JPS59150510A - Method of starting operation of power plant - Google Patents

Method of starting operation of power plant

Info

Publication number
JPS59150510A
JPS59150510A JP2486783A JP2486783A JPS59150510A JP S59150510 A JPS59150510 A JP S59150510A JP 2486783 A JP2486783 A JP 2486783A JP 2486783 A JP2486783 A JP 2486783A JP S59150510 A JPS59150510 A JP S59150510A
Authority
JP
Japan
Prior art keywords
condensate
hot well
cooling water
condensed water
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2486783A
Other languages
Japanese (ja)
Inventor
Seiichi Shirakawa
白川 精一
Taketoshi Furusawa
古沢 武敏
Takashi Morimoto
敬 森本
Takeshi Arase
荒瀬 健
Koji Hiramoto
康治 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2486783A priority Critical patent/JPS59150510A/en
Publication of JPS59150510A publication Critical patent/JPS59150510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To reduce dissolved oxygen in condensed water and to facilitate the detection of a cooling water leaking place, by heating condensed water by bringing the same into contact with steam before dropping the condensed water in a hot well while converting the stream of the condensed water in the hot well to a piston stream. CONSTITUTION:A partition plate 13 is provided to the hot well 2 of a condenser 1 and the stream of the condensed water in the hot well 2 is converted to a piston stream while the spray position from a condensed water recirculation line 10 is arranged to the upstream side of the piston stream in the hot well 2. If the partition plate 13 is arranged in the direction at right angles to the group of cooling water pipes 3 and detection points 15 are provided to predetermined points, a cooling water leaking place is discovered more effectively. In spraying and letting fall the condensed water into the condenser 1 from the condensed water recirculation line 10, the falling condensed water is contacted with steam supplied from a steam supply line 16 prior to reaching the hot well 2 and again heated to further reduce dissolved oxygen in the condensed water.

Description

【発明の詳細な説明】 短時間で復水中の溶存酸素を低減すると同時に、冷却水
漏洩箇所の検出を容易にした改良された復水の脱気方法
および冷却水漏洩の検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved condensate degassing method and a cooling water leakage detection method that reduce dissolved oxygen in condensate in a short time and at the same time facilitate the detection of cooling water leakage locations.

従来、火力発電プラントにおーては、建設後の起動およ
び定検後の起動時、復水器において、補給水中の溶存酸
素は出来るだけ低減させた後、ボイラ本体へ供給される
。このために、復水器と脱気器とを連絡した、いわゆる
復水系統再循環ラインによシ復水を循環して復水中の溶
存酸素を次第に低減させている。この工程においては、
従来の実績では、復水中の溶存酸素がボイラ本体へ供給
可能となるまで低減するには5〜6時間は必要としてい
る。
Conventionally, in a thermal power plant, during startup after construction and after periodic inspection, dissolved oxygen in make-up water is reduced as much as possible in a condenser and then supplied to the boiler main body. To this end, condensate is circulated through a so-called condensate system recirculation line that connects the condenser and deaerator to gradually reduce dissolved oxygen in the condensate. In this process,
According to conventional results, it takes 5 to 6 hours to reduce the dissolved oxygen in the condensate to the point where it can be supplied to the boiler main body.

従来用いられている起動時の復水の脱気方法のフローシ
ートを第1図、第2図に示す。以下第1図、第2図を用
いて説明する。
A flow sheet of a conventional method of degassing condensate at startup is shown in FIGS. 1 and 2. This will be explained below using FIGS. 1 and 2.

