JPH02110958A - Semiconductor sealing epoxy resin composition - Google Patents

Semiconductor sealing epoxy resin composition

Info

Publication number
JPH02110958A
JPH02110958A JP26465288A JP26465288A JPH02110958A JP H02110958 A JPH02110958 A JP H02110958A JP 26465288 A JP26465288 A JP 26465288A JP 26465288 A JP26465288 A JP 26465288A JP H02110958 A JPH02110958 A JP H02110958A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
resin
epoxy
phenolic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26465288A
Other languages
Japanese (ja)
Other versions
JP2621429B2 (en
Inventor
Takamitsu Fujimoto
隆光 藤本
Yuuzou Kanegae
鍾ケ江 裕三
Shuichi Kita
喜多 修市
Atsuko Shinoda
信田 アツコ
Norimoto Moriwaki
森脇 紀元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63264652A priority Critical patent/JP2621429B2/en
Publication of JPH02110958A publication Critical patent/JPH02110958A/en
Application granted granted Critical
Publication of JP2621429B2 publication Critical patent/JP2621429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sealing resin composition which is excellent in heat, moisture, and cold shock resistance when it is set and is prevented from deteriorating in fluidity and other properties even if it is increased in the loads of inorganic filler or modified with silicone compound to decrease in thermal stress by a method wherein the sealing resin composition is made to contain specified epoxy resin, specified phenolic novolak resin, and the like. CONSTITUTION:Semiconductor sealing epoxy resin composition of this design is composed of epoxy resin shown by a chemical formula as noted, phenolic novolak resin whose softening point is 90-130 deg.C, inorganic filler, and a curing agent, where the equivalent weight ratio of an epoxy group of the epoxy resin to a phenolic hydroxyl group of the phenolic novolak resin is set to 1:(0.8-1.2). When the equivalent weight of a phenolic hydroxyl group of the phenolic novolak resin to one equivalent weight of an epoxy group of the epoxy resin is less than 0.8, the above resin composition becomes low in glass transition temperature and decreases in moisture and heat resistance, and when the equivalent weight of a phenolic hydroxyl group of the phenolic novolak resin is larger than 1.2, the phenolic novolak resin is much left as unreacted and the resin composition decreases in moisture and heat resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体封止用エポキシ樹脂組成物に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to an epoxy resin composition for semiconductor encapsulation.

〔従来の技術〕[Conventional technology]

一般にエポキシ樹脂組成物は、電気特性、耐熱性、接着
性、耐湿性等に優れ、かつ低圧成形性を有しており、こ
れらの性質を利用して半導体封止材料、プリント基板材
料、注型材料、接着剤など幅広い分野に使用されている
In general, epoxy resin compositions have excellent electrical properties, heat resistance, adhesion, moisture resistance, etc., and low-pressure moldability.Using these properties, they can be used as semiconductor encapsulation materials, printed circuit board materials, and casting materials. It is used in a wide range of fields including materials and adhesives.

なかでも、例えば特開昭63−77930号公報に示さ
れているように、ノボラック型エポキシ樹脂およびフェ
ノールノボラック樹脂の組み合せは、高い耐熱性と耐湿
性を与えることから半導体封止用材料として汎用されて
いる。
Among them, for example, as shown in JP-A No. 63-77930, a combination of novolac type epoxy resin and phenol novolac resin is widely used as a material for semiconductor encapsulation because it provides high heat resistance and moisture resistance. ing.

しかし、この樹脂組成物系は、硬化中あるいは、冷却過
程で大きな熱応力を発生し大型素子(例えば高集積メモ
リなど)等を封止した場合、素子回路に与える熱ストレ
スで素子機能の低下、あるいは、パッケージクラックな
どの不都合が生じる。
However, this resin composition system generates large thermal stress during the curing or cooling process, and when a large device (such as a highly integrated memory) is sealed, the thermal stress applied to the device circuit may cause a decrease in device function. Alternatively, problems such as package cracks may occur.

