JPS60121263A - Production of electrode wire for electric discharge working - Google Patents

Production of electrode wire for electric discharge working

Info

Publication number
JPS60121263A
JPS60121263A JP23915684A JP23915684A JPS60121263A JP S60121263 A JPS60121263 A JP S60121263A JP 23915684 A JP23915684 A JP 23915684A JP 23915684 A JP23915684 A JP 23915684A JP S60121263 A JPS60121263 A JP S60121263A
Authority
JP
Japan
Prior art keywords
wire
molten metal
coating
diameter
electrode wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23915684A
Other languages
Japanese (ja)
Other versions
JPS648706B2 (en
Inventor
Iefuda Tarumoa
タルモア イエフダ
Mitsushieru Koonman
コーンマン ミツシエル
Osukaa Deiru
デイル オスカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI DENKO KK
Original Assignee
DAIICHI DENKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIICHI DENKO KK filed Critical DAIICHI DENKO KK
Publication of JPS60121263A publication Critical patent/JPS60121263A/en
Publication of JPS648706B2 publication Critical patent/JPS648706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes

Abstract

PURPOSE:To produce the titled electrode wire of which the diameter and thickness of the coating have prescribed values with good productivity by preheating a yarn-like blank material having a large diameter to a specific temp. then transferring vertically upward the blank material, passing the material through the inside of a molten metal at a specific speed, solidifying the coating and drawing the wire. CONSTITUTION:A yarn-like blank material 2 having the diameter larger than the diameter of a desired core wire is fed from a supply device 1 to a preheating chamber 3 and is preheated to 110-350 deg.C by a current collector 5. The material 2 is then guided vertically upward and is passed through the molten metal in the nozzle 7 of a crucible 8 via apertures 7a, 7b to coat the molten metal on the surface of the material 2. The feed speed of the material 2 is so set that the stagnation time in the molten metal attains <=5X10<-2>sec. The material 2 is further passed through a cooler 10 and is taken up with a take-up device 11. The coated material 2 is drawn to attain the prescribed diameter and coating thickness. The electrode wire for electric discharge working is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属層で被覆された芯線を包含する放電加工
用電極線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing an electrode wire for electric discharge machining, which includes a core wire covered with a metal layer.

(従来技術〉 芯線が金属層で被覆されてなる放電加工用電極線は、特
に米国特許第4,287,404号において既に提案さ
れている。そのような電極線は、放電の開始を容易にし
、またこれに流れる強い電流に対して強さを有する。亜
鉛・または亜鉛合金の被覆を使用すると、これらの金属
の高い蒸気圧が放電による発熱に対する熱障壁となって
、比較的大きい電流によっても芯線が破断する危険は減
少する。
(Prior art) Electrode wires for electrical discharge machining, in which the core wire is coated with a metal layer, have already been proposed, in particular in US Pat. No. 4,287,404. Such electrode wires facilitate the initiation of discharge. , and is strong against strong currents flowing through it. When zinc or zinc alloy coatings are used, the high vapor pressure of these metals acts as a thermal barrier against the heat generated by the discharge, making it resistant even to relatively large currents. The risk of core wire breakage is reduced.

そのような電極は、金属被覆を電気メッキすることによ
って得られるが、そのようなメソキ工程の速さと、工程
に固有な汚染の問題とのために、比較的高価なものにつ
いている。ところで一方、電極線の消耗は比較的大きい
。経費節約のために、閉ループの電極線を作って、その
ループの一部分をメッキ槽の中を通過させて、電極線が
使用されるにつれてその層を再生するようにすることが
提業された。ごの解決法には、機械の改造ならびに放電
加工に必要な電極線の送り速度にメ・7キ浴を適応させ
ることが前提となるので、簡単な問題ではない。最後に
メッキ層の維持管理は、その機械の運転者の担当範囲で
はない。このことが疑いもなり、一般にそのような電極
線を放電加工機で再生しない理由である。
Such electrodes are obtained by electroplating a metallization, but are relatively expensive due to the speed of such a metallization process and the contamination problems inherent in the process. On the other hand, the wear of the electrode wire is relatively large. To save money, it has been proposed to make a closed loop electrode wire and pass a portion of the loop through a plating bath to regenerate the layer as the electrode wire is used. This is not a simple problem because the solution requires modifying the machine and adapting the metal bath to the electrode wire feed rate required for electrical discharge machining. Finally, maintenance of the plating layer is not the responsibility of the operator of the machine. This is suspected and is the reason why such electrode wires are generally not recycled in electrical discharge machines.

