JPH0249848B2 - - Google Patents

Info

Publication number
JPH0249848B2
JPH0249848B2 JP60094248A JP9424885A JPH0249848B2 JP H0249848 B2 JPH0249848 B2 JP H0249848B2 JP 60094248 A JP60094248 A JP 60094248A JP 9424885 A JP9424885 A JP 9424885A JP H0249848 B2 JPH0249848 B2 JP H0249848B2
Authority
JP
Japan
Prior art keywords
copper
wire
zinc
sulfide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60094248A
Other languages
Japanese (ja)
Other versions
JPS61252025A (en
Inventor
Haruo Tominaga
Teruyuki Takayama
Yoshio Ogura
Tetsuo Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP9424885A priority Critical patent/JPS61252025A/en
Publication of JPS61252025A publication Critical patent/JPS61252025A/en
Publication of JPH0249848B2 publication Critical patent/JPH0249848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、放電による溶融作用により、被加工
物(加工対象物)を加工するワイヤ放電加工に用
いられるワイヤ放電加工用電極線およびその製造
方法に関するものである。 「従来の技術」 第2図は、一般的なワイヤ放電加工法の概略を
説明するものである。この加工法は、被加工物1
に予め開けたスタート穴2に電極線3を挿通し、
この電極線3を挿通方向(第2図では矢印の方
向)に走行させながら、電極線3とスタート穴2
の内壁面との間で放電させ、かつ、被加工物1を
挿通方向と直交する方向に移動させることによ
り、移動軌跡に沿つて被加工物1を溶融させて所
定の形状に加工する方法である。この図におい
て、電極線3は例えば供給リール4から連続的に
送り出され、被加工物1の両側のコロ5を通つて
巻き取りリール6に巻き取られるとともに、この
巻き取りリール6とコロ5との間に配されるテン
シヨンローラ7によつて張力を調整されるように
なつている。また、図示しないが、放電加工部分
には加工液が供されて、電極線3の冷却および加
工屑の除去等を行なうようになつている。 従来、このようなワイヤ放電加工に使用される
電極線3としては、直径0.05〜0.3mm程度の銅線、
黄銅線(Cu65%、Zn35%合金)、亜鉛メツキ黄銅
線、あるいは特殊用途としてタングステン線、モ
リブデン線等が用いられている。 「発明が解決しようとする問題点」 ところで、これらの電極線3は、放電加工中、
約300℃の高温に熱せられ、電極素材自体に大き
な熱的負担が加わる一方、安定放電に維持して加
工精度、加工速度を上げるために行われるテンシ
ヨンローラ7の張力調整時の張力も加わることか
ら高温強度(高温時における引張強度)が高いこ
とが要求されている。しかしながら、銅線は電極
線としての細線への伸線加工性は良いものの、引
張強度が小さく、使用中に断線して放電加工作業
の効率を著しく低下させるおそれがある。また、
黄銅線は、室温での引張強度が銅線の2倍程度の
強さであるが、300℃前後の高温強度は銅よりわ
ずかに高い程度であり、加工速度を上げようとす
ると、やはり断線する傾向がある。 さらに、亜鉛メツキ黄銅線の場合、亜鉛による
放電安全性は、増加されるものの、亜鉛メツキ皮
膜が存在する分だけ高温強度が、低下し、加工速
度を上げようとすると、やはり、断線する傾向が
ある。さらにまた、タングステン線、モリブデン
線は高温強度は高いが、伸線加工性が悪く、か
つ、消耗品として使用される電極線としては高価
である等の問題点があつた。 本発明は前記問題に鑑みてなされたもので、良
好な加工精度と高い加工速度を有する上に、放電
加工中の断線頻度が少なく、安価なワイヤ放電加
工用電極線を提供することを目的とする。 「問題点を解決するための手段」 本発明のワイヤ放電加工電極線は、従来のワイ
ヤ電極線における前述の問題点を解決するために
なされたもので、銅線に10〜70%の被覆率で銅を
被覆してなる銅被覆鋼線を芯材とし、この銅被覆
