JPS60124647A - Low-radiation epoxy resin composition - Google Patents

Low-radiation epoxy resin composition

Info

Publication number
JPS60124647A
JPS60124647A JP58231415A JP23141583A JPS60124647A JP S60124647 A JPS60124647 A JP S60124647A JP 58231415 A JP58231415 A JP 58231415A JP 23141583 A JP23141583 A JP 23141583A JP S60124647 A JPS60124647 A JP S60124647A
Authority
JP
Japan
Prior art keywords
epoxy resin
less
flame
thermal shock
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58231415A
Other languages
Japanese (ja)
Inventor
Shinichi Tanimoto
谷本 信一
Shigeru Koshibe
茂 越部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP58231415A priority Critical patent/JPS60124647A/en
Publication of JPS60124647A publication Critical patent/JPS60124647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:The titled compositions exhibiting extremely low radiation of alpha-rays, etc., and excellent thermal shock resistance, made by incorporating spherical fillers containing very small amounts of radioactive impurities into epoxy resins. CONSTITUTION:The titled compounds made by incorporating a spherical filler containing radioactive impurities of 0.005CPH/cm<2> or less in terms of alpha-ray dose (e.g. silica, alumina, calcium carbonate, mica, clay, or glass) and a flame-retardant of 0.10CPH/cm<2> or less (e.g. antimony trioxide or boric acid) into an epoxy resin (e.g. a bisphenol-A epoxy resin or a novolak epoxy resin). Especially, a compound containing 50-90wt% high-purity fused silica of high-purity alumina as a spherical filler and 0.5-5wt% Sb2O3 as a flame-retardant is useful as a molding material for VLSI.

Description

【発明の詳細な説明】 本発明は、α線等の放射線発生の極めて少なく、且つ耐
熱衝撃性にすぐれたエポキシ樹脂組成物に係わシ、その
特徴は放射線不純物の含有量が極めて少なく、且つ球状
の充填材及び難燃剤を使用するところにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an epoxy resin composition that emits extremely little radiation such as alpha rays and has excellent thermal shock resistance. This involves the use of spherical fillers and flame retardants.

最近コンピュータの汎用化には目を見張るものがある。Recently, the general-purpose use of computers has been remarkable.

特にパソコンやマイコンといった軽便で安価な小型コン
ピュータは小学生から老人まで幅広く使用されるように
なってきた。又オフィスコンピュータも小型化や低コス
ト化の動きは著しい。
In particular, small, convenient and inexpensive computers such as personal computers and microcomputers have come to be widely used by everyone from elementary school students to the elderly. Furthermore, office computers are also becoming more compact and lower in cost.

これら小型コンピュータは機能上からは数年前の大型コ
ンピータに匹適するが、価格はイ0〜鴇と逆に下がって
いる。こういった流れを支えてきているのは一半導体の
低コスト化、即ちコンピュータ関係企業の合理化努力で
ある。この半導体コストダウンの要因の中で見逃すこと
ができないものの一つにパッケージのプラスチック化が
ある。
These small computers are functionally comparable to the large computers of several years ago, but their prices have fallen dramatically. What has supported this trend is the cost reduction of semiconductors, in other words the rationalization efforts of computer-related companies. One of the factors that cannot be overlooked in reducing semiconductor costs is the shift to plastic packaging.

昔からコンピュータは長期に渡って故障しないこと、即
ち信頼性が要求されている。このため昔のパッケージは
高価なハーメチックかセラミックのみであった。しかし
、プラスチックパッケージにも信頼性の非常に高いもの
が開発され急激に切換っている。現在、民生用のICや
トランジスターの大部分及び産業用のIC,LSIの一
部が安価なプラスチックパッケージとなっている。動き
としては信頼性要求レベルの比較的低い民生用よりパッ
ケージのプラスチック化が進み高信頼性を要求される産
業用もプラスチック化がかなシ進んできている状態にあ
る。今後も産業用半導体のプラスチックパッケージ化は
ますます進んでいくと予想されるが、現時点で問題とし
て表面化してきたものの一つはソフト毛う一対策である
。半導体が高集積化多機能化する例えはメモリー用途で
は、メそリー容量がIK→4に→16に→64K・・・
・・・・・・と進むに従って放射線(α線)による誤動
作=ソフトエラーを受けやすくなる。そこでパッケージ
ング材も放射線発生量の少々いものにしなければならな
い。
Since ancient times, computers have been required to be reliable and not break down over a long period of time. For this reason, older packages were limited to expensive hermetic or ceramic packaging. However, extremely reliable plastic packages have been developed and are rapidly being replaced. Currently, most consumer ICs and transistors and some industrial ICs and LSIs are packaged in inexpensive plastic packages. In terms of trends, the use of plastic packaging is progressing more than for consumer products, which require a relatively low level of reliability, and the use of plastic packaging is also rapidly progressing for industrial applications, which require high reliability. It is expected that the use of plastic packaging for industrial semiconductors will continue to advance, but one of the issues that has come to the fore at the moment is countermeasures against soft lint. As an example of semiconductors becoming highly integrated and multifunctional, in memory applications, memory capacity increases from IK to 4 to 16 to 64K...
As the process progresses, it becomes more susceptible to malfunctions (soft errors) caused by radiation (α rays). Therefore, packaging materials must also be made of materials that emit less radiation.

