JPS60122889A - Condenser - Google Patents

Condenser

Info

Publication number
JPS60122889A
JPS60122889A JP23025483A JP23025483A JPS60122889A JP S60122889 A JPS60122889 A JP S60122889A JP 23025483 A JP23025483 A JP 23025483A JP 23025483 A JP23025483 A JP 23025483A JP S60122889 A JPS60122889 A JP S60122889A
Authority
JP
Japan
Prior art keywords
condensate
cooling water
hot well
condenser
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23025483A
Other languages
Japanese (ja)
Inventor
Takashi Morimoto
敬 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23025483A priority Critical patent/JPS60122889A/en
Publication of JPS60122889A publication Critical patent/JPS60122889A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To enable to reduce the dissolved oxygen in condensate in a short time and at the same time facilitate the detection of cooling water leak by a structure wherein partition plates are provided in a hot well and corner members are also provided at corners. CONSTITUTION:The condensate in a hot well 2 is turned into piston flow and at the same time cooling water leakage detection means 23, which are arranged in a passage partitioned by partition plates 13 provided in the hot well 2, detect cooling water leakages. Concretely, sampling pick-up points 20 to detect cooling water leakages are provided at the positions, at which the partition walls are provided in order to detect the cooling water leakages based upon the samples collected from said points 20. A spraying position from a condensate recirculating line 10 is arranged on the uppermost stream side of the piston flow in the hot well 2, which is realized by providing the partition plates 13 so as to turn the mixing flow in the hot well into piston flow as close as possible, resulting in enabling to shorten the time necessary for reducing the dissolved oxygen in the condensate in the hot well 2.

Description

【発明の詳細な説明】 本発明は1発電プラントの起動時に短時間で復水中の溶
存酸素を低減すると同時に、復水へ、の冷却水漏洩箇所
の検出を容易にした復水器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a condenser that reduces dissolved oxygen in condensate in a short time when starting up a power generation plant, and at the same time facilitates the detection of locations where cooling water leaks into the condensate. be.

従来のものの概要をまず説明するに、火力発電プラント
においては、建設後の起動および定検後の起動時、復水
器において、補給水中の溶存酸素は出来るだけ低減させ
た後、ボイラ本体へ供給される。このだめに、復水器と
脱気器とを連絡した。いわゆる復水系統再循環ラインに
よ−り復水を循環して復水中の溶存酸素を次第に低減さ
せている。この工程においては、従来の実績では、復水
中の溶存酸素がボイラ本体へ供給可能となる捷で低減す
るには5〜6時間を必要としている。
First, to give an overview of the conventional method, in thermal power plants, when starting up after construction and after periodic inspection, dissolved oxygen in make-up water is reduced as much as possible in the condenser before being supplied to the boiler main body. be done. At this point, the condenser and deaerator were connected. A so-called condensate system recirculation line circulates condensate to gradually reduce dissolved oxygen in the condensate. In this step, according to conventional results, it takes 5 to 6 hours for the dissolved oxygen in the condensate to be reduced by a sieve so that it can be supplied to the boiler main body.

最近火力発電プラントの稼動状態は、給電事情により週
末停止あるいは毎日又は毎日に近い発電停止などの不連
続な運転を実施するものが増えつつある。このような状
況においては、1回の起動時に給水ラインからボイラへ
流れる酸素量は少なくても回数が多いので2年間の酸素
持込み総量は増加する。そこで、停止したプラントを再
起動する際、出来るだけ短時間で復水中の溶存酸素を低
減させると同時に到達酸素濃度を低くしだ後、ボイラ本
体への通水をする必要があり、冷却水漏洩によるトラブ
ルも出来るだけ短時間に漏洩箇所を検出し対処する必要
があり、従来の方法に代る迅速な脱酸素法が強く望まれ
ている。
Recently, an increasing number of thermal power plants are operating discontinuously, such as stopping on weekends or stopping power generation every day or nearly every day, depending on power supply conditions. In such a situation, the amount of oxygen that flows from the water supply line to the boiler during one startup is small, but the number of times it flows is large, so the total amount of oxygen carried over for two years increases. Therefore, when restarting a stopped plant, it is necessary to reduce the dissolved oxygen in the condensate as quickly as possible and at the same time lower the reached oxygen concentration, and then flow water to the boiler main body, which can prevent cooling water leakage. It is necessary to detect and deal with leakage points as quickly as possible, and there is a strong desire for a rapid oxygen removal method to replace conventional methods.