これらの原因の一つとして、半導体素子、フレーム材な
どの熱膨張係数がエポキシ樹脂組成物と比べ著しく小さ
い仁とが挙げられる。このような熱膨張係数の差は、成
形、後硬化後の冷却過程で熱応力を誘起し、前述の不都
合を生じることとなリ、又、上記の不都合と、熱応力、
曲げ強度の相関性が刊行物〔昭和63年電子情報通信学
会春季全国大会予稿集P2−148)に報告されており
、熱膨張係数の低下や、弾性率の低下による熱応力の低
減、曲げ強度の向上は、上記不都合の解消につながる。
One of these causes is that the coefficient of thermal expansion of semiconductor elements, frame materials, etc. is significantly smaller than that of the epoxy resin composition. Such a difference in thermal expansion coefficients induces thermal stress during the cooling process after molding and post-curing, resulting in the above-mentioned disadvantages.
The correlation between bending strength has been reported in a publication [Proceedings of the 1986 Institute of Electronics, Information and Communication Engineers of Japan Spring National Conference, P2-148]. An improvement in this will lead to the elimination of the above-mentioned disadvantages.

このため無機充填剤の添加量を増大させたり、シリコー
ン化合物により父性させる方法が検討されている。
For this reason, methods of increasing the amount of inorganic fillers added or adding paternity using silicone compounds are being considered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、無機充填剤の添加量を増大し、熱膨張係数を低
下させ、パッケージクラックなどに対し、効果をあげる
ためには、80%(ffii%、以下同様)以上必要で
あるが、従来のノボラック型エポキシ樹脂およびフェノ
ールノボラック樹脂系では室温において固形であるため
、無機充填剤の高充填は、樹脂組成物の浴融粘度の増大
につながり、成形性を著しく阻害する。また、溶融粘度
の増大は成形時に金線流れや断線が生じることとなり好
ましくない状態が生じる。
However, in order to increase the amount of inorganic filler added, lower the coefficient of thermal expansion, and be effective against package cracks, it is necessary to increase the amount of inorganic filler by 80% (ffii%, the same applies hereinafter), but compared to conventional novolac Since type epoxy resins and phenolic novolak resin systems are solid at room temperature, high loading of inorganic fillers leads to an increase in the bath melt viscosity of the resin composition, which significantly inhibits moldability. Further, an increase in melt viscosity causes wire flow or wire breakage during molding, resulting in an unfavorable state.

一方、シリコーン化合物による父性においては、ノボラ
ック型エポキシ樹脂あるいはフェノールノボラック樹脂
に、シリコーン化合物を反応させ変性する方法が一般的
であり、この変性方法はノボラック型エポキシ樹脂ある
いはフェノールノボラック樹脂の高分子量化をもたらし
、無機充填剤を添加した樹脂組成物の流動性を阻害し、
好ましくない状態となる。
On the other hand, in the case of paternity using silicone compounds, a common method is to react a silicone compound to a novolac type epoxy resin or phenol novolac resin to modify it.This modification method increases the molecular weight of the novolac type epoxy resin or phenol novolak resin. and inhibit the fluidity of resin compositions containing inorganic fillers,
This results in an unfavorable situation.

この発明は、かかる課題を解決するためになされたもの
で、無機充填剤の添加量を増大させたり、シリコーン化
合物で変性して熱応力を低減させても、流動性の阻害お
よび他の特性低下が防止され、かつその硬化物も耐熱性
、耐湿性および耐冷熱衝撃性を有した半導体封止用エポ
キシ樹脂組成物を得ることを目的とする。
This invention was made to solve this problem, and even if the amount of added inorganic filler is increased or the thermal stress is reduced by modification with a silicone compound, fluidity will be inhibited and other properties will deteriorate. An object of the present invention is to obtain an epoxy resin composition for semiconductor encapsulation, in which the cured product thereof also has heat resistance, moisture resistance, and cold shock resistance.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の半導体封止用エポキシ樹脂組成物は、で示さ
れるエポキシ樹脂(a)、軟化点が90〜130℃のフ
ェノールノボラック樹脂(b)、無機充填剤および硬化
促進剤を含有し、上記エポキシ樹脂(a)のエポキシ基
と上記フェノールノボラック樹脂(b)のフェノール性
水酸基の当量比が、1肥エポキシ基に対し、0.8〜1
.2のものである。
The epoxy resin composition for semiconductor encapsulation of the present invention contains an epoxy resin (a) represented by (a), a phenol novolac resin (b) having a softening point of 90 to 130°C, an inorganic filler, and a hardening accelerator, and The equivalent ratio of the epoxy group of the resin (a) to the phenolic hydroxyl group of the phenol novolak resin (b) is 0.8 to 1 to 1 epoxy group.
.. 2.