既に64にはプラスチック化の過渡期であj? 256
 Kプラスチックパック−2品も発表されようとしてい
る。これらLSI・超LSIで誤動作が問題となる放射
線量を放射性不純物量(ウラン・トリウム等)及びα線
量で示すと次のようになる。
By 1964, we were already in the transition period of plasticization. 256
K Plastic Pack - 2 products are also about to be announced. The amount of radiation that causes malfunctions in these LSIs and VLSIs is expressed in terms of the amount of radioactive impurities (uranium, thorium, etc.) and the amount of α-rays as follows.

このための対策としては、昭和58年特許願第9484
7号に記載されているように、エポキシ樹脂に放射性不
純物(ウラン・トリウム等)がα線量で0.005 C
PH/ffl以下の充填材及び0.10 CPH/C#
!以下の難燃剤を配合してなることを特徴とするエポキ
シ樹脂組成物が、産業上極めて有用である。
As a countermeasure for this, 1984 patent application No. 9484
As stated in No. 7, epoxy resin contains radioactive impurities (uranium, thorium, etc.) at an alpha dose of 0.005 C.
Filler below PH/ffl and 0.10 CPH/C#
! Epoxy resin compositions containing the following flame retardants are extremely useful industrially.

64に、 256になどいわゆる超LSIにおける今一
つの問題点は耐熱衝撃性である。超LSIにおいては、
半導体の高集積化に伴ない半導体チップの面積を大きく
せざるを得ない。したがって、メモリー容量がIK→4
に→16に→64K・曲間と進むに従って、パッケージ
寸法に占めるチップ面積の比率が大きくなシ、同じパッ
ケージング材で封止した場合には、耐熱衝撃性が悪くな
る傾向となる。とこに言う耐熱衝撃性とは、温度サイク
ル試験を実施した場合に、パッケージあるいは半導体チ
ップにクラックが生じるまでのサイクル数で評価する事
が出来る。
Another problem with so-called VLSIs such as 64 and 256 is thermal shock resistance. In VLSI,
As semiconductors become more highly integrated, the area of semiconductor chips has to be increased. Therefore, the memory capacity is IK → 4
As the chip size increases from 16 to 64K, the ratio of the chip area to the package size increases, and when sealed with the same packaging material, the thermal shock resistance tends to deteriorate. Thermal shock resistance mentioned here can be evaluated by the number of cycles until cracks occur in the package or semiconductor chip when a temperature cycle test is performed.

パッケージング材の耐熱衝撃性を向上する方法としては
、可撓性付与成分を添加してパッケージング材を割れに
くくする方法、レジンを変性して可撓性を付与する方法
、パッケージング材の熱膨張係数を小さくして熱衝撃時
の歪みを小さくする方法などが有効であるが、他の特性
、すなわち成形性、耐湿性との両立といった点で、工業
性に乏しい。
Methods for improving the thermal shock resistance of packaging materials include adding flexibility-imparting ingredients to make the packaging material less likely to break, modifying resin to make it more flexible, and increasing the thermal shock resistance of packaging materials. Although methods such as reducing the coefficient of expansion to reduce distortion during thermal shock are effective, they are not industrially viable in terms of compatibility with other properties, ie, moldability and moisture resistance.