なお、上記のように夜間停止や週末停止の場合には加熱
脱気器は蒸気シールなどの方法により100℃以上に保
持されているのが普通であシ。
In addition, as mentioned above, in the case of a nighttime or weekend shutdown, the heating deaerator is usually maintained at a temperature of 100°C or higher by a method such as steam sealing.

起動時に改めて脱気する必要はないので、復水器の系統
の脱気時間が起動時間を支配する。
Since there is no need to evacuate again at startup, the deaeration time of the condenser system governs the startup time.

現在角いられている起動時の復水脱気方法の系統図を第
1図、第2図に示し、以下これにより従来例につき説明
する。
System diagrams of the currently used condensate degassing method at startup are shown in FIGS. 1 and 2, and the conventional example will be explained below using these diagrams.

第1図、第2図において、符号1は復水器。In FIGS. 1 and 2, reference numeral 1 represents a condenser.

2はホントウェル、8は冷却水の通る管群、4は真空ポ
ンプ・ 5は復水ポンプ、6はグランドコンデンサー、
7は脱気器、8は脱気器貯水槽を示す。
2 is a real well, 8 is a group of tubes through which cooling water passes, 4 is a vacuum pump, 5 is a condensate pump, 6 is a ground condenser,
7 is a deaerator, and 8 is a deaerator water tank.

補給水よシ供給されてホットウェル2に貯った復水は、
真空ポンプ4を起動して復水器1内を真空にすると同時
に、ライン9より復水ポンプ5.グランドコンデンサー
6を通じ、復水再循環ライン10から復水器1へ戻し、
復水器1内へ噴霧落下させて復水中の溶存酸素を低減さ
せて゛いた。この工程のみでは管路の途中に保有水量が
大きいホットウェルがあシ、これがまたピストン流でも
ないだめに復水中の溶存酸素を短時間でかつ十分には低
減できない。
Condensate water supplied as make-up water and stored in Hotwell 2 is
At the same time, the vacuum pump 4 is started to create a vacuum inside the condenser 1, and at the same time, the condensate pump 5. is returned to the condenser 1 from the condensate recirculation line 10 through the ground condenser 6;
The dissolved oxygen in the condensate was reduced by spraying it into the condenser 1. If this step alone is used, there will be a hot well with a large amount of water in the middle of the pipe, and unless this is also a piston flow, dissolved oxygen in the condensate cannot be reduced sufficiently in a short time.

また、冷却水漏洩時の検出方法は、従来、復水器1のホ
ットウェル2あるいは復水ポンプ5の出口等から復水を
取出し、″復水、器1の電気伝導度変化の傾向から冷却
水漏洩を検出する方法や、この取出した復水を陽イオン
交換樹脂層を通すことにより、復水に含まれる塩類を酸
の形に変えて電気伝導度を測定し、その変化の傾向から
冷却水漏洩を検出する方法も実施されており、冷却水管
群の漏洩箇所の検出手段としては。
In addition, the conventional method for detecting cooling water leakage is to extract condensate from the hot well 2 of the condenser 1 or the outlet of the condensate pump 5, and then cool the condensate based on the tendency of electrical conductivity change in the condenser 1. A method for detecting water leakage, and by passing the extracted condensate through a cation exchange resin layer, converting the salts contained in the condensate into acid form, measuring the electrical conductivity, and determining the trend of the change in cooling. A method for detecting water leakage has also been implemented, and is used as a means of detecting leakage points in cooling water pipe groups.

第1@、第2図に示すように、ホットウェル2の中にA
室、B室の部屋に分ける仕切板24を設け、A室、B室
にそれぞれ検出器を設置して冷却水漏洩箇所の検出を行
なっている。このような従来の方法においては、ちょう
ど冷却水漏洩箇所に検出計が設置されてい石と冷却水漏
洩の検出は容易であるが、必ずしも漏洩箇所に検出計が
あるとは限らず、冷却水漏洩の検出に時間を要す場合が
ちシ、大きな事故を引き起すこともある。
As shown in Figure 1 and Figure 2, A is in the hot well 2.
A partition plate 24 is provided to separate the rooms into room A and room B, and detectors are installed in room A and room B, respectively, to detect locations where cooling water leaks. In such conventional methods, a detector is installed exactly at the location of the cooling water leak, making it easy to detect stones and cooling water leaks, but the detector is not necessarily located at the leak location, and the detector is installed exactly at the location of the cooling water leak. Detection often takes time and can lead to major accidents.