(発明の目的) 本発明は、芯線が金属層で被覆されてなる放電加」ニ用
電極線の製造にあたって、従来に提案された方法よりも
生産性に優れ経済的に興味のある7つの方法を提供する
ことを目的としている。
(Purpose of the Invention) The present invention provides seven methods that are more productive and economically interesting than previously proposed methods for producing electrode wires for discharge application in which the core wire is coated with a metal layer. is intended to provide.

(発明の技術的手段) 溶融金属浴の中で、線を下から上へ通過させることより
成る、線の高速融解被覆法は公知である。
TECHNICAL MEANS OF THE INVENTION A process for fast melt coating of a wire is known, which consists in passing the wire from bottom to top through a bath of molten metal.

そのような方法によって、溶融金属の比較的厚い層で被
覆された線を、高速度で、また線の縦軸に対して、被覆
が完全に心出しされた状態で、(Mることができる。そ
のような方法は、特に米国特許第4.169,426号
の目的となっている。
By such a method, a wire coated with a relatively thick layer of molten metal can be melted at high speeds and with the coating perfectly centered with respect to the longitudinal axis of the wire. Such a method is in particular the subject of US Pat. No. 4,169,426.

本発明は、一部を上述の高速融解被覆法に基ついて放電
加工用電極線を製造する方法であって、芯線の直径より
もかなり大きい直径の糸状素材を選択すること、該糸状
素材を110°Cないし350℃の温度に予熱した後、
前記金属層を形成することになっている溶融金属を満た
したチェンバーを横切って、下から上に垂直に、該チェ
ンバーの壁の互いに向かい合った部分に上下にもうけら
れている2つの開口を通して軸方向に送り、このときの
該糸状素材の送り速度は、前記溶融金属中での滞留時間
が、5X10−2秒以下であるようになっていること、
および前記溶融金属による被覆が固化してから、被覆さ
れた糸状素材を伸線し、糸状素材の直径及び被覆の厚さ
を所定の値にすることを特徴とする方法である。
The present invention is a method of manufacturing an electrode wire for electrical discharge machining based in part on the above-described fast melt coating method, the method comprising selecting a filamentous material having a diameter considerably larger than the diameter of the core wire. After preheating to a temperature between °C and 350 °C,
axially across the chamber filled with molten metal which is to form said metal layer, vertically from bottom to top, through two openings made one above the other in mutually opposite parts of the walls of said chamber. and the feeding speed of the filamentous material at this time is such that the residence time in the molten metal is 5 x 10 seconds or less;
The method is characterized in that, after the coating with the molten metal has solidified, the coated filamentous material is drawn, and the diameter of the filamentous material and the thickness of the coating are set to predetermined values.

(実施例) 以下、本発明の実施例を図面を参照にして説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明方法を実施するための設備を模式的に示
したもので、本設備は、被覆される線2を送り出すため
の供給装置1を包含する。次にこの線2は予熱室3を通
過するが、そこには集電器5を介して2つの滑車6の間
に供給する直流電源4が包含されている。次に線2は、
るつぼ8から溶融金属が供給されているノズル7を通過
する。
FIG. 1 schematically shows an installation for carrying out the method according to the invention, which comprises a feeding device 1 for delivering the wire 2 to be coated. This line 2 then passes through a preheating chamber 3, which contains a DC power supply 4 which is supplied between two pulleys 6 via a current collector 5. Next, line 2 is
It passes through a nozzle 7 to which molten metal is supplied from a crucible 8.