本発明は、これら他の特性を損う事なく、耐熱衝撃性に
優れかつ低放射線性を満足させるエポキシ樹脂組成物を
提供する産業上極めて有益なものである。
The present invention is extremely useful in industry because it provides an epoxy resin composition that has excellent thermal shock resistance and satisfies low radiation properties without impairing these other properties.

又、エポキシ樹脂とはエポキシ基を有するもの全般をい
い、例えば、ビスフェノールA型エポキシ樹脂(シェル
828.1001等)、ノボラック型エポキシ樹脂(日
本化薬EPPN −201、大日本インキ化学工業エピ
クロンN −673等)等を挙げることができる。
In addition, epoxy resin refers to all substances having an epoxy group, such as bisphenol A type epoxy resin (Shell 828.1001, etc.), novolac type epoxy resin (Nippon Kayaku EPPN-201, Dainippon Ink Chemical Industry Epicron N- 673 etc.).

硬化剤としては、エポキシ樹脂と反応するも−の全般を
いい、例えば、フェノールノボラック類(日本化薬PN
−80、OCN −100等)、酸無水物類(TCPA
、 HHPA等)、アミン類(DDA 、 DDM )
等をいう。
The curing agent refers to all materials that react with epoxy resins, such as phenol novolacs (Nippon Kayaku PN).
-80, OCN -100, etc.), acid anhydrides (TCPA
, HHPA, etc.), amines (DDA, DDM)
etc.

充填材としては、例えばシリカ、アルミナ1.炭酸カル
シウム、マイカ、クレー、ガラス、アスベスト、水酸化
アルミニウム等を挙げることができる。
Examples of fillers include silica and alumina. Examples include calcium carbonate, mica, clay, glass, asbestos, and aluminum hydroxide.

特に次表のような特徴をもつ高純度溶融・シリカ:高純
度アルミナが本発明の目的を達成するのに有用である。
In particular, high-purity fused silica:high-purity alumina having the characteristics shown in the following table is useful in achieving the objectives of the present invention.

難燃剤としては、例えばアンチモン類(三酸化アンチモ
ン・四・三酸化アンチモン)、ホウ素化金物(ホウ酸・
ホウ酸亜鉛)を挙げることができる。中でも、次表のよ
うな特徴をもつ高純度三酸化アンチモンが特に望ましい
難燃剤である。
Examples of flame retardants include antimony (antimony trioxide, antimony tetraoxide, antimony trioxide), boronated metals (boric acid, antimony trioxide),
Zinc borate). Among these, high-purity antimony trioxide, which has the characteristics shown in the table below, is a particularly desirable flame retardant.

又、無機質充填材及び無機質難燃剤の使用量としては各
々50〜90重量%、0.5〜5重量−の範囲とするの
が望ましい。これら重量範囲外で拡流動性や熱膨張特性
や耐熱性やインサート腐食性等で欠点を示す場合もある
Further, the amounts of the inorganic filler and the inorganic flame retardant used are preferably in the range of 50 to 90% by weight and 0.5 to 5% by weight, respectively. Outside these weight ranges, there may be defects in flowability, thermal expansion characteristics, heat resistance, insert corrosion, etc.

特に、半導体封止用の成形材料用途では充填材として無
機質充填材の中でも溶融シリカを50〜90重量−1又
難燃剤として無機質充填材の中でも三酸化アンチモンを
α5〜5重量%使用するのが好ましい。
In particular, in the application of molding materials for semiconductor encapsulation, among inorganic fillers, fused silica is used as a filler at 50 to 90% by weight, and as a flame retardant, antimony trioxide is used at α5 to 5% by weight among inorganic fillers. preferable.