本発明の目的は、上記の如き欠点を解消し。The object of the present invention is to eliminate the above-mentioned drawbacks.

短時間で復水中の溶存酸素を低減させると同時に、冷却
水漏洩箇所の検出を容易にする復水器を提供するもので
ある。しかして本発明は、復水器ホントウェル内に少な
くとも1枚以上の仕切板及びコーナ一部材を設け、ホッ
トウェル内の復水の流れをピストン流れとすると共にホ
ントウェル内に設けた仕切板で区切った流路匠配設した
冷却水漏洩検出手段によシ、冷却水漏洩箇所の検出を容
易にしたことを新規な点とするものである。
The present invention provides a condenser that reduces dissolved oxygen in condensate in a short time and at the same time makes it easy to detect cooling water leak locations. Therefore, the present invention provides at least one partition plate and one corner member in the condenser hot well, and makes the flow of condensate in the hot well a piston flow, and the partition plate provided in the real well. The new feature is that the location of the cooling water leak can be easily detected by the cooling water leak detection means provided in the divided flow channels.

′以下1本発明の好適な実施例について添付図面を参照
して詳細に説明する。
'Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第3図は2本発明を適用した実施例を示す系統図である
FIG. 3 is a system diagram showing two embodiments to which the present invention is applied.

第8運において、第1図、第2図と同符号のものは同一
の部分で同じ作用効果を示すので説明は省略する。ここ
でlIAは脱気水のボイラ(図示省略)への供給ライン
で、その矢印はボイラへの方向を示し、 18は本発明
を実施するために付加された仕切板である。
In the 8th luck, parts with the same symbols as those in FIGS. 1 and 2 have the same functions and effects, so a description thereof will be omitted. Here, lIA is a supply line for degassed water to a boiler (not shown), the arrow thereof indicates the direction to the boiler, and 18 is a partition plate added to implement the present invention.

第4図、第5図、第6図は第8図で付加したホットウェ
ル2内に付設した仕切板18及びコーナ一部材23の状
況を示しだ平面図である。この仕切板13は、ホットウ
ェル2内に少なくとも1枚以上配設されるものでアシ、
ホットウェル2内の復水の流れが上記仕切板18を介し
て上流側から下流側へピストン流れとするだめのもので
あシ、第4図では1枚、第5図では2枚を千鳥状に、第
6図では3枚を千鳥状に配設したものである。14はホ
ントウェル2内の水の流れを示す。20は本発明の冷却
水漏洩箇所を検出するための試料の取出し点を示し、こ
れらの各点よシ採取した試料を従来の方法である電気伝
導度変化の傾向から冷却水漏洩箇所を検出するものであ
る。
FIGS. 4, 5, and 6 are plan views showing the partition plate 18 and corner member 23 added in the hot well 2 in FIG. 8. At least one partition plate 13 is disposed inside the hot well 2.
The flow of condensate in the hot well 2 is to be made into a piston flow from the upstream side to the downstream side via the partition plate 18, and one plate is used in FIG. 4, and two plates are arranged in a staggered manner in FIG. In Fig. 6, three sheets are arranged in a staggered manner. 14 indicates the flow of water within the real well 2. Reference numeral 20 indicates the sample extraction points for detecting the cooling water leakage location of the present invention, and the cooling water leakage location is detected from the sample taken from each of these points by the conventional method based on the trend of change in electrical conductivity. It is something.