第1図において、1は復水器、2はホットウェル、3は
冷却水の通る管群、4は真空ポンプ、5は復水ポンプ、
6はグランドコンデンサー、7は脱気器、8は脱気器貯
水槽を示す。補給水より供給されてホットウェル2に貯
った復水は、真空ポンプ4を起動して復水器1内を真空
にすると同時に、ライン9より復水ポンプ5、グランド
コンデンサー6を通じ、復水再循環ライン10から復水
器1へもどし、復水器1内へ噴霧落下させて復水中の溶
存酸素を低減させていた。また、この工程のみでは、復
水中の溶存酸素をボイラ本体へ通水できる条件まで十分
に低減できなめため、さらにライン11から脱気器7へ
通水し、との脱気器7で真空加熱脱気を行ない、脱気器
貯水槽8を経てライン12より復水器1へ供給する工程
が実施されている。これらの工程を循環してホットウェ
ル2内の復水中の溶存酸素を低減させるものであるが、
通常、ボイラ本体への通水条件まで復水中の溶存酸素を
低減させるにはかなりの時間を必要としている。また、
冷却水漏洩時の検出方法は、従来、復水器1のホットウ
ェル2あるいは復水ポンプ5の出口等の取出しライン1
5′から復水を取出し、復水器の電気伝導度変化の傾向
から冷却水漏洩を検出する方法や、この取出した復水を
陽イオン交換樹脂層を通すことにより復水に含まれる塩
類を酸の形に変えて電気伝導度を測定し、その変化の傾
向から冷却水漏洩を検出する方法で実施されておシ、冷
却水管群の漏洩箇所の検出手段としては、第2図に示す
ように、ホットウェル2の中にA室、B室の部屋に分け
る仕切板16を設けA室、B室のライン9−11,9−
2の適宜位置にそれぞれ検出器15.15を設置して冷
却水漏洩箇所の検出を行なっている。このよう々従来の
方法においては、ちょうど冷却水漏洩箇所に検出計が設
置されていると冷却水漏洩の検出は容易であるが1、 
必ずしも漏洩箇所に検出計があるとはかぎらず、冷却水
漏洩の検出に時間を要す場合があり、大きな事故を引き
起す場合もある。
In Figure 1, 1 is a condenser, 2 is a hot well, 3 is a group of tubes through which cooling water passes, 4 is a vacuum pump, 5 is a condensate pump,
6 is a ground condenser, 7 is a deaerator, and 8 is a deaerator water tank. The condensate supplied from make-up water and stored in the hot well 2 starts the vacuum pump 4 to create a vacuum in the condenser 1, and at the same time, the condensate is transferred from the line 9 through the condensate pump 5 and the ground condenser 6. The dissolved oxygen in the condensate was returned to the condenser 1 through the recirculation line 10 and sprayed down into the condenser 1 to reduce dissolved oxygen in the condensate. In addition, since this step alone cannot sufficiently reduce the dissolved oxygen in the condensate to the point where water can be passed to the boiler main body, water is further passed from line 11 to deaerator 7, and vacuum heating is performed in deaerator 7. A process is carried out in which the deaeration is carried out and the water is supplied to the condenser 1 through the deaerator water tank 8 and through the line 12. These steps are circulated to reduce dissolved oxygen in the condensate in the hot well 2.
Normally, it takes a considerable amount of time to reduce the dissolved oxygen in the condensate to the point where the water passes through the boiler body. Also,
Conventionally, the method for detecting cooling water leakage is to detect the hot well 2 of the condenser 1 or the outlet line 1 of the condensate pump 5, etc.
There is a method of extracting condensate from 5' and detecting cooling water leakage from the tendency of change in electrical conductivity of the condenser, and a method of removing salts contained in the condensate by passing the extracted condensate through a cation exchange resin layer. The method used is to measure electrical conductivity in the acid form and detect cooling water leakage based on the tendency of the change.As a means of detecting leakage points in a group of cooling water pipes, as shown in Figure 2. A partition plate 16 is installed in the hot well 2 to separate rooms A and B, and the lines 9-11, 9- for A and B rooms are installed.
Detectors 15 and 15 are installed at appropriate positions of 2 to detect the location of the cooling water leak. As described above, in conventional methods, it is easy to detect a cooling water leak if a detector is installed exactly at the location of the cooling water leak.
There is not always a detector at the leak location, and it may take time to detect a cooling water leak, which may lead to a major accident.

