
It shows. As you can see from this figure, the recording light power is 16
In order to record at mW or less, the appropriate layer thickness is 200 to 400A, so in the model of Fig. 3, d2-22O
I gave it an A. 1, the film thickness d4 of the reflective film 4 was set to the minimum value of 400 A necessary for total reflection of light.

以上の条件のもとに、誘電体層3の厚みdaを変化させ
て、記録光パワーの比PI/PO%反射率の比R1/ 
RO%カー回転軸角の比θに+ /θ。。の関係を求め
たのが図5である。図は、記録パワーの比Pl/PGと
反射率の比Rt/Roは同じような変化を示し、反射膜
が低いところで低パワーで記録できることを示している
。まだカー回転角は反射率が低いところで大きくなるこ
とを示している。従って、反射率が小さくなるような誘
電体層の厚みdaを選んでやれば、記録パワーが小さく
てしかも再生時のカー回転角が大きくなるという利点が
ある。図の例では2500 A付近が最適であり、実用
的に好適の範囲は約2500;、±15%であると言え
る。
Under the above conditions, by changing the thickness da of the dielectric layer 3, the recording light power ratio PI/PO%, the reflectance ratio R1/
RO% car rotation axis angle ratio θ + /θ. . Figure 5 shows the relationship. The figure shows that the recording power ratio Pl/PG and the reflectance ratio Rt/Ro show similar changes, indicating that recording can be performed with low power when the reflective film is low. This shows that the Kerr rotation angle increases where the reflectance is low. Therefore, if the thickness da of the dielectric layer is selected such that the reflectance is small, there is an advantage that the recording power is small and the Kerr rotation angle during reproduction is large. In the example shown in the figure, around 2500 A is optimal, and it can be said that the practical range is about 2500, ±15%.

なお、層厚d3の使用する光源の波長(λ)に対する関
係は実験の結果、図5に示した結果を波長の比で補正す
ればよいことが判明した。この関係を次式に示す。
As a result of experiments, it has been found that the relationship between the layer thickness d3 and the wavelength (λ) of the light source used can be determined by correcting the results shown in FIG. 5 using the wavelength ratio. This relationship is shown in the following equation.

da = 2500 X    (A) 、    −
−−−(1)328 図6(写真模写)は本発明の効果を示すものであり、直
径200 amのディスク基板上にTbFe 、 Si
n。
da = 2500 x (A), -
--- (1) 328 Figure 6 (photocopy) shows the effect of the present invention, in which TbFe, Si
n.

Auをそれぞれ22oA 、 2500A 、 4oo
A蒸着したものを用いて、ディスク回転数1350 r
pm z記録速度IMビット/秒、記録光パワー8mW
、外部磁界2000eで記録しだビット列を再生光パワ
ー2.5rnWで読出した結果を示すものである。左半
分がAu反射膜が存在する所であり良好な濃淡比が得ら
れている。スペクトラムアナライザによってC/Nを測
定した結果、帯域30 KI−1zにセいて45dB以
上の値を得た。
Au at 22oA, 2500A, 4ooA respectively
Disc rotation speed 1350 r using A-deposited
pm z recording speed IM bit/s, recording optical power 8mW
, which shows the results of reading out a bit string recorded with an external magnetic field of 2000e and with a reproduction light power of 2.5 rnW. The left half is where the Au reflective film is present, and a good shade ratio is obtained. As a result of measuring the C/N with a spectrum analyzer, a value of 45 dB or more was obtained in the band 30 KI-1z.

以上説明したように、本発明によれば、記録媒体層の厚
みを200〜400A、反射膜の、厚みを40OA以上
とし、誘電体層の厚みを式(1)に」:って選択すれば
、記録光パワーが小さく、再生出力光のS/Nが大きく
安定な光磁気記録媒体を得ることができる。
As explained above, according to the present invention, if the thickness of the recording medium layer is 200 to 400A, the thickness of the reflective film is 40OA or more, and the thickness of the dielectric layer is selected according to formula (1): Therefore, it is possible to obtain a stable magneto-optical recording medium in which the power of the recording light is small and the S/N of the reproduction output light is large.

なお、本発明は記録媒体層としてGdFe 、 GdT
bFe 。
Note that the present invention uses GdFe, GdT as the recording medium layer.
bFe.