鋼線に厚さ0.1〜15μmの、硫化亜鉛、硫化銅およ
び炭素粒子が分散しかつ銅地から表層に向つて亜
鉛濃度が高くなるような濃度勾配がつけられた銅
−亜鉛合金層を被覆し、さらにこの上に、硫化亜
鉛、硫化銅および炭素粒子からなる0.1〜5μmの
黒色皮膜を被覆したものである。 また、本発明のワイヤ放電加工用電極線の製造
方法は、銅線に10〜70%の被覆率で銅を被覆して
なる銅被覆鋼線の外周面に、含イオウ有機化合物
を含有する添加剤を加えた亜鉛メツキ浴で電気亜
鉛メツキ処理を施して、添加剤を内部に介在させ
かつ表層に付着させた状態で亜鉛層を形成したの
ち、熱処理を施して硫化亜鉛、硫化銅および炭素
粒子が分散し、かつ、銅地から表層に向つて亜鉛
濃度が高くなるような濃度勾配がつけられた厚さ
0.1〜15μmの銅−亜鉛合金層を生成せしめるとと
もに最外層に硫化亜鉛、硫化銅および炭素粒子か
らなる厚さ0.1〜5μmの黒色皮膜を生成せしめる
方法である。 前記ワイヤ放電加工用電極線(以下、ワイヤ電
極線と言う。)において銅被覆鋼線の銅の被覆率
が10%未満であると、導電率が低くなるため、放
電性能が低下して加工速度が上がらず、70%より
大きいと高温強度が低くなるため、張力を上げた
場合に断線しやすくなる。また、銅−亜鉛合金層
が存在しないと銅地が露出しているため放電性
能、すなわち、加工速度が著るしく低下する。さ
らに、その銅−亜鉛合金層も、銅地から表層に向
かつて亜鉛濃度が高くなるような濃度勾配を有す
る銅−亜鉛合金層でない場合は、十分な加工速度
増加が得られない。 さらに、その濃度勾配を有するとともに硫化亜
鉛、硫化銅および炭素粒子が分散した銅−亜鉛合
金層の厚さが、0.1μm未満であると、十分な放電
性能が得られず、加工速度の増大効果が得られな
いかもしくは、被加工物(主として、鋼鉄材料の
場合)の鉄分と電極線の銅分とが溶融反応を起こ
して、加工面に付着する傾向が大となり、加工精
度が悪くなる。濃度勾配を有する銅−亜鉛合金層
の厚さが15μmより厚いと強度低下が生じて断線
しやすくなり、また熱処理時間が長くなつたり設
備費が高くつくなど経済的に不利になる。 さらに、最外層に生成された厚み0.1〜5μmの
硫化亜鉛、硫化銅および炭素粒子からなる黒色皮
膜が存在しない場合、初期放電(ワイヤ電極線が
被加工物との間で放電を開始する時)においてお
だやかな万遍なく分散された放電とならず、局部
的集中放電が生じることがあり、断線しやすくな
る。この黒色皮膜の厚さが0.1μm未満では上記効
果が得られず、5μmを越えると強度低下が大き
くなつて不都合を来す。 「作用」 10〜70%の被覆率で銅を被覆した銅被覆鋼線を
芯材としているので、高い導電率を維持しながら
高温強度が向上する。このように導電率の良好な
銅被覆鋼線の外周面に、硫化亜鉛、硫化銅、炭素
粒子を分散させた厚さ0.1〜15μmの濃度勾配を有
する銅−亜鉛合金層を被覆すると、放電性が向上
するとともに、銅層の表面露出による被加工物へ
の銅の付着が防止されので加工精度が向上し、加
工速度の低下が抑制される。更に、最外層に、
0.1〜5μmの厚さの硫化亜鉛、硫化銅および炭素
粒子によりなる黒色皮膜を形成すると、放電初期
において、集中放電とならずに、穏やかなまんべ
んなく分散された放電となるので、断線が防止さ
れる。 「実施例」 以下、本発明の好適な実施例を説明すると、第
1図に示すように、このワイヤ電極線は、銅被覆
鋼線11が芯材とされ、その外周面に0.1〜15μm
の範囲の厚さで、硫化亜鉛、硫化銅および炭素粒
子が分散されかつ銅地から表層に向かつて亜鉛濃
度が高くなるような濃度勾配がつけられた銅−亜
鉛合金層12が設けられ、さらに最外層に硫化亜
鉛、硫化銅および炭素粒子からなる厚み0.1〜5μ
mの黒色皮膜13が設けられ、全体の直径が約
0.2mmに形成されたものである。前記銅被覆鋼線
11はいわゆる銅線あるいは鉄線、合金鋼線等の
鋼線に10〜70%の被覆率で銅を被覆してなるもの
である。ただし、ここでの被覆率とは、全体の断
面積に対する銅部分の断面積の割合を意味してい
る。 このようなワイヤ電極線は例えば次のような方
法で製造される。例えば、0.49mmの直径を有する
銅被覆鋼線を、含イオウ有機化合物を含有する添
加剤を加えた塩化亜鉛浴(1中に塩化亜鉛42
g、塩化アンモニウム210gを含有する水溶液)
中に浸漬し、電気亜鉛メツキ処理を施す。上記含
イオウ有機化合物を含有する添加剤としては、ア
ルキル硫酸エステルナトリウム、アルキルベンゼ
ンスルフオン酸ナトリウム、オレフイン硫酸エス
テルナトリウムなどの陰イオン界面活性剤がアル
キルピリジニウム硫酸塩などの陽イオン界面活性
剤などの分子内にイオウを含む界面活性剤が、メ
ツキ浴に対する亜影響がなく主に使用されるが、
この他に芳香族カルボン酸塩、水溶性カチオンポ
リマー、芳香族アルデヒト、高級アルコールなど