又、エポキシ樹脂としては、オルトクレゾールノボラッ
ク型エポキシ樹脂特に軟化点が80℃以下、エポキシ当
量が220以下、全塩素量が1゜o o ppm以下、
プレッシャークツカー抽出水の電気伝導度が500μf
p/crIL以下のものが好ましく、硬化剤としてはフ
ェノールノボラック特に軟化点が105℃以下、プレッ
シャークツカー抽出水の電気伝導度が100μ?/ o
r(以下且っ蟻酸量が50ppm以下のものが好ましb
o (注) 全塩素量:ナトリウムアマルガム法によって測定 プレッシャークツカー抽出条件 レジン5fを蒸留水40fで 180℃20hr抽出 以下、本発明の詳細な説明を半導体封止用成形材用での
実施例で説明する。以下に示す使用量は全て重量部であ
シ「部」と略して用いている。
In addition, as the epoxy resin, ortho-cresol novolac type epoxy resins, especially those having a softening point of 80°C or less, an epoxy equivalent of 220 or less, and a total chlorine content of 1°o o ppm or less,
The electrical conductivity of pressure extractor water is 500 μf.
A curing agent of p/crIL or less is preferable, and as a curing agent, a phenol novolac is particularly used, the softening point of which is 105°C or less, and the electrical conductivity of the pressure cutter extracted water is 100μ? /o
r (preferably, the amount of formic acid is 50 ppm or less b)
o (Note) Total chlorine amount: Measured by the sodium amalgam method Pressure Kutskar extraction conditions Resin 5F was extracted with 40F of distilled water at 180°C for 20 hours Below, a detailed explanation of the present invention will be given in Examples for molding materials for semiconductor encapsulation. explain. All amounts shown below are parts by weight and are abbreviated as "parts".

実施例 オルトクレゾールノボラック型エポキシ樹脂(住友化学
ESCN−195XL) 20部、7x/ kノボラッ
ク(日本化系PN−100’) 10部、溶融シリカX
部、三酸化アンチモンy部、シランカップリング剤(チ
ッソEES −M) 0.5部、触媒(ケイ・アイ化成
PP−360> 0.5部、カーボン(三菱化成)0.
5部、離型剤(野田ワックス)0.5部を100℃の加
熱ロールで3分間混合し成形材料を試作した。この時溶
融シリカ及び三酸化アンチモンの種類と量に水準を取シ
第1表のように数種類の成形材料を得た。これら成形材
料の特性、ンフトエラー率及び耐熱衝撃性を調べた結果
、第1表のように超LSI用の成形材料としては充填材
と難燃剤の両者を放射性不純物の少ないもの各々放射性
不純物がα線量で0.005 CPH/ cdi以下と
0.10 CPH/−以下のものを使用することが必須
条件であシ、かつ耐熱衝撃にすぐれた材料としては、球
状の充填材を使用する事が極めて有効であることが判る
Examples Ortho-cresol novolac type epoxy resin (Sumitomo Chemical ESCN-195XL) 20 parts, 7x/k novolak (Nipponka system PN-100') 10 parts, fused silica
part, antimony trioxide y part, silane coupling agent (Chisso EES-M) 0.5 part, catalyst (K-I Kasei PP-360> 0.5 part, carbon (Mitsubishi Kasei) 0.
A molding material was prepared by mixing 5 parts of mold release agent (Noda wax) and 0.5 parts of a mold release agent (Noda wax) for 3 minutes using a heated roll at 100°C. At this time, several types of molding materials as shown in Table 1 were obtained by adjusting the types and amounts of fused silica and antimony trioxide. As a result of investigating the characteristics, foot error rate, and thermal shock resistance of these molding materials, as shown in Table 1, we recommend molding materials for VLSIs that contain both filler and flame retardant, and those that contain less radioactive impurities. It is essential to use 0.005 CPH/cdi or less and 0.10 CPH/- or less, and it is extremely effective to use a spherical filler as a material with excellent thermal shock resistance. It turns out that.

又、成形材料としては充填材量を50〜90重量%難燃
剤量を0.5〜5重量%とする仁とが好ましいことが判
った。
It has also been found that the molding material preferably contains filler in an amount of 50 to 90% by weight and flame retardant in an amount of 0.5 to 5% by weight.

・放射性不純物f:中性子放射化分析で測定・α線i:
α線カウンター(サイエンス・スペクトラム社製)で測
定 ・ソフトエラー率:単位(To / 1000 dev
ice −hr)・高温特性:夏C封止成形品を200
℃500hr保管し、特性変動(リーク不良)が出 るか否かで判定 ・耐熱衝撃性:IC封止成形品を一65℃〜150℃の
温度サイクル試験に供し、パック ージクラックが発生するまでのサ イクル数で判定。
・Radioactive impurity f: Measured by neutron activation analysis ・α ray i:
Measured with an α-ray counter (manufactured by Science Spectrum) Soft error rate: Unit (To / 1000 dev)
ice -hr)・High temperature characteristics: Summer C sealed molded product 200
Stored for 500 hours at ℃, judged by whether or not characteristic changes (leak defects) occur. ・Thermal shock resistance: IC encapsulated molded products are subjected to temperature cycle tests from -65 ℃ to 150 ℃ until package cracks occur. Determined by the number of cycles.