るつぼBにおいては、溶融金属のレヘルば、プランジャ
9によって制御される。ノズル7には2つの開ロアaと
7bとがあって、線の垂直な進路の中で、互いに上下に
位置している。このノズル7の上に循環水が供給されて
いる冷却装置10がある。この冷却装置10を出ると、
線2は巻取り装置11の方に導かれる。
In crucible B, the level of molten metal is controlled by plunger 9. The nozzle 7 has two open lowers a and 7b, which are located one above the other in a vertical path of a line. Above this nozzle 7 is a cooling device 10 to which circulating water is supplied. When leaving this cooling device 10,
The wire 2 is guided towards a winding device 11.

被覆された線の伸線装置が図示されていないのは、それ
が従来から公知の装置に関するものであるからである。
A device for drawing coated wire is not shown, since it relates to a device known from the prior art.

そのような伸線装置は、巻取り装置11の前に設置して
もよいし、又は本設備とは別に設置し、巻取り装置11
により巻取った線を別の工程で伸線するようにしてもよ
い。同様に、これから説明することになっている被覆装
置の前には清浄化装置があって、その装置の中では、線
を脱脂液の中と、場合によっては、化学的な脱錆液の中
とを通過させて、被覆の良好な耐着が保証されるように
することが好ましい。清浄化の操作をまた、供給装置と
予熱装置の入口との間に挿入することもできる。この型
の処理は公知であって、直接的に本発明の部分となって
いる訳ではない。これが、説明もされないし、また図示
もされていない理由である。清浄化の操作は、脱脂用の
アルカリ溶液の中に線を通し゛、次に流水で洗浄し、さ
らに錆取り用の酸溶液の中を通過させ、最後に流水で洗
浄してから、脱イオン水で洗浄することより成ることだ
けを認識すれば充分である。なお予熱室3における予熱
操作は、線の酸化を防ぐために、N2 +N2の不活性
雰囲気中で行われることを明らかにしておく必要がある
Such a wire drawing device may be installed in front of the winding device 11, or it can be installed separately from the main equipment and connected to the winding device 11.
The wire wound up by the method may be drawn in a separate process. Similarly, the coating equipment we are about to describe is preceded by a cleaning equipment in which the wire is exposed to a degreasing solution and, in some cases, a chemical derusting solution. Preferably, the coating is passed through in order to ensure good adhesion of the coating. A cleaning operation can also be inserted between the supply device and the inlet of the preheating device. This type of treatment is known and is not directly part of the present invention. This is why it is neither explained nor shown. The cleaning process involves passing the wire through an alkaline solution for degreasing, then washing it with running water, passing it through an acid solution for removing rust, and finally washing it with running water and then washing it with deionized water. It is enough to recognize that which is more than what is done. It should be noted that the preheating operation in the preheating chamber 3 is performed in an inert atmosphere of N2 +N2 in order to prevent oxidation of the wire.

ノズル7を通る際の線2の被覆方法の原理は、線を下か
ら上に移動させながら、さらに、あらかじめ加熱された
線が溶融金属で濡らされて、その表面に金属の被覆層が
生ずるように、ノズル7の中の溶融金属を保ちながら、
線を通過させることより成る。溶融金属による線の濡れ
易さと、熱の移動とだのが考慮に入れられているので、
被覆層の厚さは糸状素材の全周で同一であって、被覆層
は糸状素材に対し完全に心出しされているようになって
いる。従って、このようにして被覆されたこの線が受け
ることになっている伸線操作によって、完全に心出しさ
れている被覆線を得ることができる筈である。
The principle of coating the wire 2 as it passes through the nozzle 7 is that while moving the wire from bottom to top, the pre-heated wire is wetted with molten metal and a metal coating layer is formed on its surface. While maintaining the molten metal in the nozzle 7,
It consists of passing a line. This takes into account the wettability of the wire by molten metal and the transfer of heat.
The thickness of the covering layer is the same around the entire circumference of the thread-like material, such that the covering layer is perfectly centered with respect to the thread-like material. The drawing operation to which this wire coated in this way is to be subjected should therefore make it possible to obtain a perfectly centered coated wire.