も使用できる。これにより、銅被覆鋼線の外周面
に、上記添加剤が含有、分散された所定厚さの亜
鉛層が形成される。この際、この亜鉛層の表層に
も上記添加剤を所定量付着させておく。 ついで、この亜鉛メツキ層が形成された銅被覆
鋼線に伸線加工を施して全体の直径が0.2mmとし
たのち、オーブン等を用いて大気中で500℃に1
時間程度加熱して熱処理を施す。この熱処理によ
り亜鉛層は銅地から表層に向けて亜鉛濃度が高く
なるような濃度勾配がつけられた銅、亜鉛合金層
に変化するとともに添加剤中のイオウが亜鉛およ
び銅と反応し、有機物が炭化して上記合金中に硫
化亜鉛、硫化銅および炭素粒子が分散し、かつ同
時に上記合金層上に合金層から析出した硫化亜
鉛、硫化銅および炭素粒子からなる黒色皮膜が生
成される。 このようにして、形成されたワイヤ電極線は、
銅被覆鋼線11を芯材としているため、優れた高
温強度および導電率を備え、また銅地から表層に
向つて亜鉛濃度が高くなるような濃度勾配がつけ
られ、かつ硫化亜鉛、硫化銅および炭素粒子を分
散した銅−亜鉛合金層12の存在により優れた放
電性能を発揮する。さらに銅−亜鉛合金層12に
よつて放電時における被加工物への銅の付着が防
止される。さらに最外層に硫化亜鉛および硫化銅
および炭素粒子からなる黒色皮膜13を有するた
め、初期放電において集中放電とならず、おだや
かな万遍なく分散された放電となり、以後の放電
が全周に渡つて比較的均一な放電となり断線しに
くくなる。 次いで、実施例を示して、これらワイヤ電極線
の作用効果を明確にする。 本実施例では、銅被覆鋼線11の銅の被覆率、
銅地から表層に向かつて亜鉛濃度が高くなるよう
な濃度勾配がつけられ、かつ硫化亜鉛、硫化銅お
よび炭素粒子を分散した銅−亜鉛合金層12の厚
さおよび硫化亜鉛、硫化銅および炭素粒子よりな
る黒色皮膜13の厚さを種々の値に設定した直径
0.2mmのワイヤ電極と、同じく直径0.2mmの通常の
銅線、黄銅線(Cu65%、Zn35%)、亜鉛めつき黄
銅線、および濃度勾配のついていない銅−亜鉛合
金層の銅被覆鋼線について加工中における加工速
度、加工精度、断線頻度(高温強度、放電安定
性)および経済性を評価する比較試験を行なつ
た。 この比較試験の結果を第1表に示す。ただし、
放電加工としては、厚さ20mmの被加工物(SKD
−11)から30mm角の板材を切り取る加工を行なつ
た。このときの加工条件は次のとうりである。 印加電圧:110V パルス時間:ON→5μs OFF→5μs ピーク電流:10A コンデンサ容量:0.8μF 加工液:純水 電極線張力:750gf また、加工速度は、銅線の加工速度(0.8mm/
分)を基準として、これを1としたときの比率で
表わした。加工精度は、切り取つた板材の寸法誤
差の範囲の広さ(最大値と最小値の差)を狭い順
に、A(0.01mm未満)、B(0.01〜0.03mm)、C(0.03
mmより大)で表わした。断線頻度は、断線回数の
少ない順にA(断線なく安定)、B(1)(加工速度を
上げると断線あり、)、B(2)(張力を750gfより
大きくすると断線あり)、B(3)(放電初期−ワイ
ヤ電極が被加工物との間で放電を開始する時に断
線することがある。)C(断線頻発)で表わした。
さらに、経済性は黄銅線の製造コストを基準とし
てそれより安価にできる場合を〇、高価になる場
合を×で表わした。
"Industrial Application Field" The present invention relates to an electrode wire for wire electrical discharge machining used in wire electrical discharge machining for machining a workpiece (workpiece) by the melting action of electrical discharge, and a method for manufacturing the same. "Prior Art" FIG. 2 schematically explains a general wire electrical discharge machining method. In this processing method, the workpiece 1
Insert the electrode wire 3 into the pre-drilled start hole 2,
While running this electrode wire 3 in the insertion direction (in the direction of the arrow in Fig. 2), insert the electrode wire 3 into the start hole 2.