特許出願人 住友ベークライト株式会社patent applicant Sumitomo Bakelite Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] エポキシ樹脂に放射性不純物がα線量で0.Oo 5 
CPU / crl以下の球状充填材及び0.10 C
PH/d以下の難燃剤を配合してなることを特徴とする
低放射線性エポキシ樹脂組成物。
The amount of radioactive impurities in the epoxy resin is 0. Oo 5
Spherical filler below CPU/crl and 0.10 C
A low radiation epoxy resin composition comprising a flame retardant having a pH/d or lower.
JP58231415A 1983-12-09 1983-12-09 Low-radiation epoxy resin composition Pending JPS60124647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58231415A JPS60124647A (en) 1983-12-09 1983-12-09 Low-radiation epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58231415A JPS60124647A (en) 1983-12-09 1983-12-09 Low-radiation epoxy resin composition

Publications (1)

Publication Number Publication Date
JPS60124647A true JPS60124647A (en) 1985-07-03

Family

ID=16923232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58231415A Pending JPS60124647A (en) 1983-12-09 1983-12-09 Low-radiation epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS60124647A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124143A (en) * 1985-11-22 1987-06-05 Mitsubishi Electric Corp Sealing resin for semiconductor
JPH01294765A (en) * 1988-05-20 1989-11-28 Nippon Retsuku Kk Epoxy resin composition
JPH02110958A (en) * 1988-10-19 1990-04-24 Mitsubishi Electric Corp Semiconductor sealing epoxy resin composition
JP2017110146A (en) * 2015-12-18 2017-06-22 ナミックス株式会社 Epoxy resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593241A (en) * 1979-01-05 1980-07-15 Hitachi Ltd Sealing method of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593241A (en) * 1979-01-05 1980-07-15 Hitachi Ltd Sealing method of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124143A (en) * 1985-11-22 1987-06-05 Mitsubishi Electric Corp Sealing resin for semiconductor
JPH01294765A (en) * 1988-05-20 1989-11-28 Nippon Retsuku Kk Epoxy resin composition
JPH02110958A (en) * 1988-10-19 1990-04-24 Mitsubishi Electric Corp Semiconductor sealing epoxy resin composition
JP2017110146A (en) * 2015-12-18 2017-06-22 ナミックス株式会社 Epoxy resin composition
WO2017104298A1 (en) * 2015-12-18 2017-06-22 ナミックス株式会社 Epoxy resin composition
KR20180094882A (en) * 2015-12-18 2018-08-24 나믹스 가부시끼가이샤 Epoxy resin composition

Similar Documents

Publication Publication Date Title
JP3479827B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2853550B2 (en) Epoxy resin composition, method for producing the same, and semiconductor device using the same
JPS60124647A (en) Low-radiation epoxy resin composition
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP2002212397A (en) Epoxy resin composition and semiconductor device
JPS61127748A (en) Epoxy resin composition having low radioactivity
JPS59221352A (en) Epoxy resin composition having low radioactivity
JPS582322A (en) Epoxy resin composition for encapsulation of semiconductor
JPS61190556A (en) Resin composition for sealing of electronic part
JP2002187999A (en) Epoxy resin composition and semiconductor device
JP2558293B2 (en) Semiconductor device
JPH10251486A (en) Resin composition for semiconductor sealing and semiconductor device sealed therewith
JPH0611845B2 (en) Low radiation epoxy resin composition
JPH11293089A (en) Epoxy resin composition and ferroelectrics memory device
JPS61143464A (en) Epoxy resin composition for semiconductor sealing use
JP2001192533A (en) Epoxy resin composition and semiconductor device
JP2621429B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH11181244A (en) Epoxy resin composition and semiconductor device
JPH09100337A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JP3365065B2 (en) Epoxy resin composition for sealing
JPH07188515A (en) Resin composition for semiconductor sealing
JP4660973B2 (en) Epoxy resin composition and semiconductor device
JP2007145929A (en) Epoxy resin composition and semiconductor device
JPH11158351A (en) Epoxy resin composition and semiconductor device
JP2000103836A (en) Epoxy resin composition and semiconductor device sealed therewith