後で分かるように作用パラメータの選択は、充分に大き
い速度と温度との範囲の中で行われる。
As will be seen later, the selection of operating parameters is made within a sufficiently large speed and temperature range.

一般に、送り速度が大きければ大きい程、また線の予熱
?2A度が高ければ高い程、被覆層の厚さは小さくなる
。しかしながら、作用パラメータの正確な選択に対し“
ζ、ある最高の被覆の厚さがある。
In general, the higher the feed rate, the preheating of the wire? The higher the 2A degree, the smaller the thickness of the coating layer. However, for the exact selection of the action parameters “
ζ, there is a certain maximum coating thickness.

予熱温度か高すぎると糸状素材の特性が劣化し、被覆層
との境界部分に合金層ができてしまい、また充分な厚さ
の被覆層が得られない。予熱温度が低ずぎると、被覆層
との密着性に問題が起こる。
If the preheating temperature is too high, the properties of the filamentous material will deteriorate, an alloy layer will be formed at the boundary with the coating layer, and a coating layer of sufficient thickness will not be obtained. If the preheating temperature is too low, problems will arise in the adhesion with the coating layer.

したがって予熱温度は、110℃ないし350℃の範囲
の中から選ばれる。また、線が溶融金属中に滞留する時
間が長ければ、再溶融が生して好ましくない。この時間
は50m5以下であることが好ましい。
Therefore, the preheating temperature is selected from the range of 110°C to 350°C. Furthermore, if the wire remains in the molten metal for a long time, remelting may occur, which is undesirable. This time is preferably 50 m5 or less.

試験を実施するために使用された素材は、65%のCu
、35%のZn、0.07%のpb、0.05%のFe
を含有する、直径0.63mmの真鍮線であった。送り
速度は30ないし460m/minであった。予熱温度
の効果は30ないし150m / minの間で特に感
じられた。
The material used to conduct the tests was 65% Cu
, 35% Zn, 0.07% pb, 0.05% Fe
It was a brass wire containing 0.63 mm in diameter. The feed speed was 30 to 460 m/min. The effect of preheating temperature was especially felt between 30 and 150 m/min.

速度が厚さに及ぼす効果に関しては、30m/minに
おりる約150μmから、460m/minにおける約
50umまで変化する。
Regarding the effect of speed on thickness, it varies from about 150 μm at 30 m/min to about 50 μm at 460 m/min.

別の7つの因子が、特別な研究対象となった。Another seven factors were the subject of special research.

それは、被覆の線への密着性である。この密着性は、先
ず第1に線の性質の関数であるので、被覆される線は、
すべて上記の脱脂と除錆との処理を受ける。1IIt着
に影響する2つの他の因子は、綿の予熱温度と、線が液
状の金属浴と接触する時間、または結局同じことになる
のであるが、送り速度とである。この速度が大きければ
大きい程、予熱温度も高くならなければならないことが
確認された。
It is the adhesion of the coating to the wire. Since this adhesion is primarily a function of the properties of the wire, the wire to be coated is
All undergo the degreasing and rust removal treatment described above. Two other factors that affect deposition are the preheating temperature of the cotton and the time that the wire is in contact with the liquid metal bath, or, ultimately, the feed rate. It has been found that the higher this speed, the higher the preheating temperature must be.