TbCoFeなど、誘電体層とノしてMgFeなど反射
膜としてAg 、 At、 Cuなどを採用することが
できる。
Ag, At, Cu, etc. can be used for the dielectric layer, such as TbCoFe, and for the reflective film, such as MgFe.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は非晶質合金薄膜の光再生特性を示す特性図、図2
は従来の光磁気記録媒体の例を示す縦断面図、図3は本
発明の実施例を示す縦断面図、図4及び図5は本発明の
実施例の特性を示す特性図、図6は本発明の詳細な説明
するだめの模写図である。 1・・・基板、2・・・記録媒体層、3・・・誘電体層
、4・・・反射膜、5・・・入射光、6.6a、6b・
・・出射光。 特許出願人  国際電信電話株式会社 代理人 大塚 学 外1名 図    1 図  2 図   3 ]′A 242 図   4 図   6
Figure 1 is a characteristic diagram showing the optical reproduction characteristics of an amorphous alloy thin film, Figure 2
3 is a vertical cross-sectional view showing an example of a conventional magneto-optical recording medium, FIG. 3 is a vertical cross-sectional view showing an embodiment of the present invention, FIGS. 4 and 5 are characteristic diagrams showing characteristics of the embodiment of the present invention, and FIG. FIG. 3 is a schematic diagram for explaining the present invention in detail; DESCRIPTION OF SYMBOLS 1... Substrate, 2... Recording medium layer, 3... Dielectric layer, 4... Reflective film, 5... Incident light, 6.6a, 6b.
... Outgoing light. Patent applicant International Telegraph and Telephone Co., Ltd. agent Otsuka 1 person from outside the university Figure 1 Figure 2 Figure 3]'A 242 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】 基板上に記録媒体層と誘電体層と反射膜とを順次配置し
た垂直磁化容易軸を有する光磁気記録媒体において、前
記記録媒体層が200〜400大の範囲内の膜厚を有し
、前記反射膜が40OA以上の膜厚を有し、かつ使用す
る光源の波長をλとするとき前記誘電体層の膜厚dが λ  O d = 2500 X−話扇(A)±15%の範囲にあ
ることを特徴とする光磁気記録媒体。
[Scope of Claims] A magneto-optical recording medium having a perpendicular easy axis of magnetization, in which a recording medium layer, a dielectric layer, and a reflective film are sequentially arranged on a substrate, wherein the recording medium layer has a film size within a range of 200 to 400. The reflective film has a thickness of 40 OA or more, and the thickness d of the dielectric layer is λ O d = 2500 when the wavelength of the light source used is λ. A magneto-optical recording medium characterized in that it is within a range of ±15%.
JP16042182A 1982-09-14 1982-09-14 Photomagnetic recording medium Pending JPS5952442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16042182A JPS5952442A (en) 1982-09-14 1982-09-14 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16042182A JPS5952442A (en) 1982-09-14 1982-09-14 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5952442A true JPS5952442A (en) 1984-03-27

Family

ID=15714557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16042182A Pending JPS5952442A (en) 1982-09-14 1982-09-14 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5952442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105742A (en) * 1989-09-20 1991-05-02 Fujitsu Ltd Magneto-optical recording medium
US5143797A (en) * 1988-08-30 1992-09-01 Mitsubishi Denki Kabushiki Kaisha Magneto-optic recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120506A (en) * 1977-03-28 1978-10-21 Rca Corp Information recorder
JPS56156943A (en) * 1980-05-07 1981-12-03 Matsushita Electric Ind Co Ltd Optical disk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120506A (en) * 1977-03-28 1978-10-21 Rca Corp Information recorder
JPS56156943A (en) * 1980-05-07 1981-12-03 Matsushita Electric Ind Co Ltd Optical disk

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143797A (en) * 1988-08-30 1992-09-01 Mitsubishi Denki Kabushiki Kaisha Magneto-optic recording medium
JPH03105742A (en) * 1989-09-20 1991-05-02 Fujitsu Ltd Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
JPH0123927B2 (en)
JPS6227459B2 (en)
JP2579631B2 (en) Magneto-optical recording method
JPS60117436A (en) Magnetooptic storage element
JPS61255546A (en) Photomagnetic recording medium
JPH036582B2 (en)
JPS5952442A (en) Photomagnetic recording medium
KR950003184B1 (en) Magneto-optical recording medium
JPH0782672B2 (en) Magnetic thin film recording medium
JP2712829B2 (en) Magneto-optical recording medium
JP3162168B2 (en) Magneto-optical recording medium
JPS5873030A (en) Optical magnetic recording medium
JPH0465523B2 (en)
JP3666057B2 (en) Magneto-optical recording / reproducing method and magneto-optical recording medium used therefor
JP2893089B2 (en) Magneto-optical recording method
JPS6332753A (en) Information recording method
JP3381960B2 (en) Magneto-optical recording medium
JPH03230339A (en) Magneto-optical recording medium
JPS6148149A (en) Thermooptical magnetic recording medium
JPS60125948A (en) Thermomagnetic recording medium
JPH04364246A (en) Magneto-optical recording medium and production thereof
JPH02128342A (en) Magneto-optical recording medium and information recording method using the same
JPH02101658A (en) Magneto-optical record recording system
JPH0481269B2 (en)
JPS58222455A (en) Photoelectromagnetic recording medium