〔作用〕[Effect]

この発明におけるエポキシ樹脂が、平面構造であるため
に、バッキング性が大となり、上記効果を生じると考え
られる。
Since the epoxy resin in this invention has a planar structure, it is thought that the backing property is large and the above effect is produced.

〔実施例〕〔Example〕

この発明の半導体エポキシ樹脂組成物に係わるエポキシ
樹脂(a>は、化学式 で表わされるもので、エポキシ樹脂中に含まれる塩素イ
オン、塩素を含む化合物ができるだけ少ないエポキシ樹
脂を用いることが好ましい。
The epoxy resin (a> in the semiconductor epoxy resin composition of the present invention is represented by a chemical formula, and it is preferable to use an epoxy resin containing as few chlorine ions and chlorine-containing compounds as possible.

さらにこのエポキシ樹脂とともに必要に応じて難燃性の
臭素化ノボラック系エポキシ樹脂、臭素化ビスフェノー
ルA型エポキシ樹脂を併用してもよい。この場合、これ
らのエポキシ樹脂の使用量は、エポキシ樹脂(a)10
0重量部に対して50重量部以下であるのが好ましい。
Furthermore, a flame-retardant brominated novolak epoxy resin or brominated bisphenol A epoxy resin may be used in combination with this epoxy resin, if necessary. In this case, the amount of these epoxy resins used is epoxy resin (a) 10
It is preferable that the amount is 50 parts by weight or less relative to 0 parts by weight.

この発明の半導体エポキシ樹脂組成物に係わるフェノー
ルノボラック樹脂(b)は、たとえばフェノール、クレ
ゾール、キシレノール、ビスフェノールAルゾルシンな
どのフェノール系化合物とホルムアルデヒドまたはバラ
ホルムアルデヒドを酸性触媒下で縮合反応させることに
よりえられた軟化点が90〜130℃のものであり、未
反応モノマーはえられたフェノールノボラック樹脂中、
0.5重量%以下であるのが好ましい。
The phenol novolac resin (b) related to the semiconductor epoxy resin composition of the present invention can be obtained by condensing a phenolic compound such as phenol, cresol, xylenol, bisphenol A-ruzzorcin, and formaldehyde or paraformaldehyde under an acidic catalyst. The softening point is 90 to 130°C, and unreacted monomers are contained in the obtained phenol novolak resin.
It is preferably 0.5% by weight or less.

又、シリコーン父性フェノールノボラック樹脂を併用し
ても良(、と記のように得られたフェノールノボラック
樹脂と、例えばエポキシ変性シリコーンをトリフェニル
ホスフィンを触媒として反応させることが得られる。フ
ェノールノボラック樹脂の軟化点が90℃未満の場合に
は、硬化物のガラス転移温度が低下し、耐熱性、耐湿性
が悪くなり、また130℃を越えるとエポキシ樹脂組成
物の溶融粘度が高くなり作業性に悪影響を与える。
In addition, a silicone-paternal phenol novolak resin may be used in combination with the resulting phenol novolak resin and, for example, an epoxy-modified silicone can be reacted with triphenylphosphine as a catalyst. If the softening point is less than 90°C, the glass transition temperature of the cured product will decrease, resulting in poor heat resistance and moisture resistance, and if it exceeds 130°C, the melt viscosity of the epoxy resin composition will increase, adversely affecting workability. give.