このように、第1図に示したような従来の復水器ホント
ウェル2に第4図、第5図、第6図に示すような仕切板
18を設け、ホットウェル2内の復水の流れをピストン
流れに出来るだけ近づけるようKし、復水再循環ライン
10からの噴霧位置をホントウェル2内のピストン流れ
の最上流側に設置することにより、ホントウェル2内の
復水中の溶存酸素を低減するための時間を短縮すること
が可能となる。
In this way, the conventional condenser hot well 2 as shown in FIG. 1 is provided with a partition plate 18 as shown in FIGS. Dissolved oxygen in the condensate in the real well 2 can be reduced by adjusting the flow as close as possible to the piston flow and by installing the spray position from the condensate recirculation line 10 at the most upstream side of the piston flow in the real well 2. This makes it possible to shorten the time required to reduce the

なお、ホットウェル2内の仕切板13は、第4図より第
5図、第5図より第6図と数を増すにつれて図の斜線で
示す淀み部2人が減少し、ホントウェル2内の流れはピ
ストン流れに近づくだめ酸素濃度の低減速度を短縮し、
かつ到達酸素濃度を低くすることが出来る。
Note that as the number of partition plates 13 in the hot well 2 increases from FIG. 4 to FIG. 5, and from FIG. 5 to FIG. As the flow approaches the piston flow, the rate of decrease in oxygen concentration is shortened,
Moreover, the achieved oxygen concentration can be lowered.

また、冷却水漏洩箇所の検出も第4図、第5図、第6図
と仕切板1Bを増やし、かつ、仕切板18を冷却水管群
と直角方向に配設し9図示する各点に検出点20を設け
ると冷却水漏洩箇所の発見がより早く、かつ感度も上る
。この仕切板13を冷却水管群と直角方向に配設するこ
とは、冷却水漏洩が管群と氷室とにある管板からの漏洩
が多いことから、冷却水漏洩時の検出捷での応答性が早
くなるため発見までの時間が短縮されることになる。勿
論冷却水漏洩検出点には、電導計の電極を挿入しても良
いし、ナトリウムイオン電極を挿入しても良く、また冷
却水質の特性によっては、この他のセンサーを用いても
良い。
In addition, the number of partition plates 1B is increased as shown in Figs. 4, 5, and 6, and the partition plate 18 is arranged perpendicular to the cooling water pipe group to detect cooling water leakage points at each point shown in Fig. 9. By providing the point 20, the location of the cooling water leak can be found more quickly and the sensitivity can be improved. Placing this partition plate 13 perpendicularly to the cooling water pipe group improves the responsiveness in detecting cooling water leakage, since cooling water often leaks from the tube sheets located between the tube group and the ice chamber. This will shorten the time to discovery. Of course, an electrode of a conductivity meter or a sodium ion electrode may be inserted at the cooling water leakage detection point, or other sensors may be used depending on the characteristics of the cooling water quality.

次に、第7図は比較的大型の復水器で冷却水の水室21
が左右二基21A、21Bに分割されている場合の冷却
水漏洩検出点22を示したものである。大型の復水器で
はこのように水室21が二重に分割されているので検出
点22を分割線直下のホントウェル2内に第7図のよう
に追加することにより、室ZLA側に漏れがあるか、室
21B側にあるのかが判定できる。これによシ検出およ
び漏れの修復とも的確に行なうことが出来る。
Next, Figure 7 shows a relatively large condenser with a cooling water chamber 21.
This figure shows the cooling water leakage detection points 22 when the system is divided into two left and right units 21A and 21B. In a large condenser, the water chamber 21 is divided into two in this way, so by adding the detection point 22 in the real well 2 directly below the dividing line as shown in Figure 7, it is possible to prevent leakage to the chamber ZLA side. It can be determined whether it is present or on the chamber 21B side. This allows accurate detection and repair of leaks.

第8図、第9図はまた本発明を適用した実施例を示す系
統図である。
FIGS. 8 and 9 are system diagrams showing an embodiment to which the present invention is applied.

第8図、第9図において、前回と同符号のものは同一の
作用、効果を示すので説明を省略する。
In FIGS. 8 and 9, the same reference numerals as in the previous time indicate the same functions and effects, so the explanation will be omitted.

符号15は復水再循環ライン10に配設された補助脱気
器、16は補助脱気器15に供給される蒸気供給ライン
、17は補助脱気器15で脱気されだ復水を復水器ホン
トウェル2へ供給するライン、18は補助脱気器15と
真空ポンプ4とを連結し、補助脱気器15を真空とする
ライン、 19はライン18と同じ作用を持つが、復水
器1を介して補助脱気器15を真空とするラインでアシ
15 is an auxiliary deaerator installed in the condensate recirculation line 10; 16 is a steam supply line that is supplied to the auxiliary deaerator 15; and 17 is a line that regenerates the condensate that has been deaerated by the auxiliary deaerator 15. A line 18 is a line that connects the auxiliary deaerator 15 and the vacuum pump 4 to supply water to the main well 2, and a line 19 is a line that evacuates the auxiliary deaerator 15. A line 19 has the same function as the line 18. A line that evacuates the auxiliary deaerator 15 via the container 1 is installed.