This method melts the workpiece 1 along the movement locus and processes it into a predetermined shape by causing an electric discharge between the workpiece 1 and the inner wall surface of the workpiece 1, and moving the workpiece 1 in a direction perpendicular to the insertion direction. be. In this figure, an electrode wire 3 is continuously fed out from a supply reel 4, passes through rollers 5 on both sides of a workpiece 1, and is wound onto a take-up reel 6. The tension is adjusted by a tension roller 7 disposed between the two. Although not shown, machining fluid is supplied to the electrical discharge machining portion to cool the electrode wire 3 and remove machining debris. Conventionally, the electrode wire 3 used in such wire electric discharge machining is a copper wire with a diameter of about 0.05 to 0.3 mm,
Brass wire (65% Cu, 35% Zn alloy), galvanized brass wire, tungsten wire, molybdenum wire, etc. are used for special purposes. "Problems to be Solved by the Invention" By the way, these electrode wires 3 are
It is heated to a high temperature of approximately 300 degrees Celsius, which places a large thermal burden on the electrode material itself, while also adding tension during tension adjustment of the tension roller 7, which is performed to maintain stable discharge and increase machining accuracy and machining speed. Therefore, high high temperature strength (tensile strength at high temperatures) is required. However, although copper wire has good wire drawability into a fine wire as an electrode wire, it has low tensile strength and may break during use, significantly reducing the efficiency of electrical discharge machining work. Also,
The tensile strength of brass wire at room temperature is about twice that of copper wire, but its high-temperature strength at around 300℃ is only slightly higher than that of copper, and if you try to increase the processing speed, the wire will still break. Tend. Furthermore, in the case of galvanized brass wire, although the electrical discharge safety due to zinc is increased, the high-temperature strength is reduced due to the presence of the galvanized film, and if you try to increase the processing speed, there is still a tendency for the wire to break. be. Furthermore, although tungsten wire and molybdenum wire have high high-temperature strength, they have problems such as poor wire drawability and high cost as electrode wires used as consumables. The present invention was made in view of the above problems, and an object of the present invention is to provide an inexpensive electrode wire for wire electrical discharge machining that has good machining accuracy and high machining speed, has a low frequency of wire breakage during electrical discharge machining, and is inexpensive. do. "Means for Solving the Problems" The wire electrical discharge machining electrode wire of the present invention was developed to solve the aforementioned problems in conventional wire electrode wires, and has a copper wire coverage of 10 to 70%. A copper-coated steel wire coated with copper is used as a core material, and zinc sulfide, copper sulfide and carbon particles with a thickness of 0.1 to 15 μm are dispersed in this copper-coated steel wire, and the zinc concentration increases from the copper base to the surface layer. A copper-zinc alloy layer is coated with a concentration gradient such that the concentration increases, and a black film of 0.1 to 5 μm consisting of zinc sulfide, copper sulfide and carbon particles is further coated thereon. Further, in the method for manufacturing an electrode wire for wire electrical discharge machining of the present invention, an additive containing a sulfur-containing organic compound is added to the outer peripheral surface of a copper-coated steel wire formed by coating a copper wire with copper at a coverage rate of 10 to 70%. Electrogalvanizing is performed in a galvanizing bath containing additives to form a zinc layer with the additives interposed inside and attached to the surface layer, followed by heat treatment to form zinc sulfide, copper sulfide and carbon particles. The thickness has a concentration gradient such that zinc is dispersed and the concentration of zinc increases from the copper base toward the surface layer.
In this method, a copper-zinc alloy layer of 0.1 to 15 .mu.m is formed, and a black film of 0.1 to 5 .mu.m thick consisting of zinc sulfide, copper sulfide and carbon particles is formed as the outermost layer. In the electrode wire for wire electrical discharge machining (hereinafter referred to as wire electrode wire), if the copper coverage of the copper-coated steel wire is less than 10%, the electrical conductivity will be low, resulting in a decrease in discharge performance and a decrease in machining speed. If it does not increase and is greater than 70%, the high temperature strength will be low, making it easy to break when the tension is increased. Further, if the copper-zinc alloy layer does not exist, the copper base is exposed, and the discharge performance, that is, the machining speed, is significantly reduced. Further, unless the copper-zinc alloy layer has a concentration gradient such that the zinc concentration increases from the copper base toward the surface layer, a sufficient increase in processing speed cannot be obtained. Furthermore, if the thickness of the copper-zinc alloy layer, which has a concentration gradient and has zinc sulfide, copper sulfide, and carbon particles dispersed therein, is less than 0.1 μm, sufficient discharge performance will not be obtained and the machining speed will be increased. Otherwise, the iron content of the workpiece (mainly in the case of steel material) and the copper content of the electrode wire cause a melting reaction and tend to adhere to the machined surface, resulting in poor processing accuracy. If the thickness of the copper-zinc alloy layer having a concentration gradient is thicker than 15 .mu.m, the strength will be lowered and the wire will be more likely to break, and the heat treatment time will be longer and the equipment cost will be higher, which is economically disadvantageous. Furthermore, if there is no black film formed on the outermost layer consisting of zinc sulfide, copper sulfide, and carbon particles with a thickness of 0.1 to 5 μm, initial discharge (when the wire electrode starts discharging between it and the workpiece) In this case, the discharge is not gentle and evenly distributed, but locally concentrated discharge may occur, making the wire more likely to break. If the thickness of this black film is less than 0.1 .mu.m, the above effects cannot be obtained, and if it exceeds 5 .mu.m, the strength will be greatly reduced, causing problems. "Function" Since the core material is a copper-coated steel wire coated with copper at a coverage rate of 10 to 70%, high temperature strength is improved while maintaining high electrical conductivity. When the outer peripheral surface of a copper-coated steel wire with good electrical conductivity is coated with a copper-zinc alloy layer with a concentration gradient of 0.1 to 15 μm in which zinc sulfide, copper sulfide, and carbon particles are dispersed, it is possible to improve the discharge property. At the same time, copper is prevented from adhering to the workpiece due to surface exposure of the copper layer, improving processing accuracy and suppressing reduction in processing speed. Furthermore, in the outermost layer,
When a black film made of zinc sulfide, copper sulfide, and carbon particles with a thickness of 0.1 to 5 μm is formed, a gentle and evenly dispersed discharge occurs instead of a concentrated discharge at the initial stage of discharge, thereby preventing wire breakage. . "Example" Hereinafter, a preferred embodiment of the present invention will be described. As shown in FIG.