最近の火力発電プラントの稼動状態は、従来のように連
続運転を実例するプラントは少なく、給電事情によシ週
末停止あるいは毎日発停などの不連続な運転を実施する
傾向にある。このような状況においては、停止したプラ
ントを再起動する際、出来るだけ短時間で復水中の溶存
酸素を低減させボイラ本体への通水条件および点火条件
へ到達させる必要があり、冷却水漏洩によるトラブルも
出来るだけ短時間に漏洩箇所を検出し対処する必要があ
シ、従来の方法では、上記時間の短縮は不可能である。
Regarding the operating status of recent thermal power plants, there are few plants that operate continuously as in the past, and there is a tendency for plants to operate discontinuously, such as shutting down on weekends or starting and stopping every day, depending on the power supply situation. In such a situation, when restarting a stopped plant, it is necessary to reduce the dissolved oxygen in the condensate and reach the conditions for water flow to the boiler body and ignition conditions in the shortest possible time. It is necessary to detect and deal with leakage points in as short a time as possible, and with conventional methods, it is impossible to shorten the above-mentioned time.

本発明の目的は、上記のような従来の欠点を解消し、発
電プラントの起動時、短時間で効果的に復水中の溶存酸
素を低減させると同時に、復水への冷却水漏洩箇所の検
出を容易にする方法による発電プラントの起動方法を提
供せるものである。
The purpose of the present invention is to eliminate the above-mentioned conventional drawbacks, and to effectively reduce dissolved oxygen in condensate in a short time when starting up a power plant, and at the same time, to detect locations where cooling water leaks into condensate. It is possible to provide a method for starting up a power generation plant by a method that facilitates.

上記目的を達成するための本発明の第1の特徴(第1発
明)は、復水器ホットウェル内に少なくとも1枚以上の
しきり板を設け、前記ホットウェル内の復水の流れをピ
ストン流れとするとともに前記ホットウェル内に設けた
しきり板で区切った流路に配設した冷却水漏洩検出箇所
の検出を容易にした発電プラントの起動方法にある。
A first feature (first invention) of the present invention for achieving the above object is to provide at least one or more partition plates in the condenser hotwell, and to divide the flow of condensate in the hotwell into a piston flow. The present invention also provides a method for starting a power generation plant that facilitates the detection of a cooling water leakage detection point arranged in a flow path separated by a partition plate provided in the hot well.

本発明のもう一つの特徴(第2発明)は、上記起動方法
において、復水中の溶存酸素を低減させる際に、復水再
循環ラインから供給される復水がホットウェルへ落下す
る前に蒸気と接触させて復水を加熱させる工程を付加し
た発電プラントの起動方法にある。
Another feature of the present invention (second invention) is that in the above startup method, when reducing dissolved oxygen in the condensate, the condensate supplied from the condensate recirculation line is steamed before falling into the hot well. The method of starting up a power generation plant includes a step of heating condensate by bringing it into contact with water.

以下、本発明を実施例に基いて図面と共に詳述する。Hereinafter, the present invention will be described in detail based on examples and with drawings.

第3図は、本発明の第1の特徴(第1発明)を適用した
実施例を示すフローシートである。第3図において前回
と同符号のものは同一の作用効果を示すので説明は省略
する。ここでIIAは脱気水のボイラ(図示省略)への
供給ライン、13は、本第1発明を実施するために付加
されるしきり板であシ、15′は試料取出しラインであ
る。第4図、第5図、第6図は第3図で付加したホット
ウェル内に付設したしきり板13の状況を示した説明図
である。このしきり板13は、ホットウェル2内に少な
くとも1枚以上配設されるものである。そして、復水再
循環ライン10からの噴霧位置をホットウェル2内の復
水の流れの上流側に設置し、ホットウェル2内の復水の
流れが上記しきり板13を介して上流側から下流側へピ
ストン流れとするためのも°のであり、第4図では1枚
、第5図では2枚を千鳥状に、第6図では3枚を千鳥状
に配設したものである。14はホラ)・ウェル2内の水
の流れを示す。15は、本発明の冷却水漏洩箇所を検出
するだめの試料の取出し点を示し、これらの各点より採
取した試料を検塩計により電気伝導度変化の傾向から冷
却水漏洩箇所を検出するものである。
FIG. 3 is a flow sheet showing an embodiment to which the first feature of the present invention (first invention) is applied. In FIG. 3, the same reference numerals as the previous one indicate the same operation and effect, so the explanation will be omitted. Here, IIA is a supply line for degassed water to a boiler (not shown), 13 is a partition plate added to carry out the first invention, and 15' is a sample takeout line. FIG. 4, FIG. 5, and FIG. 6 are explanatory diagrams showing the state of the partition plate 13 attached to the hot well added in FIG. 3. At least one partition plate 13 is disposed within the hot well 2. Then, the spray position from the condensate recirculation line 10 is installed on the upstream side of the flow of condensate in the hot well 2, so that the flow of condensate in the hot well 2 passes from the upstream side to the downstream side via the baffle plate 13. They are also used to make the piston flow to the side, and one piece is shown in FIG. 4, two pieces are arranged in a staggered manner in FIG. 5, and three pieces are arranged in a staggered manner in FIG. 14 indicates the flow of water in the well 2. Reference numeral 15 shows the sample extraction points for detecting the location of cooling water leakage according to the present invention, and the location of the cooling water leakage is detected from the tendency of change in electrical conductivity of the samples collected from each of these points using a salt meter. It is.