この発明の実施例の半導体封止用エポキシ樹脂組成物に
おいて、エポキシ樹脂とフェノールノボラック樹脂との
配合割合は、エポキシ樹脂のエポキシ基1当量あたりフ
ェノールノボラック樹脂のフェノール性OH当量が0.
8〜1.2当量である。エポキシ樹脂のエポキシ基1当
量Cζ対してフェノールノボラック樹脂のフェノール性
OH当量が0.8未満であるばあい、組成物のガラス転
移温度が低くなって、耐湿性や耐熱性が低下し、またフ
ェノール性OH当量が1.2ヲこえるばあい、硬化物中
にフェノールノボラック樹脂が未反応物として多く残り
、耐湿性や耐熱性が低下するようになる。
In the epoxy resin composition for semiconductor encapsulation according to the embodiment of the present invention, the blending ratio of the epoxy resin and the phenol novolac resin is such that the phenolic OH equivalent of the phenol novolac resin is 0.00000000000000000000 per 1 equivalent of the epoxy group of the epoxy resin.
It is 8 to 1.2 equivalents. If the phenolic OH equivalent of the phenol novolak resin is less than 0.8 with respect to 1 equivalent of epoxy group Cζ of the epoxy resin, the glass transition temperature of the composition will be low, the moisture resistance and heat resistance will be reduced, and the phenol If the OH equivalent exceeds 1.2, a large amount of phenol novolac resin remains as an unreacted product in the cured product, resulting in a decrease in moisture resistance and heat resistance.

この発明の実施例の半導体封止用エポキシ樹脂組成物に
用いられる無機充填剤としては、たとえば結晶性シリカ
粉、溶融シリカ粉、アルミナ粉、タルク、石英ガラス粉
、炭酸カルシウム粉、ガラス繊維などがあげられる。こ
れら無機充填剤の添加量は組成物中に50〜90%含有
されるのが好ましい。50%未満では線膨張係数および
硬化収縮を低下させる効果が小さくなり、また卸%をこ
えると流動性が低下し、作業性が低下する傾向にあるの
で、50〜90%の範囲内で要求特性に応じて配合量を
適宜選択するのが好ましい。
Examples of the inorganic filler used in the epoxy resin composition for semiconductor encapsulation of the embodiment of this invention include crystalline silica powder, fused silica powder, alumina powder, talc, quartz glass powder, calcium carbonate powder, and glass fiber. can give. The amount of these inorganic fillers added is preferably 50 to 90% in the composition. If it is less than 50%, the effect of reducing the coefficient of linear expansion and curing shrinkage will be small, and if it exceeds the wholesale percentage, fluidity will decrease and workability will tend to decrease, so the required properties should be within the range of 50 to 90%. It is preferable to select the blending amount appropriately according to the following.