A copper-zinc alloy layer 12 is provided with a thickness in the range of , in which zinc sulfide, copper sulfide and carbon particles are dispersed, and a concentration gradient is provided such that the zinc concentration increases from the copper base toward the surface layer; The outermost layer consists of zinc sulfide, copper sulfide and carbon particles with a thickness of 0.1 to 5μ.
m black coating 13 is provided, and the overall diameter is approximately
It is formed to 0.2mm. The copper-coated steel wire 11 is a so-called copper wire, iron wire, alloy steel wire, or other steel wire coated with copper at a coverage rate of 10 to 70%. However, the coverage here means the ratio of the cross-sectional area of the copper portion to the overall cross-sectional area. Such a wire electrode line is manufactured, for example, by the following method. For example, a copper-coated steel wire with a diameter of 0.49 mm was placed in a zinc chloride bath (with 42
g, aqueous solution containing 210 g of ammonium chloride)
It is immersed in the metal and subjected to electrogalvanizing treatment. As additives containing the above-mentioned sulfur-containing organic compounds, anionic surfactants such as sodium alkyl sulfate, sodium alkylbenzene sulfonate, sodium olefin sulfate, cationic surfactants such as alkylpyridinium sulfate, etc. Surfactants containing sulfur are mainly used because they have no sub-effect on the plating bath, but
In addition, aromatic carboxylates, water-soluble cationic polymers, aromatic aldehydes, higher alcohols, etc. can also be used. As a result, a zinc layer of a predetermined thickness containing and dispersing the above additive is formed on the outer peripheral surface of the copper-coated steel wire. At this time, a predetermined amount of the above additive is also deposited on the surface layer of this zinc layer. Next, the copper-coated steel wire with the galvanized layer was drawn to a total diameter of 0.2 mm, and then heated to 500°C in the air using an oven or the like.
Heat treatment is performed by heating for about an hour. Through this heat treatment, the zinc layer changes into a copper/zinc alloy layer with a concentration gradient in which the zinc concentration increases from the copper base to the surface layer, and the sulfur in the additive reacts with the zinc and copper, and organic matter is removed. Upon carbonization, zinc sulfide, copper sulfide, and carbon particles are dispersed in the alloy, and at the same time, a black film consisting of zinc sulfide, copper sulfide, and carbon particles precipitated from the alloy layer is formed on the alloy layer. In this way, the wire electrode line formed is
Since the copper-coated steel wire 11 is used as the core material, it has excellent high-temperature strength and electrical conductivity, and has a concentration gradient in which the zinc concentration increases from the copper base to the surface layer, and contains zinc sulfide, copper sulfide, and Excellent discharge performance is exhibited due to the presence of the copper-zinc alloy layer 12 in which carbon particles are dispersed. Further, the copper-zinc alloy layer 12 prevents copper from adhering to the workpiece during discharge. Furthermore, since the outermost layer has a black coating 13 made of zinc sulfide, copper sulfide, and carbon particles, the initial discharge does not become a concentrated discharge, but instead becomes a gentle and evenly dispersed discharge, and the subsequent discharge is carried out over the entire circumference. The discharge becomes relatively uniform, making it difficult to break the wire. Next, examples will be shown to clarify the effects of these wire electrode lines. In this embodiment, the copper coverage of the copper-coated steel wire 11,
Thickness and zinc sulfide, copper sulfide, and carbon particles of the copper-zinc alloy layer 12, which has a concentration gradient such that the zinc concentration increases from the copper base toward the surface layer, and in which zinc sulfide, copper sulfide, and carbon particles are dispersed. The thickness of the black film 13 is set to various values.
Regarding 0.2 mm wire electrode, regular copper wire, brass wire (Cu65%, Zn35%), galvanized brass wire, and copper-coated steel wire with copper-zinc alloy layer without concentration gradient, also 0.2 mm in diameter. A comparative test was conducted to evaluate machining speed, machining accuracy, wire breakage frequency (high temperature strength, discharge stability), and economic efficiency during machining. The results of this comparative test are shown in Table 1. however,
For electrical discharge machining, workpieces with a thickness of 20 mm (SKD
-11) was processed by cutting out a 30 mm square plate. The processing conditions at this time are as follows. Applied voltage: 110V Pulse time: ON→5μs OFF→5μs Peak current: 10A Capacitor capacity: 0.8μF Processing liquid: Pure water Electrode wire tension: 750gf In addition, the processing speed is the copper wire processing speed (0.8mm/
It is expressed as a ratio when this value is set to 1, with 1 minute) as a reference. Processing accuracy is determined by the width of the dimensional error range (difference between the maximum and minimum value) of the cut plate material in descending order of accuracy: A (less than 0.01 mm), B (0.01 to 0.03 mm), and C (0.03 mm).
(larger than mm). The frequency of wire breakage is listed in descending order of the number of wire breaks: A (stable without wire breakage), B(1) (wire breakage occurs when processing speed is increased), B(2) (wire breakage occurs when tension is increased over 750gf), B(3). (Early stage of discharge - disconnection may occur when the wire electrode starts discharging between the wire electrode and the workpiece.) It is expressed as C (frequent disconnection).
Furthermore, for economical efficiency, cases where the production cost of brass wire can be made cheaper are expressed as ○, and cases where it becomes more expensive are expressed as x.