第7図は、起動時のホットウェルから出てくる復水中の
溶存酸素濃度と復水器内の真空度との時間的な変化を示
したものである。曲線Aは、復水器内の真空度を示し、
曲線Bば、従来のしきり板なしの方法によるホットウェ
ル内の復水の流動条件が復水中の溶存酸素の低減の時間
的な変化を示したものである。また、曲線Cは、本第1
発明の上記実施例に適用し、ホットウェル内の流れがピ
ストン流れとした時の復水中の溶存酸素のの低減の時間
的変化を示したものである。
FIG. 7 shows temporal changes in the dissolved oxygen concentration in the condensate coming out of the hot well at startup and the degree of vacuum in the condenser. Curve A shows the degree of vacuum in the condenser,
Curve B shows the temporal change in the reduction of dissolved oxygen in the condensate under the flow conditions of condensate in the hot well according to the conventional method without a baffle plate. In addition, curve C is the first
This figure shows the temporal change in the reduction of dissolved oxygen in condensate when the flow in the hot well is a piston flow applied to the above embodiment of the invention.

このように、第1図に示すような従来の復水器ホットウ
ェル2に第4図、第5図、第6図に示すようなしきシ板
13を設け、ホットウェル内の復水の流れをピストン流
れとし、復水再循環ライン10からの噴霧位置をホット
ウェル内のピストン流れの上流側に設置することにより
ホットウェル内の復水中の溶存酸素を低減するための時
間を短縮することが可能と々る。なお、ホットウェル内
のしきり板13は、第4図より第5図、第5図よシ第6
図と数を増やすにつれて図の斜線で示す淀み部2Aが減
少し、ホットウェル内の流れはピストン流れに近づくた
め第7図の曲線Bから曲線Cに近い変化で溶存酸素の低
減が可能となる。また、冷却水漏洩箇所の検出も第4図
、第5図、第6図としきり板13を増やし′、かつ、し
きり板13を冷却水管3群と直角方向に配設し、各点に
検出点を設けると冷却水漏洩箇所の発見により効果的で
ある。このしきシ板を冷却水管群と直角方向に配設する
ことは、冷却水漏洩が管群と氷室との境界である管板か
らの漏洩が多−ことから、冷却水漏洩時の検出までの応
答性が早くなるため発見までの時間が短縮されることに
なる。
In this way, the conventional condenser hot well 2 as shown in FIG. 1 is provided with a cutting plate 13 as shown in FIGS. 4, 5, and 6 to control the flow of condensate in the hot well. By setting the spray position from the condensate recirculation line 10 to the upstream side of the piston flow in the hot well, the time required to reduce dissolved oxygen in the condensate in the hot well can be shortened. Possible. Note that the partition plate 13 in the hot well is shown in Fig. 5 from Fig. 4, and Fig. 6 from Fig. 5.
As the number of figures increases, the stagnation area 2A shown by diagonal lines in the figure decreases, and the flow in the hot well approaches a piston flow, making it possible to reduce dissolved oxygen by changing from curve B to curve C in Figure 7. . In addition, to detect cooling water leakage points, the number of partition plates 13 is increased as shown in Figs. Providing points is more effective in finding locations where cooling water leaks. Placing this shield plate perpendicularly to the cooling water pipe group is important because cooling water often leaks from the tube plate, which is the boundary between the tube group and the ice chamber, so it is difficult to detect cooling water leaks. Faster responsiveness will shorten the time it takes to discover something.