伸線によって電極線を製造するための被覆線は、0.6
3mmの線であって、説明した本方法によって析出され
る亜鉛層の厚さは、約150ないし200rn/min
の繰り出し速度に対して、約100μmである。
The coated wire for manufacturing electrode wire by wire drawing is 0.6
3 mm wire, the thickness of the zinc layer deposited by the method described is about 150 to 200 rn/min.
It is about 100 μm for the unwinding speed of .

この速度において、被覆が&(I実に充分な耐着をする
ためには、予熱温度は、200ないし250℃以上でな
しJればならない。
At this speed, the preheating temperature must be above 200 to 250° C. in order for the coating to have really sufficient adhesion resistance.

冷間伸線操作の場合には、被覆線は約0.811の直径
から0.31の直径にされて、放電加工用の電極とし゛
C使用されることになる線を構成する。この操作を考1
.%、すると、伸線された線の長さは、伸線される以前
の線の長さよりも7倍長くなるので、電極線の生産は1
000ないし1400m/minとなり、それによって
約40μmの亜鉛層を有する直1¥約0゜22鮎の芯線
が得られる。電気メッキの方法に比べて、生産性の増大
は約100倍であるように思われる。さらに上記で論及
したパラメータの値は、上限をなすものではなくて、パ
ラメータの平均の範囲の中にあることを注意することが
できる。
In the case of a cold wire drawing operation, the coated wire is reduced to a diameter of about 0.811 to 0.31 to form a wire that will be used as an electrode for electrical discharge machining. Consider this operation 1
.. %, then the length of the drawn wire will be 7 times longer than the length of the wire before being drawn, so the production of electrode wire will be 1
000 to 1400 m/min, thereby obtaining a straight 1 yen approximately 0° 22 Ayu core wire with a zinc layer of approximately 40 μm. Compared to electroplating methods, the increase in productivity appears to be approximately 100 times. Furthermore, it may be noted that the values of the parameters mentioned above do not constitute upper limits, but lie within the average range of the parameters.

説明された本方法は、被覆金属として亜鉛を使用するこ
とに限定されるものではなくて、カドミウムおよびマグ
ネシウム、あるいはこれらの金属の合金のような、低融
点で高蒸気圧のすべての他の金属、または合金によって
、実施することができる。被覆を析出させることができ
る糸状素材は、真鍮線または銅線、鉄線、あるいは加工
温度に耐えることができて、適当な引張り強さと電導度
とを示す、すべての他の金属線であることができる。
The method described is not limited to the use of zinc as the coating metal, but all other metals with low melting points and high vapor pressures, such as cadmium and magnesium, or alloys of these metals. , or an alloy. The threadlike material on which the coating can be deposited can be brass or copper wire, iron wire, or any other metal wire that can withstand the processing temperatures and exhibits suitable tensile strength and electrical conductivity. can.