【表】【table】

【表】 散していないし、かつ銅地から表層に
向つて亜鉛濃度が高くなるよ
うな濃度勾配はつけられていない。
第1表から明らかなように、ワイヤ電極線のう
ち、銅被覆率が10〜70%、かつ上記銅−亜鉛合金
層の厚さが0.1〜15μmおよび上記黒色皮膜の厚さ
が0.1〜5μmという本発明の条件を満たすものは、
銅線、黄銅線、亜鉛めつき黄銅線および濃度勾配
をもたない亜鉛−銅合金層層で被覆された銅被覆
鋼線を含む他の電極線に比べて、加工速度、加工
精度、耐断線性および経済性ともに優れているこ
とがわかる。 なお、直径0.196mm被覆率60%の銅被覆鋼線を
芯材とし上記添加剤を含む硫酸亜鉛浴(1中に
硫酸0.14モル、硫酸亜鉛0.23モルを含む水溶液)
中に浸漬し電気亜鉛メツキを施して厚さ2μmの
添加剤が分散し、かつ表層に添加剤が付着した亜
鉛層を形成し、しかる後に、オーブンを用いて大
気中で1時間熱処理することにより得られたワイ
ヤ電極線と同じくオーブンの代わりに500℃に設
定した管状炉中を通過させる熱処理を行うことに
より得られたワイヤ電極線も上記実施例における
本発明の条件を満たすワイヤ電極線の試験結果と
同様に優れた結果を得ることができた。また、前
記0.49mmのものから0.2mmのものを得る工程にお
いて伸線加工を熱処理の後に行つた場合も同様の
結果が得られた。 なお、大気中で熱処理するため当然亜鉛および
銅の一部が酸化し、酸化亜鉛および酸化銅が生成
され、これらが黒色皮膜に共存しているものと思
われる。 このことから明らかなように、本発明の製造方
法においては、添加剤を内部に分散し、かつ表層
にも付着させた亜鉛層を外周面に設けた銅被覆鋼
線に熱処理を施して亜鉛層を、硫化亜鉛、硫化銅
および炭素粒子が分散し、かつ銅地から表層に向
つて亜鉛濃度が高くなるような濃度勾配がつけら
れた銅−亜鉛合金層に変化させ、かつ硫化亜鉛、
硫化銅および炭素粒子よりなる黒色皮膜を生成さ
せる工程が優れた品質のワイヤ電極線を得るため
の重要な工程であることがわかる。 「発明の効果」 以上説明したように、本発明によれば次のよう
な優れた効果を得ることができる。 10〜70%の被覆率で被覆した銅被覆鋼線を芯
材としたので、高い導電率を維持しながら、か
つ高温強度を高めることができる。すなわち、
高電流が流れても、ジユール熱によるワイヤ電
極線の昇温が少ないので、さらに加工速度を早
めるために、高電流を流してワイヤ電極線が昇
温しても、高温強度が高いので断線を防止し、
放電加工作業の効率を高めることができる。 導電率の良好な銅被覆鋼線の外周面に0.1〜
15μmの厚さにわたつて、硫化亜鉛、硫化銅お
よび炭素粒子を分散し、かつ銅地から表層に向
かつて亜鉛濃度が高くなるような濃度勾配がつ
けられた銅−亜鉛合金層を設けたので放電性能
が向上し、かつ銅層の表面露出による被加工物
への銅の付着が防止されて、加工精度が高めら
れるとともに、加工速度の低下を防止すること
ができる。 最外層に0.1〜5μmの厚さにわたつて、硫化
亜鉛、硫化銅および炭素粒子よりなる黒色皮膜
を設けたので、初期放電において集中放電とな
らず、おだやかな万遍なく分散された放電とな
り断線を防止することができる。 素材的に伸線加工性が良好でかつ安価に製造
することができる。つまり、本発明のワイヤ電
極線は鋼、銅、銅−亜鉛合金層、黒色皮膜の特
性が極めて良好に利用、調整され、これらの相
乗作用によつて前記の効果をも得るも
のである。 銅被覆鋼線の外周面に含イオウ有機化合物を
含有する添加剤を内部に分散し、かつ表層に付
着せしめた亜鉛層を電気メツキで設け、ついで
熱処理を施すことによつて、硫化亜銅、硫化銅
および炭素粒子が分散し、かつ銅地から表層に
向けて亜鉛濃度が高くなるような銅−亜鉛合金
層と、これの外層に硫化亜鉛、硫化銅および炭
素粒子からなる黒色皮膜が得られ、放電性能の
安定したワイヤ電極線を得ることができる。
[Table] It is not dispersed, and the zinc concentration increases from the copper base to the surface layer.
No concentration gradient was established.
As is clear from Table 1, the wire electrode wire has a copper coverage of 10 to 70%, a thickness of the copper-zinc alloy layer of 0.1 to 15 μm, and a thickness of the black film of 0.1 to 5 μm. What satisfies the conditions of the present invention is
Compared to other electrode wires, including copper wire, brass wire, galvanized brass wire, and copper-coated steel wire coated with a zinc-copper alloy layer without concentration gradient, processing speed, processing accuracy, and breakage resistance are improved. It can be seen that this method is excellent in terms of both performance and economy. In addition, a zinc sulfate bath containing the above additives (an aqueous solution containing 0.14 mol of sulfuric acid and 0.23 mol of zinc sulfate in 1 part) uses a copper-coated steel wire with a diameter of 0.196 mm and a coverage rate of 60% as the core material.