場合によっては省略しても良い。It may be omitted in some cases.

本発明の装置は、ホットウェル2の復水を。The device of the present invention collects condensate from hot well 2.

真空ポンプ4を起動すると同時に復水ポンプ5によりグ
ランドコンデンサー6.復水再循環ライン10を通じ、
補助脱気器15へ導き、この補助脱気器15で、蒸気供
給ライン16からの蒸気と接触加熱し ライン18ある
いはライン19により真空ポンプ4と連結することによ
り真空力l熱鋭気を実施するものである。この補助脱気
器15で溶存酸素を低減された復水は、ジイン17を通
じてホットウェル2へ供給される。
At the same time as starting the vacuum pump 4, the condensate pump 5 pumps the ground condenser 6. Through a condensate recirculation line 10,
The steam is guided to an auxiliary deaerator 15, where it is heated in contact with the steam from the steam supply line 16, and connected to the vacuum pump 4 through a line 18 or 19 to perform vacuum power and heat aeration. It is. The condensate whose dissolved oxygen has been reduced in the auxiliary deaerator 15 is supplied to the hot well 2 through the inlet 17.

この際、ライン17からホットウェル2への供給位置は
、第9図に示すように、ホントウェル2内に設けられた
仕切板13によって作られるピストン流れの上流側へ設
ける。さらに、復水器1が真空になっているとはいえい
くらかでも酸素分圧がある時は補助脱気器15で脱気さ
れた復水へ復水器1内の酸素が再溶解しないようホット
ウェル2に貯っている復水中へ供給する。
At this time, the supply position from the line 17 to the hot well 2 is provided on the upstream side of the piston flow created by the partition plate 13 provided in the hot well 2, as shown in FIG. Furthermore, even though the condenser 1 is in a vacuum, if there is some oxygen partial pressure, the condensate degassed by the auxiliary deaerator 15 is heated to prevent the oxygen in the condenser 1 from redissolving. It is supplied to the condensate stored in well 2.

このように、復水再循環ライン10に補助脱気器15を
設け、ここで復水中の溶存酸素を低減する方法は、補助
脱気器15内での熱効率の点でも効果があり、ライン1
7から供給される脱気水中の溶存酸素もより理論的に近
い脱気効率を達成できるものである。さらに、上記のよ
うにホットウェル2内の水中への供給方法を実施するこ
とにより、ホットウェル2内の脱気水との交換がよシ効
果的に実施される。
As described above, the method of providing the auxiliary deaerator 15 in the condensate recirculation line 10 and reducing dissolved oxygen in the condensate here is also effective in terms of thermal efficiency within the auxiliary deaerator 15.
The dissolved oxygen in the degassed water supplied from 7 can also achieve a deaeration efficiency closer to the theoretical level. Furthermore, by carrying out the method of supplying water into the water in the hot well 2 as described above, exchange with deaerated water in the hot well 2 can be carried out more effectively.

以上のように2本発明を適用することにより。By applying the two inventions as described above.

従来性なっていた起動時の復水中の溶存酸素を低減する
工程は大幅に短縮できることになり。
The conventional process of reducing dissolved oxygen in condensate during startup can be significantly shortened.

第1図に示したような従来設備として配設されている加
熱脱気器7および脱気器貯水槽8を介さずにゲイ2本体
へ供給できるという利点もある。
There is also the advantage that the gas can be supplied to the main body of the gay 2 without going through the heating deaerator 7 and the deaerator water tank 8, which are conventionally installed as shown in FIG.

なお、加熱脱気器7.脱気貯水槽8を介してボイラに給
水する場合には加熱脱気器7を真空ポンプ4によって真
空にし、また温度が飽和源“度に不足の場合は、補助蒸
気を加えて飽和温度ばよい。
In addition, heating deaerator 7. When water is supplied to the boiler via the degassing water tank 8, the heating deaerator 7 is evacuated by the vacuum pump 4, and if the temperature is insufficient to reach the saturation source, auxiliary steam may be added to bring the temperature to saturation. .