この発明の実施例の半導体封止用エポキシ樹脂組成物に
用いられる硬化促進剤としては、たとえば2−エチルイ
ミダゾール、2−エチルイミダゾール、2−エチル−4
−メチルイミダゾール、1−ベンジル−2−メチルイミ
ダゾール、2−ヘプタデシルイミダゾール、2−ウンデ
シルイミダゾールなどのイミダゾール系化合物;2−(
ジメチルアミノメチル)フェノール、2,4.6−)リ
ス(ジメチルアミノメチル)フェノール、ベンジルジメ
チルアミン、α−メチルベンジルジメチルア【ン、ピペ
リジン、ジメチルラフリルアミン、ジアルキルアミノメ
タノールアミン、テトラメチルグアニジン、2−ジメチ
ルアミノ−2−ヒドロキシプロパン、N、N’−ジメチ
ルピペラジン、N−メチルモルホリン、ピペラジン、2
−(ジメチルアミノメチル)フェノール、ヘキサメチレ
ンテトラミン、l−ヒドロキシエチル−2−ヘプタデシ
ルグリオキサリジン、1,8−ジアザビシクロ(5,4
,0)ウンデセンーフなどの第3級アミンおよびその他
のアミン系化合物やイミダゾール系化合物、トリフェニ
ルホスフィンなどのリン系化合物などがあげられる。該
硬化促進剤の添加量は、該硬化促進剤の種類によって異
なるので一概に決定することはできす゛、この発明はか
かる添加量によって限定されるものではないが、通常エ
ポキシ樹脂100重世部に対して0.1〜5重量部であ
るのが好ましい。
Examples of the curing accelerator used in the epoxy resin composition for semiconductor encapsulation of the embodiments of this invention include 2-ethylimidazole, 2-ethylimidazole, 2-ethyl-4
-Imidazole compounds such as methylimidazole, 1-benzyl-2-methylimidazole, 2-heptadecylimidazole, 2-undecylimidazole; 2-(
dimethylaminomethyl)phenol, 2,4.6-)lis(dimethylaminomethyl)phenol, benzyldimethylamine, α-methylbenzyldimethylamine, piperidine, dimethyllafurylamine, dialkylaminomethanolamine, tetramethylguanidine, 2-dimethylamino-2-hydroxypropane, N,N'-dimethylpiperazine, N-methylmorpholine, piperazine, 2
-(dimethylaminomethyl)phenol, hexamethylenetetramine, l-hydroxyethyl-2-heptadecylglyoxalidine, 1,8-diazabicyclo(5,4
, 0) tertiary amines such as undecene, other amine compounds, imidazole compounds, and phosphorus compounds such as triphenylphosphine. The amount of the curing accelerator to be added varies depending on the type of the curing accelerator, so it cannot be determined unconditionally. Although the present invention is not limited to this amount, it is usually added to 100 parts of epoxy resin. The amount is preferably 0.1 to 5 parts by weight.

この発明の半導体封止用エポキシ樹脂組成物には必要に
応じてカーボンブラックなどの着色剤、カルナウバワッ
クス、ポリエチレンワックスなどの離型剤や三酸化アン
チモンなどの難燃剤、γ−グリシロキシプロビルトリメ
トキシシランなどのカップリング剤、シリコーンゴム、
フッ素ゴムなどのゴム成分を該組成物中の含有量が10
%をこえない範囲で添加してもよい。
The epoxy resin composition for semiconductor encapsulation of the present invention may optionally contain a coloring agent such as carbon black, a mold release agent such as carnauba wax or polyethylene wax, a flame retardant such as antimony trioxide, and γ-glysyloxypropylene. Coupling agents such as trimethoxysilane, silicone rubber,
The content of the rubber component such as fluororubber in the composition is 10
It may be added within a range not exceeding %.

またこの発明の半導体封止用エポキシ樹脂組成物は、一
般に使用されている公知の混合装置、たとえばロール、
ニーダ、ライカイ機、ヘンシェルミキサー(三井三池製
作所製)などを用いて容易に調製することができる。
Furthermore, the epoxy resin composition for semiconductor encapsulation of the present invention can be prepared using commonly used mixing devices such as rolls,
It can be easily prepared using a kneader, a Raikai machine, a Henschel mixer (manufactured by Mitsui Miike Seisakusho), etc.

以下、実施例および比較例をあげてこの発明をさらに詳
細に説明するが、この発明はかかる実施例のみに限定さ
れるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples; however, the present invention is not limited to these Examples.

実施例1〜8および比較例1〜7 表1に示す組成になるようにエポキシ樹脂、フェノール
ノボラック樹脂、無機充填剤、硬化促進剤およびその他
の成分を調製し、80〜110℃の熱ロールで5〜7分
混練し、粉砕した後、1100〜1500Kg/c!r
L”の圧力下でタブレットを形成した。
Examples 1 to 8 and Comparative Examples 1 to 7 Epoxy resins, phenol novolac resins, inorganic fillers, curing accelerators, and other components were prepared to have the compositions shown in Table 1, and heated with a hot roll at 80 to 110°C. After kneading for 5-7 minutes and pulverizing, 1100-1500Kg/c! r
Tablets were formed under a pressure of L''.