(発明の効果) 本発明によると、放電加工用電極線の製造が高速で行え
、生産性が向上し、収益性を著しく増大させることがで
きる。被覆線の伸線の操作を、放電加工用電極線の製造
のために、このように組合せることによって、比較的厚
い金属層を有する電極線を製造できること、および同様
に、高温における被覆工程が高速であるので糸状素材と
被覆層との間の界面に金属間化合物が生成されず、した
がって糸状素材及び被覆金属の特性が充分に生かされて
特性がよく、品質の安定した電極線を製造することがで
きる。本発明方法によって生産性が目立って向上するの
で、放電加工用電極線の製造経費は、かなり低減できる
ことになる。
(Effects of the Invention) According to the present invention, electrode wires for electrical discharge machining can be manufactured at high speed, productivity can be improved, and profitability can be significantly increased. By combining the drawing operations of coated wires in this way for the production of electrode wires for electrical discharge machining, it is possible to produce electrode wires with relatively thick metal layers, and likewise, the coating process at high temperatures is possible. Due to the high speed, intermetallic compounds are not generated at the interface between the filamentous material and the coating layer, and therefore the characteristics of the filamentous material and coating metal are fully utilized to produce electrode wires with good properties and stable quality. be able to. Since the method of the invention significantly increases the productivity, the manufacturing costs of electrode wires for electrical discharge machining can be considerably reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための設備を模式的に示
した図、第2図は滞留時間と被覆厚さの関係を示す図で
ある。 2・・・線、3・・・予熱室、7・・・ノズル(チェン
バー)、7a、 7b・・・開1」、8・・・るつぼ、
11・・・巻取り装置。 出願人 第一電工株式会社
FIG. 1 is a diagram schematically showing the equipment for carrying out the method of the present invention, and FIG. 2 is a diagram showing the relationship between residence time and coating thickness. 2... Line, 3... Preheating chamber, 7... Nozzle (chamber), 7a, 7b... Open 1'', 8... Crucible,
11... Winding device. Applicant Daiichi Denko Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 金属層で被覆された芯線を包含する放電加工用電極線の
製造方法であって、前記芯線の直径よりもかなり大きい
直径の糸状素相を選択すること、該糸状素材を110℃
ないし350”cの温度に予熱した後、前記金属層を形
成するごとになっている溶融金属を満たしたチェンバ〜
を横切ゲζ、下から上に垂直に、該チェンバーの壁の互
いに向がい合った部分に土工にもうりられている2つの
開口を通して軸方向に送り、このときの該糸状累月の送
り速度は、前記溶融金属中での滞留時間が、5×10−
2秒以下であるようになっていること・および前記溶融
金属による被覆が固化してから、被覆された糸状素利を
伸線し、糸状素材の直径及び被覆の厚さを所定の値にす
ることを特徴とする放電加工用電極線の製造方法。
A method for manufacturing an electrode wire for electrical discharge machining including a core wire covered with a metal layer, the method comprising selecting a filamentous material having a diameter considerably larger than the diameter of the core wire, and heating the filamentous material at 110°C.
A chamber filled with molten metal for forming said metal layer after being preheated to a temperature of 350"C.
The transverse gear ζ is fed vertically from bottom to top in the axial direction through two openings also cut in the earthwork in mutually opposite parts of the wall of the chamber, and in this case the feed of the filiform moon is The velocity is such that the residence time in the molten metal is 5 x 10-
After the coating with the molten metal has solidified, the coated filamentous material is drawn, and the diameter of the filamentous material and the thickness of the coating are set to predetermined values. A method of manufacturing an electrode wire for electric discharge machining, characterized in that:
JP23915684A 1983-11-14 1984-11-13 Production of electrode wire for electric discharge working Granted JPS60121263A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6115/83-7 1983-11-14
CH611583A CH655265A5 (en) 1983-11-14 1983-11-14 Method for manufacturing a wire electrode for electron discharge machining (spark erosion machining)

Publications (2)

Publication Number Publication Date
JPS60121263A true JPS60121263A (en) 1985-06-28
JPS648706B2 JPS648706B2 (en) 1989-02-15

Family

ID=4304502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23915684A Granted JPS60121263A (en) 1983-11-14 1984-11-13 Production of electrode wire for electric discharge working

Country Status (2)