このように本発明を用いる場合には加熱脱気器7.脱気
器貯水槽8を省略したプラントとすることができる。
When using the present invention in this way, a heating deaerator 7. The plant can omit the deaerator water tank 8.

まだ、冷却水漏洩箇所の検出も第4図、第5図、第6図
と仕切板13を増やし、かつ、仕切板13を冷却水管群
と直角方向に配設し、各点に検出点を設けると冷却水漏
洩箇所の発見により効果的である。この仕切板13を冷
却水管群と直角方向に配設することは、冷却水漏洩が管
群と氷室とにある管板からの漏洩が多いことから、冷却
水漏洩時の検出までの応答性が早くなるため発見までの
時間が短縮されることになる。
Detection of cooling water leakage points is still possible by increasing the number of partition plates 13 as shown in Figs. If provided, it will be more effective in locating cooling water leakage points. Placing the partition plate 13 perpendicularly to the cooling water pipe group improves the responsiveness of detecting cooling water leakage, since cooling water often leaks from the tube sheets located between the tube group and the ice chamber. This will shorten the time it takes for discovery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の起動時の復水の脱気方法と復水への冷却
水漏洩の検出方法を示す系統図、第2図は第1図の■−
■線矢視の平面図、第3図は従来の装置に本発明の仕切
板を配設した装置を示す系統図、第4図、第5図、第6
図は本発明を適用したホットウェル内の仕切板と冷却水
漏洩検出取出し点を示す説明図、第7図は本発明を適用
した大型復水器のホントウェル内の仕切板と冷却水漏洩
検出用取出し点を示す説明図。 第8図は本発明に関し、脱気方法と漏洩検出方法を示す
系統図、第9図は第8図のIX−IX線矢視の平面図で
ある。 l・・・復水器、2・・・ホットウェル、3・・管群。 4・・・真空ポンプ、5・・・復水ポンプ、6・・・グ
ランドコンデンサー・ 7・・・脱気器、10・・・復
水再循環ライン、11A・・・供給ライン、13・・・
仕切板、14・・・水の流れ、15・・・補助脱気器、
16・・蒸気供給ライン、17・・・復水供給ライン、
18.19・・・ライン、20・・・試料取出し点、2
1・・・水室、22・漏洩検出点、28・・・コーナ一
部材。 謔2区 謔3川 と 垢4閃 勇5図 萬6圀 垢7図 zv 20 手続補正書輸発) 昭和59年 4月2φ日 特許庁長官 殿 事件の表示 昭和58年 特 許 願第 230254 号発明の名
称 復水器 補正をする者 事件との関係 特許出願人 住 所 東京都千代田区丸の内二丁目5番1号名 称(
6211)三菱重工業株式会社代 理 人 1、 特許請求の範囲の記載を別紙の通り訂正する。 2、 明細書第2頁第13行の「ボイラへ流れる」[ボ
イラへ持込まれるJと訂正する。 〔別紙〕 特許請求の範囲 復水器下部のホントウェル内に復水の流れを上流側から
下流側へピストン流れとなるように少なくとも1枚以上
のしきり板及び隔部にコーナ一部材を設置するとともに
復水再循環ラインに補助脱気器を設置し、上記しきり板
を設けた部分に検塩計を設置したことを特徴とする復水
器。
Figure 1 is a system diagram showing a conventional method for degassing condensate at startup and a method for detecting cooling water leakage into condensate.
■A plan view as viewed from the line, FIG. 3 is a system diagram showing a device in which the partition plate of the present invention is installed in a conventional device, and FIGS. 4, 5, and 6
The figure is an explanatory diagram showing the partition plate in the hot well and the extraction point for cooling water leak detection to which the present invention is applied, and Figure 7 is the partition plate and cooling water leak detection in the hot well of a large condenser to which the present invention is applied. Explanatory diagram showing a take-out point for use. FIG. 8 is a system diagram showing a deaeration method and a leakage detection method according to the present invention, and FIG. 9 is a plan view taken along the line IX--IX in FIG. 8. l...Condenser, 2...Hotwell, 3...Pipe group. 4... Vacuum pump, 5... Condensate pump, 6... Grand condenser, 7... Deaerator, 10... Condensate recirculation line, 11A... Supply line, 13...・
Partition plate, 14...Water flow, 15...Auxiliary deaerator,
16... Steam supply line, 17... Condensate supply line,
18.19...Line, 20...Sample extraction point, 2
1...Water chamber, 22.Leak detection point, 28...One corner member. 1982 Patent Application No. 230254 Commissioner of the Japan Patent Office on April 2, 1981 Relationship to the case of the person amending the condenser name of the invention Patent applicant address 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Name (
6211) Mitsubishi Heavy Industries, Ltd. Agent 1 amends the description of the scope of claims as shown in the attached sheet. 2. "Flows to the boiler" on page 2, line 13 of the specification [Corrected to "J brought into the boiler." [Attachment] Claims At least one partition plate and a corner member are installed in the partition so that the flow of condensate becomes a piston flow from the upstream side to the downstream side in the real well at the bottom of the condenser. A condenser characterized in that an auxiliary deaerator is installed in the condensate recirculation line, and a salt meter is installed in the part where the above-mentioned diaphragm is provided.