なお、流動性はEMM I法に準じて求めた。Note that fluidity was determined according to the EMM I method.

なお、実施例7および比較例2で用いたシリコーン変性
フェノールノボラック樹脂は、以下のようにして製造し
た。即ち、 llの4ツロフラスコに軟化点96υのフェノールノボ
ラック500り金入れ、窒素気流中で130−0まで加
熱し、均一に溶融させる。その後、トリフェニルホスフ
ィン21f加え、滴下ロートで両末端エポキシ変性シリ
コーンオイル(エポキシ当量850:信越化学製)30
0Fを加え、150℃に昇温し、反応を行ないシリコー
ン液性フェノールノボラック樹脂を得た。反応率は、エ
ポキシ基の滴定より95%であった。
The silicone-modified phenol novolak resin used in Example 7 and Comparative Example 2 was manufactured as follows. That is, a phenol novolac 500 with a softening point of 96 υ was placed in a 4-liter flask and heated to 130 - 0 in a nitrogen stream to uniformly melt it. Then, add 21f of triphenylphosphine, and add 30ml of epoxy-modified silicone oil at both ends (epoxy equivalent: 850: Shin-Etsu Chemical) using a dropping funnel.
0F was added, the temperature was raised to 150°C, a reaction was carried out, and a silicone liquid phenol novolak resin was obtained. The reaction rate was 95% as determined by titration of epoxy groups.

続いて、上記のようにして得たタブレットを用いて、金
型温度が180°C±5”C1プランジャー圧力が80
Kg/Cm2、成形時間が90 seCの条件でトラン
スファー成形し、各種の信頼性評価用モニターチップと
各種の評価用試験片とをそれぞれに作成し、かつこれら
の各信頼性評価用モニターチップおよび各評価用試験片
に対して、175℃、8hrの後硬化処理を施した。
Subsequently, using the tablet obtained as described above, the mold temperature was 180°C ± 5"C1 plunger pressure was 80°C.
Transfer molding was performed under the conditions of Kg/Cm2 and molding time of 90 secC to prepare various reliability evaluation monitor chips and various evaluation test pieces, and each of these reliability evaluation monitor chips and each The evaluation test piece was subjected to post-curing treatment at 175° C. for 8 hours.

また、上記のようにして得られたタブレットおよび各評
価用試験片を用いて、曲げ弾性率、曲げ強度、線膨張係
数、ガラス転移温度および流動性のそれぞれについて測
:(シた。そのM果を表2(ζ示す。
In addition, using the tablets and evaluation test pieces obtained as described above, the flexural modulus, flexural strength, linear expansion coefficient, glass transition temperature, and fluidity were measured. is shown in Table 2 (ζ).

なお、比較例2はMt fA性がわるく各11評価用試
片を作製することができなかった。
In addition, Comparative Example 2 had poor Mt fA properties, and it was not possible to prepare test pieces for each of the 11 evaluations.

さらiζ、上記のようにして得られた各信頼性評価用モ
ニターチップを用いて、耐湿信頼性試験、耐湿信頼性試
験および耐冷熱サイクル試験を次の手段で行なった。そ
の結果を表3に示す。
Furthermore, using each reliability evaluation monitor chip obtained as described above, a moisture resistance reliability test, a moisture resistance reliability test, and a cold/heat resistance cycle test were conducted using the following means. The results are shown in Table 3.

耐熱信頼性試験 空気中、250℃の条件で、モニターチップに不良が発
生するまでの時間を測定した。
Heat Resistance Reliability Test The time required for a monitor chip to become defective was measured in air at 250°C.

耐湿信頼性試験 PCT (Pressure Cooker Te5t
 ) 130−C12,7気圧の条件で、x000hr
後でのモニターチップの不良数によって評価した。
Humidity Reliability Test PCT (Pressure Cooker Te5t
) 130-C12.7 atm, x000hr
Evaluation was made based on the number of defective monitor chips.