By immersing the material in the aluminum alloy and applying electrogalvanizing to form a zinc layer with a thickness of 2 μm in which the additive is dispersed and the additive adhered to the surface layer, the zinc layer is then heat-treated in an oven for 1 hour in the atmosphere. Similarly to the obtained wire electrode wire, a wire electrode wire obtained by heat treatment by passing through a tube furnace set at 500°C instead of an oven was also tested as a wire electrode wire satisfying the conditions of the present invention in the above example. We were able to obtain excellent results as well. Furthermore, similar results were obtained when wire drawing was performed after heat treatment in the step of obtaining a 0.2 mm wire from the 0.49 mm wire. Note that since the heat treatment is performed in the atmosphere, naturally some of the zinc and copper are oxidized, producing zinc oxide and copper oxide, which are thought to coexist in the black film. As is clear from this, in the manufacturing method of the present invention, a copper-coated steel wire having a zinc layer on the outer circumferential surface with additives dispersed therein and attached to the surface layer is heat-treated to form a zinc layer. into a copper-zinc alloy layer in which zinc sulfide, copper sulfide and carbon particles are dispersed, and the concentration gradient is such that the zinc concentration increases from the copper base to the surface layer, and zinc sulfide,
It can be seen that the step of producing a black film consisting of copper sulfide and carbon particles is an important step to obtain a wire electrode wire of excellent quality. "Effects of the Invention" As explained above, according to the present invention, the following excellent effects can be obtained. Since the core material is a copper-clad steel wire coated with a coverage of 10 to 70%, high temperature strength can be increased while maintaining high electrical conductivity. That is,
Even when a high current flows, the temperature of the wire electrode wire does not rise due to Joule heat, so in order to further speed up the processing speed, even if a high current flows and the wire electrode wire heats up, the high temperature strength prevents the wire from breaking. prevent,
Efficiency of electrical discharge machining work can be improved. 0.1 to the outer peripheral surface of copper-coated steel wire with good conductivity
A copper-zinc alloy layer with a thickness of 15 μm in which zinc sulfide, copper sulfide, and carbon particles are dispersed and has a concentration gradient such that the zinc concentration increases from the copper base toward the surface layer is provided. Discharge performance is improved, copper is prevented from adhering to the workpiece due to surface exposure of the copper layer, and machining accuracy is increased, and a decrease in machining speed can be prevented. As the outermost layer has a black film made of zinc sulfide, copper sulfide, and carbon particles with a thickness of 0.1 to 5 μm, the initial discharge does not become a concentrated discharge, but instead becomes a gentle and evenly distributed discharge, which prevents wire breakage. can be prevented. The material has good wire drawability and can be manufactured at low cost. That is, in the wire electrode wire of the present invention, the characteristics of the steel, copper, copper-zinc alloy layer, and black coating are extremely well utilized and adjusted, and the above-mentioned effects are also obtained through the synergistic action of these. Additives containing sulfur-containing organic compounds are dispersed inside the outer circumferential surface of copper-coated steel wire, and a zinc layer is attached to the surface layer by electroplating, followed by heat treatment. A copper-zinc alloy layer in which copper sulfide and carbon particles are dispersed and the zinc concentration increases from the copper base toward the surface layer, and a black film consisting of zinc sulfide, copper sulfide, and carbon particles on the outer layer of this is obtained. , a wire electrode line with stable discharge performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のワイヤ放電加工用電極線の実
施例を示す横断面図、第2図は一般的なワイヤ放
電加工法の概略を説明する概略斜視図である。 11……銅被覆鋼線、12……銅−亜鉛合金
層、13……黒色皮膜。
FIG. 1 is a cross-sectional view showing an embodiment of the electrode wire for wire electric discharge machining of the present invention, and FIG. 2 is a schematic perspective view illustrating the outline of a general wire electric discharge machining method. 11...Copper coated steel wire, 12...Copper-zinc alloy layer, 13...Black film.