第8図、第9図、第10図は本発明の第2の特徴(第2
発明)を適用した実施例を示すフローシートである。こ
れらの図で前記第3図と同符号のものは同一の作用効果
を示すので詳細を省略する。
8, 9, and 10 show the second feature (second feature) of the present invention.
2 is a flow sheet showing an example to which the invention) is applied. In these figures, the same reference numerals as in FIG. 3 indicate the same effects, so the details will be omitted.

上図で16は、本第2発明を実施するために付加される
蒸気供給ラインである。
In the above figure, 16 is a steam supply line added to implement the second invention.

本第2発明の上記実施例による方法は、第1発明の実施
例で示したしきり板13をホットウェル2の中に設けた
復水器1において、真空ポンプ4を起動すると同時にラ
イン9より復水ポンプ5、グランドコンデンサー6を通
じ復水再循環ライン10から復水器1内へ噴霧落下させ
る際に、落下してくる復水がホットウェル2に到達する
前に、蒸気供給ライン16から供給される蒸気と接触さ
せ、落下してくる復水を再び加熱し、復水中の溶存酸素
をさらに低減させるものである。すなわちライン10か
ら噴霧落下してくる復水は、復水器1内の温度、真空度
に相当する飽和酸素濃度と々るが落下するにつれて復水
は、冷却水管群3によシさらに冷却されるため逆に酸素
を吸収し溶存酸素が増える傾向となる。これを防ぎ、か
つ溶存酸素をさらに低減する目的で蒸気供給ライン16
よシ蒸気を供給するものである。第11図に水中への酸
素の溶解度を示したが、水中の溶存酸素量は温度、真空
度によって決まり、温度を5〜10℃上げることにより
水中の溶存酸素量は急激に減少するため、上記方法によ
る蒸気の供給は水信の脱気方法としてより効果的である
。また、との復水再循環ライン10からの復水の供給位
置と蒸気供給ライン16との組合せの設置場所としては
、本発明のホットウェル2に設けたしきシ板13による
ホットウェル2内のピストン流れの効果を有効に利用す
る上で、第9図に示すようにホットウェル2の出口から
出きるだけ離れたホットウェル内のピストン流れの上流
側へ供給し、ホットウェル内の復水と脱気された復水の
交換時間を短縮しホットウェル内の復水の交換がより効
果的に行なわれる位置とする。第12図に本発明を実施
した時の起動時のホットウェルから出てくる復水中の溶
存酸素濃度と復水器内の真空度との時間的な変化を示し
た。曲線Aは、復水器内の真空度を示し、曲線りは従来
のしきシ板なしの場合に、復水再循環水と接触するよう
に蒸気を供給し、落下する水を再加熱脱気する場合の復
水中の溶存酸素の低減の時間的変化を示したもので、曲
線Eは、本第2発明のしきり板を設けた同様な場合を示
したものである。
The method according to the above-described embodiment of the second invention is such that in the condenser 1 in which the baffle plate 13 shown in the embodiment of the first invention is installed in the hot well 2, the vacuum pump 4 is started and at the same time water is returned from the line 9. When the condensate is sprayed down from the condensate recirculation line 10 into the condenser 1 through the water pump 5 and the gland condenser 6, the condensate is supplied from the steam supply line 16 before reaching the hot well 2. This method heats the falling condensate again and further reduces dissolved oxygen in the condensate. In other words, the condensate spray falling from the line 10 has a saturated oxygen concentration corresponding to the temperature and vacuum level inside the condenser 1, but as it falls, the condensate is further cooled by the cooling water pipe group 3. On the contrary, it tends to absorb oxygen and increase dissolved oxygen. In order to prevent this and further reduce dissolved oxygen, the steam supply line 16
It supplies fresh steam. Figure 11 shows the solubility of oxygen in water.The amount of dissolved oxygen in water is determined by the temperature and degree of vacuum, and as the temperature increases by 5 to 10 degrees Celsius, the amount of dissolved oxygen in water decreases rapidly. Supplying steam by this method is more effective as a method of degassing water lines. In addition, the installation location of the combination of the condensate supply position from the condensate recirculation line 10 and the steam supply line 16 is as follows: In order to effectively utilize the effect of the piston flow, as shown in Fig. 9, the piston flow is supplied to the upstream side of the piston flow in the hot well as far away as possible from the outlet of the hot well 2, and the condensate water in the hot well and The exchange time for degassed condensate is shortened, and the position in the hot well allows for more effective exchange of condensate. FIG. 12 shows temporal changes in the dissolved oxygen concentration in the condensate coming out of the hot well and the degree of vacuum in the condenser at startup when the present invention is implemented. Curve A shows the degree of vacuum in the condenser, and the curved line is the one in which steam is supplied in contact with the condensate recirculated water and the falling water is reheated and degassed in the case without conventional baffle plates. The curve E shows the temporal change in the reduction of dissolved oxygen in the condensate in the case where the diaphragm plate of the second invention is provided.