“耐冷熱サイクル試験′ −65”Oで30m1nと150℃で30m1nとを1
サイクルとし、500サイクル後でのモニターチップの
不良数によって評価した。
"Cold/Heat Resistance Cycle Test'-65" 30mln at O and 30mln at 150℃
The evaluation was made by the number of defective monitor chips after 500 cycles.

すなわち、表2から判るように、この実施例での半導体
封止用エポキシ樹脂組成物を用いた場合には、ガラス転
移温度の低下を防止し、曲げ強度および組成物の流動性
を損なわずに、熱応力の低減が図れる。一方、比較例5
および6はガラス転移温度を低下させることにより、熱
応力値が低下しているが、表3.のモニターデツプの耐
熱性試験結果に見られるように、耐熱性の低下をまねい
ている。
That is, as can be seen from Table 2, when the epoxy resin composition for semiconductor encapsulation in this example was used, a decrease in the glass transition temperature was prevented and the bending strength and fluidity of the composition were not impaired. , thermal stress can be reduced. On the other hand, comparative example 5
In Table 3. As seen in the heat resistance test results of monitor depths, this leads to a decrease in heat resistance.

又、実施例7および比軟例2の低応力化処方での対比で
も実施例7は、流動性を著しく損なうことなく、大きな
低応力化が達成でさている。
Further, when comparing the low stress formulations of Example 7 and Example 2, Example 7 was able to achieve a large stress reduction without significantly impairing fluidity.

さらに、表3から判るようζこ評価用モニターチップの
耐熱性、耐湿性および耐冷熱サイクル性についても非常
に優れた特性を有するものである。
Furthermore, as can be seen from Table 3, the monitor chip for ζ evaluation has very excellent properties in terms of heat resistance, moisture resistance, and cold/heat cycle resistance.

〔発明の効果〕〔Effect of the invention〕

以上説明したとうり、この発明は、 化学式 %式% 物で変性して熱応力を低減させても、流動性のjIll
害および他の特性低下が防止され、かつその硬化物も耐
熱性、耐湿性および耐冷熱衝撃性を有した半導体封止用
エポキシ樹脂組成物を得ることができ、例えばIC8よ
びLSI1と用いることができる。
As explained above, this invention has the advantage of reducing fluidity even if the thermal stress is reduced by modifying the chemical formula with a compound.
It is possible to obtain an epoxy resin composition for semiconductor encapsulation in which damage and other property deterioration is prevented, and the cured product thereof also has heat resistance, moisture resistance, and cold shock resistance, and can be used, for example, with IC8 and LSI1. can.

Claims (1)

【特許請求の範囲】 化学式 ▲数式、化学式、表等があります▼ で示されるエポキシ樹脂(a)、軟化点が90〜130
℃のフェノールノボラック樹脂(b)、無機充填剤およ
び硬化促進剤を含有し、上記エポキシ樹脂(a)のエポ
キシ基と上記フェノールノボラック樹脂(b)のフェノ
ール性水酸基の当量比が、上記エポキシ基に対し、0.
8〜1.2である半導体封止用エポキシ樹脂組成物。
[Claims] Epoxy resin (a) represented by the chemical formula ▲ Numerical formulas, chemical formulas, tables, etc. ▼ and a softening point of 90 to 130
℃ phenolic novolac resin (b), an inorganic filler, and a curing accelerator, the equivalent ratio of the epoxy group of the epoxy resin (a) to the phenolic hydroxyl group of the phenol novolak resin (b) is equal to the epoxy group. On the other hand, 0.
An epoxy resin composition for semiconductor encapsulation having a molecular weight of 8 to 1.2.
JP63264652A 1988-10-19 1988-10-19 Epoxy resin composition for semiconductor encapsulation Expired - Lifetime JP2621429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63264652A JP2621429B2 (en) 1988-10-19 1988-10-19 Epoxy resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63264652A JP2621429B2 (en) 1988-10-19 1988-10-19 Epoxy resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH02110958A true JPH02110958A (en) 1990-04-24
JP2621429B2 JP2621429B2 (en) 1997-06-18