Claims (1)

【特許請求の範囲】 1 鋼線に10〜70%の被覆率で銅を被覆してなる
銅被覆鋼線が芯材とされ、この銅被覆鋼線には厚
さ0.1〜15μmの、硫化亜鉛、硫化銅および炭素粒
子が分散しかつ銅地から表層に向つて亜鉛濃度が
高くなるような濃度勾配がつけられた銅−亜鉛合
金層が被覆され、さらにこの上に硫化亜鉛、硫化
銅および炭素粒子からなる0.1〜5μmの黒色皮膜
が被覆されたことを特徴とする放電加工用ワイヤ
電極線。 2 鋼線に10〜70%の被覆率で銅を被覆してなる
銅被覆鋼線の外周面に、含イオウ有機化合物を含
有する添加剤を加えた亜鉛メツキ浴で電気亜鉛メ
ツキ処理を施して、添加剤を内部に介在させかつ
表層に付着させた状態で亜鉛層を形成したのち、
熱処理を施して硫化亜鉛、硫化銅および炭素粒子
が分散し、かつ、銅地から表層に向つて亜鉛濃度
が高くなるような濃度勾配がつけられた厚さ0.1
〜15μmの銅−亜鉛合金層を生成せしめるととも
に最外層に硫化亜鉛、硫化銅および炭素粒子から
なる厚さ0.1〜5μmの黒色皮膜を生成せしめるこ
とを特徴とする放電加工用ワイヤ電極線の製造方
法。 3 前記熱処理の前工程あるいは後工程として伸
線加工を施すことを特徴とする特許請求の範囲第
2項記載の放電加工用ワイヤ電極線の製造方法。
[Claims] 1. A copper-coated steel wire formed by coating a steel wire with copper at a coverage rate of 10 to 70% is used as a core material, and this copper-coated steel wire has a zinc sulfide coating with a thickness of 0.1 to 15 μm. A copper-zinc alloy layer is coated with a concentration gradient such that copper sulfide and carbon particles are dispersed and the zinc concentration increases from the copper base to the surface layer, and on top of this, zinc sulfide, copper sulfide and carbon are coated. A wire electrode wire for electrical discharge machining, characterized in that it is coated with a black film of 0.1 to 5 μm consisting of particles. 2. The outer peripheral surface of a copper-coated steel wire, which is made by coating a steel wire with copper at a coverage rate of 10 to 70%, is electrolytically galvanized using a galvanizing bath containing an additive containing a sulfur-containing organic compound. After forming a zinc layer with additives interposed inside and attached to the surface layer,
Zinc sulfide, copper sulfide and carbon particles are dispersed through heat treatment, and a concentration gradient of 0.1 mm is created so that the zinc concentration increases from the copper base to the surface layer.
A method for manufacturing a wire electrode wire for electrical discharge machining, characterized by producing a copper-zinc alloy layer of ~15 μm and a black film of 0.1 to 5 μm thick consisting of zinc sulfide, copper sulfide, and carbon particles as the outermost layer. . 3. The method of manufacturing a wire electrode wire for electric discharge machining according to claim 2, wherein wire drawing is performed as a pre-process or post-process of the heat treatment.
JP9424885A 1985-05-01 1985-05-01 Electrode wire for wire electric discharge machining and manufacture thereof Granted JPS61252025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9424885A JPS61252025A (en) 1985-05-01 1985-05-01 Electrode wire for wire electric discharge machining and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9424885A JPS61252025A (en) 1985-05-01 1985-05-01 Electrode wire for wire electric discharge machining and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61252025A JPS61252025A (en) 1986-11-10
JPH0249848B2 true JPH0249848B2 (en) 1990-10-31

Family

ID=14105000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9424885A Granted JPS61252025A (en) 1985-05-01 1985-05-01 Electrode wire for wire electric discharge machining and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61252025A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988552A (en) * 1988-06-17 1991-01-29 Composite Concepts Company Electrical discharge machining electrode
CN106738393B (en) * 2016-12-08 2018-05-22 中国电子科技集团公司第四十六研究所 A kind of method using spark cutting technology fly-cutting CdS monocrystal
CN110125499B (en) * 2019-05-14 2020-12-08 宁波博德高科股份有限公司 Carbon-containing electrode wire for slow-moving wire electric spark machining on surface layer and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114678A (en) * 1981-01-07 1982-07-16 Toyo Soda Mfg Co Ltd Cathode for electrolysis
JPS5941462A (en) * 1982-08-31 1984-03-07 Hitachi Cable Ltd Preparation of composite electrode wire for discharge machining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114678A (en) * 1981-01-07 1982-07-16 Toyo Soda Mfg Co Ltd Cathode for electrolysis
JPS5941462A (en) * 1982-08-31 1984-03-07 Hitachi Cable Ltd Preparation of composite electrode wire for discharge machining

Also Published As

Publication number Publication date
JPS61252025A (en) 1986-11-10

Similar Documents

Publication Publication Date Title
JP3718529B2 (en) Method for producing porous electrode wire for electric discharge machining
KR920007689B1 (en) Electrode wire for use in electric discharge machining process for preparing same
JPS61136733A (en) Electrode wire for wire-cut spark erosion work and preparation thereof
JPH0249848B2 (en)
JPH0755407B2 (en) Method for manufacturing electrode wire for wire electric discharge machining
JPH0471646B2 (en)
JPH0249849B2 (en)
JPS61117021A (en) Electrode wire for wire-cut electric discharge machining and manufacturing method thereof
JPH07108488B2 (en) Method for manufacturing electrode wire for wire electric discharge machining
JPS62246425A (en) Electrode wire for wire cut electric discharge machining and manufacture method therefor
JPS60121263A (en) Production of electrode wire for electric discharge working
JPH0573528B2 (en)
JPS62255015A (en) Electrode wire for wire electric discharge and method for manufacturing thereof
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
JPS61284322A (en) Electrode wire for wire electric discharge machining
KR100485645B1 (en) The electrode wire for electrical discharge machining, and manufacturing method of it
KR100481950B1 (en) An electrode wire production method for a graphite coating discharge processing
JPS61284321A (en) Electrode wire for wire electric discharge machining
JPS5921946B2 (en) Manufacturing method of tin or solder-plated wire
JPH01283384A (en) Production of galvanized steel sheet having superior spot weldability
JPH0261076A (en) Production of electrode wire for electric discharge machining
JPS6083786A (en) Production of electrogalvanized steel sheet having excellent weldability
JPS61197126A (en) Electrode wire for wire electric discharge machining