以上の様に、本発明を適用することにより従来行なって
いた起動時の復水中の溶存酸素を低減する工程は大幅に
短縮できることになり、第1図に示すような従来設備と
して配設されている脱気器7、および脱気器貯水槽8を
介さずにボイラ本体へ供給できるという利点もある。
As described above, by applying the present invention, the conventional process of reducing dissolved oxygen in condensate at startup can be significantly shortened, and it is possible to significantly shorten the conventional process of reducing dissolved oxygen in condensate water at startup, and it is possible to significantly shorten the conventional process of reducing dissolved oxygen in condensate at startup. There is also the advantage that it can be supplied to the boiler main body without passing through the deaerator 7 and the deaerator water tank 8.

また、冷却水漏洩箇所の検出も第4図、第5図、第6図
としきυ板を増やし、かつ、しきり板を冷却水管群と直
角方向に配設し、各点に検出点を設けると冷却水漏洩箇
所の発見によシ効果的である。このしきシ板を冷却水管
群と直角方向に配設することは、冷却水漏洩が管群と氷
室との境界である管板からの漏洩が多いことから、冷却
水漏洩時の検出までの応答性が早くなるため発見までの
時間が短縮されることになるのである。
In addition, for detection of cooling water leakage points, the number of sieve plates is increased as shown in Figures 4, 5, and 6, and the sieve plates are arranged perpendicular to the cooling water pipe group, and detection points are provided at each point. This is effective for finding cooling water leaks. Placing this shield plate perpendicular to the cooling water pipe group is important because cooling water often leaks from the tube plate, which is the boundary between the tube group and the ice chamber, so the response to the detection of a cooling water leak can be improved. This will shorten the time it takes for discovery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の起動時の復水の脱気方法と冷却水漏洩の
検出方法を示す起動方法フローシート。 第2図は第1図を■−■線矢視方向からみた平面図、第
3図は従来の方法に本第1発明のしきり板を配設した起
動方法を示すフローシート、第4図、第5図、第6図は
第1発明を適用したホットウェル内のしきり板と冷却水
漏洩検出用取出し点を示す平面図で、第4図はしきり板
が1枚の場合、第5図はしきり板が2枚の場合、第6図
はしきシ板が3枚の場合を示す。第7図は、起動時のホ
ットウェルから出てくる復水中の溶存酸素濃度と復水器
内の真空度との時間的な変化を示すもので、従来の方法
による変化と第1発明のしきシ板を設けた場合とを示し
た特性図である。第8図は、本第2発明の起動時の復水
の脱気方法と冷却水漏洩の検出方法を示す起動方法のフ
ローシート、第9図は第8図をト1線矢視方向からみた
平面図、第10図は第9図をX−X線矢視方向からみた
側面図、第11図は、水中への酸素の溶解度を示す特性
図、第12図は、第2発明を適用した場合の起動時のホ
ットウェルから出てくる復水中の溶存酸素濃度と復水器
内の真空度との時間的な変化を示す特性図である。 1・・復水器、2・・ホットウェル、311・冷却水管
群、4・・真空ポンプ、5・・復水ポンプ、6・骨グラ
ンドコンデンサー、9・・ライン、10・・復水再循環
ライン、11A・・ボイラへの供給ライン、12・・ラ
イン、13・・しきシ板、14・・ホットウェル内の水
の流れ、15・・試料の取出し点、15′・・試料取出
しライン、16・・蒸気供給ライン。 第3図 イ フ =99− 第4図 第5図 第11図 0      5      10      15 
     20温i(で) 第1z図 第1頁の続き 0発 明 者 荒瀬健 東京都千代田区丸の内二丁目5 番1号三菱重工業株式会社内 0発 明 者 平本康泊 東京都千代田区丸の内二丁目5 番1号三菱重工業株式会社内
Figure 1 is a startup method flow sheet showing a conventional method for degassing condensate and detecting cooling water leakage during startup. Fig. 2 is a plan view of Fig. 1 viewed from the direction of the arrow ■-■, Fig. 3 is a flow sheet showing a starting method in which the partition plate of the first invention is provided in addition to the conventional method, Fig. 4; Figures 5 and 6 are plan views showing the diaphragm in the hot well to which the first invention is applied and the extraction point for detecting cooling water leakage. When there are two partition plates, FIG. 6 shows a case where there are three partition plates. Figure 7 shows temporal changes in the dissolved oxygen concentration in the condensate coming out of the hot well at startup and the degree of vacuum in the condenser, and shows the change due to the conventional method and the method according to the first invention. FIG. 7 is a characteristic diagram showing a case where a shield plate is provided. Figure 8 is a flow sheet of a startup method showing a method for degassing condensate and a method for detecting cooling water leakage at startup according to the second invention, and Figure 9 is a view of Figure 8 from the direction of arrow T1. A plan view, FIG. 10 is a side view of FIG. 9 viewed from the direction of the X-X arrow, FIG. 11 is a characteristic diagram showing the solubility of oxygen in water, and FIG. 12 is a diagram in which the second invention is applied. FIG. 3 is a characteristic diagram showing temporal changes in the dissolved oxygen concentration in the condensate coming out of the hot well and the degree of vacuum in the condenser at startup. 