Family

ID=17406327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63264652A Expired - Lifetime JP2621429B2 (en) 1988-10-19 1988-10-19 Epoxy resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP2621429B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173026A (en) * 1988-12-26 1990-07-04 Sumitomo Durez Co Ltd Production of silicone-modified novolac resin
US6011305A (en) * 1997-02-21 2000-01-04 Nec Corporation Semiconductor device having metal alloy for electrodes
WO2018150779A1 (en) * 2017-02-14 2018-08-23 京セラ株式会社 Resin composition, resin sheet, semiconductor device and method for producing semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120541A (en) * 1974-08-12 1976-02-18 Toray Industries
JPS60124647A (en) * 1983-12-09 1985-07-03 Sumitomo Bakelite Co Ltd Low-radiation epoxy resin composition
JPS61293219A (en) * 1985-06-20 1986-12-24 Sanyo Kokusaku Pulp Co Ltd Sealing resin composition
JPS6377930A (en) * 1986-09-19 1988-04-08 Fujitsu Ltd Epoxy resin composition for sealing semiconductor
JPS63128020A (en) * 1986-11-18 1988-05-31 Hitachi Ltd Epoxy resin composition and resin-sealed type semiconductor device
JPS63142023A (en) * 1986-12-05 1988-06-14 Toshiba Chem Corp Resin composition for dealing use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120541A (en) * 1974-08-12 1976-02-18 Toray Industries
JPS60124647A (en) * 1983-12-09 1985-07-03 Sumitomo Bakelite Co Ltd Low-radiation epoxy resin composition
JPS61293219A (en) * 1985-06-20 1986-12-24 Sanyo Kokusaku Pulp Co Ltd Sealing resin composition
JPS6377930A (en) * 1986-09-19 1988-04-08 Fujitsu Ltd Epoxy resin composition for sealing semiconductor
JPS63128020A (en) * 1986-11-18 1988-05-31 Hitachi Ltd Epoxy resin composition and resin-sealed type semiconductor device
JPS63142023A (en) * 1986-12-05 1988-06-14 Toshiba Chem Corp Resin composition for dealing use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173026A (en) * 1988-12-26 1990-07-04 Sumitomo Durez Co Ltd Production of silicone-modified novolac resin
US6011305A (en) * 1997-02-21 2000-01-04 Nec Corporation Semiconductor device having metal alloy for electrodes
WO2018150779A1 (en) * 2017-02-14 2018-08-23 京セラ株式会社 Resin composition, resin sheet, semiconductor device and method for producing semiconductor device

Also Published As

Publication number Publication date
JP2621429B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
KR101955754B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JPH0288621A (en) Epoxy resin composition for sealing semiconductor
JPH09241483A (en) Epoxy resin composition
JPH02110958A (en) Semiconductor sealing epoxy resin composition
JP3004463B2 (en) Epoxy resin composition
JP2867471B2 (en) Resin composition
JP3581192B2 (en) Epoxy resin composition and resin-encapsulated semiconductor device
JP2991850B2 (en) Epoxy resin composition
JPH10158360A (en) Epoxy resin composition
JP2963260B2 (en) Epoxy resin composition
JP2005290111A (en) Resin composition for encapsulation and semiconductor device
JPH0977958A (en) Epoxy resin composition and semiconductor device
JP2954415B2 (en) Epoxy resin composition
JP2951092B2 (en) Epoxy resin composition
JP3042897B2 (en) Resin composition
JPH01132651A (en) Epoxy resin composition for semiconductor sealing
JP3365065B2 (en) Epoxy resin composition for sealing
KR100611442B1 (en) Epoxy resin composition comprising organic nitrogen compound containing titanium as flame retardants
JPH03119051A (en) Epoxy resin composition
JPH0730236B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH07188515A (en) Resin composition for semiconductor sealing
JP3279084B2 (en) Epoxy resin composition for sealing
JP3093051B2 (en) Epoxy resin composition
JP2951089B2 (en) Epoxy resin composition
JPH0567704A (en) Semiconductor device