Country Link
JP (1) JPS60121263A (en)
CH (1) CH655265A5 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675257A5 (en) * 1988-02-09 1990-09-14 Battelle Memorial Institute
US20140357015A1 (en) * 2011-09-29 2014-12-04 Neturen Co., Ltd. Method and apparatus for manufacturing lead wire for solar cell
CN109590556A (en) * 2018-10-25 2019-04-09 沈阳达丰机械有限公司 A kind of Liftable and movable multiple spot cutting linear cutting equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432502U (en) * 1990-07-12 1992-03-17
FR2749324B1 (en) * 1996-06-04 1998-08-07 Thermocompact Sa METHOD AND DEVICE FOR ZINC PLATING AN ELECTROEROSION WIRE, AND WIRE THUS OBTAINED
FR2778489B1 (en) * 1998-05-07 2006-05-12 Thermocompact Sa METHOD AND DEVICE FOR THE MANUFACTURE OF AN ELECTRODE WIRE FOR ELECTROEROSION
US20100163529A1 (en) * 2007-12-10 2010-07-01 Oki Electric Cab Le Co., Ltd. Electrode wire for wire electrodischarge machining, method of manufacturing the same, and system for manufacutring base wire for the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149462A (en) * 1981-03-10 1982-09-16 Kokoku Kousensaku Kk High-speed hot-dip coating methode of wire material and apparatus therefor
JPS58117865A (en) * 1982-01-06 1983-07-13 Showa Seisen Kk Continuous plating method for metallic wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149462A (en) * 1981-03-10 1982-09-16 Kokoku Kousensaku Kk High-speed hot-dip coating methode of wire material and apparatus therefor
JPS58117865A (en) * 1982-01-06 1983-07-13 Showa Seisen Kk Continuous plating method for metallic wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675257A5 (en) * 1988-02-09 1990-09-14 Battelle Memorial Institute
US5705228A (en) * 1988-02-09 1998-01-06 Battelle Memorial Institute Method for the continuous coating of a filiform steel substrate by immersion of the substrate in a bath of molten coating metal
US20140357015A1 (en) * 2011-09-29 2014-12-04 Neturen Co., Ltd. Method and apparatus for manufacturing lead wire for solar cell
US9991410B2 (en) * 2011-09-29 2018-06-05 Neturen Co., Ltd. Method and apparatus for manufacturing lead wire for solar cell
CN109590556A (en) * 2018-10-25 2019-04-09 沈阳达丰机械有限公司 A kind of Liftable and movable multiple spot cutting linear cutting equipment

Also Published As

Publication number Publication date
JPS648706B2 (en) 1989-02-15
CH655265A5 (en) 1986-04-15

Similar Documents

Publication Publication Date Title
CA2267621C (en) Method of manufacturing porous electrode wire for electric discharge machining and structure of the electrode wire
US2543936A (en) Apparatus for covering a metallic core with a cast layer of another metal
JP5042229B2 (en) Electrode wire for wire electric discharge machining, its manufacturing method and its bus bar manufacturing apparatus
US4740666A (en) Electrical discharge machining electrode
JPS60121263A (en) Production of electrode wire for electric discharge working
KR20140051734A (en) Wire electrode for electro discharge machining and thesame methode
US6176994B1 (en) Method and device for manufacturing a spark erosion electrode wire
JPH04293757A (en) Production of flat square coated wire
US5966975A (en) Method and device for zinc plating a spark erosion wire, and wire obtained in this way
US5705228A (en) Method for the continuous coating of a filiform steel substrate by immersion of the substrate in a bath of molten coating metal
JP2644911B2 (en) Wire-type electrode for electric discharge machining and method of manufacturing the same
JPS6227559A (en) Manufacture of hot dip tin coated copper wire
JPH03260045A (en) Method for hot-dipping copper wire
JPS61117021A (en) Electrode wire for wire-cut electric discharge machining and manufacturing method thereof
JPH01246020A (en) Manufacture of wire electrode for electric discharge machining
KR100481950B1 (en) An electrode wire production method for a graphite coating discharge processing
US310995A (en) Moses g-
JPS5921946B2 (en) Manufacturing method of tin or solder-plated wire
JPS6120030Y2 (en)
JPH0249848B2 (en)
EP0227645A1 (en) Method for fabricating a filiform electrode for electro-erosion machining
JPS62185864A (en) Hot dipping method
JPS5967357A (en) Method for coating metal on steel plate
JPS61106759A (en) Molten copper plating method and copper plating device of steel wire
JPS61241027A (en) Wire electric discharge machining electrode wire and its manufacture