1. Condenser, 2. Hot well, 311. Cooling water pipe group, 4. Vacuum pump, 5. Condensate pump, 6. Bone gland condenser, 9. Line, 10. Condensate recirculation. Line, 11A... Supply line to the boiler, 12... Line, 13... Strain board, 14... Water flow in the hot well, 15... Sample take-out point, 15'... Sample take-out line, 16...Steam supply line. Figure 3 If=99- Figure 4 Figure 5 Figure 11 0 5 10 15
20 Oni (at) Figure 1z, page 1 continued 0 Inventor Ken Arase Mitsubishi Heavy Industries, Ltd., 2-5-1 Marunouchi, Chiyoda-ku, Tokyo 0 Inventor Yasuto Hiramoto 2 Marunouchi, Chiyoda-ku, Tokyo 5-1 Mitsubishi Heavy Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)発電プランとの起動時に、復水中の溶存酸素を低
減させるに際し、復水再循環水が供給される復水器ホッ
トウェル内に少なくとも1枚以上のしきシ板を設け、前
記ホットウェル内の復水の流れを前記1−きシ板を介し
て上流側から下流側へピストン流れとなるようにすると
ともにしきり板を設けた部分に検塩計を設置し、冷却水
漏洩箇所の検出を容易にしたととを特徴とする改良され
た復水の脱気方法および復水への冷却水漏洩検出方法に
よる発電プラントの起動方法。
(1) When starting up a power generation plan, in order to reduce dissolved oxygen in condensate, at least one or more baffle plate is provided in the condenser hot well to which condensate recirculated water is supplied, and the hot well The flow of condensate inside the tank is made to flow from the upstream side to the downstream side through the 1- sash plate as a piston flow, and a salt meter is installed in the area where the swipe plate is installed to detect the location of cooling water leakage. A method for starting up a power generation plant using an improved method for degassing condensate and a method for detecting leakage of cooling water into condensate, characterized by:
(2)発電プラントの起動時に、復水中の溶存酸素を低
減させるに際し、復水再循環水が供給される復水器ホッ
トウェル内に少くとも1枚以上のしきり板を設け、前記
ホットウェル内の復水の流れを前記しきり板を介して上
流側から下流側へピストン流れとなるようにすると共に
、復水再循環ラインからの復水の供給配管と前記ホット
ウェルとの間に、落下してくる復水と接触するように蒸
気を供給する配管を設け、落下する復水の液温を上昇さ
せてホットウェル内の復水と脱気された復水の交換時間
を短縮させ、更に、前記しきり板を設けた部分に検温針
を設置し、冷却水漏洩箇所の検出を容易にしたことを特
徴とする改良された復水の脱気方法および復水の冷却水
漏洩検出方法による発電プラントの起動方法。
(2) In order to reduce dissolved oxygen in condensate at the time of startup of a power generation plant, at least one partition plate is installed in the condenser hotwell to which recirculated condensate water is supplied, and The flow of the condensate is made to be a piston flow from the upstream side to the downstream side through the baffle plate, and the condensate water that falls between the condensate supply pipe from the condensate recirculation line and the hot well is Piping for supplying steam is installed so that it comes into contact with the falling condensate, and the temperature of the falling condensate is increased to shorten the exchange time between the condensate in the hot well and the degassed condensate. A power generation plant using an improved condensate deaeration method and a condensate cooling water leakage detection method, characterized in that a temperature measuring needle is installed in the part where the above-mentioned partition plate is provided to facilitate detection of a cooling water leakage point. How to start.
JP2486783A 1983-02-18 1983-02-18 Method of starting operation of power plant Pending JPS59150510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2486783A JPS59150510A (en) 1983-02-18 1983-02-18 Method of starting operation of power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2486783A JPS59150510A (en) 1983-02-18 1983-02-18 Method of starting operation of power plant