Claims (1)

【特許請求の範囲】[Claims] 復水器下部のホットウェル内に復水の流れを上流側から
下流側へピストン流れとなるように少&くとも1枚以上
のしきシ板及び隅部にコーナ一部材を設置するとともに
復水再循環ラインに補助脱気器を設置し、上記しきり板
を設けた部分に検温針を設置したことを特徴とする復水
器。
In order to make the condensate flow in a piston flow from the upstream side to the downstream side in the hot well at the bottom of the condenser, install at least one or more baffle plates and a corner member at the corner, and also prevent the condensate from flowing. A condenser characterized in that an auxiliary deaerator is installed in the recirculation line, and a temperature measuring needle is installed in the part where the above-mentioned partition plate is provided.
JP23025483A 1983-12-06 1983-12-06 Condenser Pending JPS60122889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23025483A JPS60122889A (en) 1983-12-06 1983-12-06 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23025483A JPS60122889A (en) 1983-12-06 1983-12-06 Condenser

Publications (1)

Publication Number Publication Date
JPS60122889A true JPS60122889A (en) 1985-07-01

Family

ID=16904921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23025483A Pending JPS60122889A (en) 1983-12-06 1983-12-06 Condenser

Country Status (1)

Country Link
JP (1) JPS60122889A (en)

Similar Documents

Publication Publication Date Title
CN209894413U (en) Hydrogen leakage monitoring device of hydrogen fuel cell
JP3818068B2 (en) Fuel cell system
JP6108021B1 (en) Anion detection system
CN105417609A (en) Method for adjusting dissolved gases in boiler feed water
JPS59145484A (en) Condenser
JPS60122889A (en) Condenser
CN206890501U (en) A kind of exceeded governing system of thermal power generation unit condensate dissolved oxygen content
JP3758465B2 (en) Condenser, power plant equipment, and operation method thereof
JPS59164885A (en) Method of deaerating of condensate and detection of leakage of cooling water into condensate
CN206740413U (en) A kind of simulation experiment system of HVDC-valve inner cold system
CN107255270A (en) A kind of exceeded administering method of thermal power generation unit condensate dissolved oxygen content
JPH1130564A (en) Seawater-leakage detector
CN106940329A (en) It is a kind of to measure the experimental provision that the air amount of leaking into condenses influence on steam
CN113847554A (en) Condenser leakage pipe row positioning device and corresponding leakage pipe row positioning method
CN206515071U (en) A kind of condenser performance test device
JP3328550B2 (en) Seawater leak detector
JP5535005B2 (en) Evaporative concentration can
CN110486709A (en) A kind of nuclear power station steam generator drainage
JPS59150510A (en) Method of starting operation of power plant
JP4417546B2 (en) Salt inspection equipment
CN215061994U (en) Pure water preheating mechanism of pure steam generator
CN216557095U (en) Cold-state starting and heating device for deaerator of thermal power plant
CN221223089U (en) Water cooling device for fine treatment and sampling of condensate in gas turbine combined cycle power plant
CN211232842U (en) Vacuumizing ammonia water passivation furnace shutdown maintenance system
JPH075844Y2 (en) Sealed water cooling system for deoxidizer