Publications (1)

Publication Number Publication Date
JPS59150510A true JPS59150510A (en) 1984-08-28

Family

ID=12150157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2486783A Pending JPS59150510A (en) 1983-02-18 1983-02-18 Method of starting operation of power plant

Country Status (1)

Country Link
JP (1) JPS59150510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105417609A (en) * 2015-12-07 2016-03-23 华北电力大学(保定) Method for adjusting dissolved gases in boiler feed water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105417609A (en) * 2015-12-07 2016-03-23 华北电力大学(保定) Method for adjusting dissolved gases in boiler feed water

Similar Documents

Publication Publication Date Title
KR920009576B1 (en) Waste heat recovery system
CN109457065A (en) A kind of blast furnace washing slag water dead steam recovery system
RU2631182C2 (en) Process of fresh water preliminary heating in steam-turbine power plants with process steam vent
RU2403320C2 (en) Method for anti-corrosion protection of steam and water circuits of power plants
US9302300B2 (en) Method for completing a chemical power plant cleaning
JPS59150510A (en) Method of starting operation of power plant
JP3758465B2 (en) Condenser, power plant equipment, and operation method thereof
JPS59164885A (en) Method of deaerating of condensate and detection of leakage of cooling water into condensate
JP2738473B2 (en) Method and apparatus for monitoring turbine through which steam in condensate circulation system passes
JPH10325505A (en) Gasification compound power generation equipment
CN108300500A (en) Cooling technique and system before a kind of asphalt moulding
JPS60122889A (en) Condenser
JPS60114694A (en) Condenser
JPS6136122B2 (en)
JPS6242127B2 (en)
RU168692U1 (en) Superheater Separator
JPH1122909A (en) Detecting method of leakage in fine tube for heat exchanger
SU538077A1 (en) Device for heating and circulation of liquor
JP2002098306A (en) Boiler equipment, and its operation method
SU909413A1 (en) Boiler unit
JPS6319683Y2 (en)
JPH0719410A (en) Drain recovery device
JP2023176114A (en) Negative ion detection device
JPS6212805Y2 (en)
JP2019120444A (en) Cooling device