JPS60118449A - Method and apparatus for controlling cutting operation of milling machine - Google Patents

Method and apparatus for controlling cutting operation of milling machine

Info

Publication number
JPS60118449A
JPS60118449A JP22545883A JP22545883A JPS60118449A JP S60118449 A JPS60118449 A JP S60118449A JP 22545883 A JP22545883 A JP 22545883A JP 22545883 A JP22545883 A JP 22545883A JP S60118449 A JPS60118449 A JP S60118449A
Authority
JP
Japan
Prior art keywords
cutting
movement
speed
milling machine
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22545883A
Other languages
Japanese (ja)
Inventor
Masayuki Taguchi
田口 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP22545883A priority Critical patent/JPS60118449A/en
Publication of JPS60118449A publication Critical patent/JPS60118449A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Milling Processes (AREA)

Abstract

PURPOSE:To reduce vibration and noise while improving surface roughness so as to enable heavy-duty cutting, by controlling a cutting-feeding speed preselected for a milling machine during its operation changeably within a selected range. CONSTITUTION:A table 6 is initially moved at a preselected cutting-feeding speed. A pulse signal supplied from a mobile pulse detector 10 upon the initiation of the movement is delivered to a present speed detecting unit 11, where pulse signals are counted per unit amount of movement or unit time of movement, while they are made to correspond to pulse signals from a clock pulse generator 8, so that a present speed of the table 6 is detected. The detected present speed is compared with a predetermined mode of movement in an operation unit 15 so that a deviation signal is supplied to a correction unit 16 which supplies a correction signal to a control unit 17. A motor control signal is thus corrected in the control unit 17, and a motor 9 is controlled in its rotation such that the table 6 is moved in the predetermined mode of the selected cutting feeding speed. Accordingly, forced vibration or the like due to periodical variation of cutting resistance can be reduced.

Description

【発明の詳細な説明】 本発明はフライス盤における切削制御方法とそのための
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cutting control method in a milling machine and an apparatus therefor.

一般にフライス削りは回転されているカッタに対し被剛
材を送り込むことにより行なわれるが、フライス加工に
おける面粗度やこの面粗度に影響を及ぼす振動、或はこ
の振動に起因する騒音などには、フライス削りの切削運
動や送り運動が深く関与している。
Generally, milling is performed by feeding a rigid material into a rotating cutter, but the surface roughness during milling, the vibrations that affect this surface roughness, and the noise caused by this vibration, etc. , the cutting motion and feeding motion of milling are deeply involved.

即ち、従来、面粗度の向上や振動、騒音の低減は、被剛
材の材質などを考慮して、カッタの切込量や回転速度、
戒は被剛材の切削送り速度を最適条件に設定して切削し
たり、不等ピッチで切刃を設けたカッタを使用すること
などによって図られているからである。
In other words, in the past, improvement of surface roughness and reduction of vibration and noise were achieved by considering the material of the rigid material, cutting depth of the cutter, rotation speed, etc.
This is because the precepts are achieved by setting the cutting feed rate of the rigid material to an optimal condition, or by using a cutter with cutting blades provided at uneven pitches.

しかし、従来の対応策では作業効率が低下せざるを得な
かったり、カッタ自体が高価につく等の難点があるほか
、依然として振動問題があり、また、重切削ができない
という難点もある。
However, conventional countermeasures have drawbacks such as reduced work efficiency, expensive cutters themselves, still vibration problems, and inability to perform heavy cutting.

本発明は上記のフライス削りの現状に鑑み、フライス加
工における切削運動ないしは送り運動自体をその運動中
に可変制御することにより、振動。
In view of the above-mentioned current state of milling, the present invention variably controls the cutting motion or feed motion itself during milling to reduce vibration.

騒音の軽減と共に面粗度の向上を図り、また、従来は不
可能であった重切削をも可能にする制御方法及びその装
置を提供することを目的としてなされたもので、その方
法の構成は、フライス盤における選択された切削送り速
度を、切削中にその選択された切削送り速度において適
宜の範囲で増減させて変更することを特徴とするもので
あり、また、この方法を実施するための装置の構成は、
フライス盤における切削送り速度を、その送り運動を行
う部材に設けた移動パルス検出器から供給される移動パ
ルス信号を適宜の時間パルスに対応させて移動量/時間
、又は、時間/移動量で表わされるパルス信号による現
在移動速度信号で検出するようにしておく一方、前記送
り運動を行う部材の移動駆動源を、切削送り運動を行う
部材について移動速度の増減を含み任意に設定する移動
量/時間、又は、時間/移動量を表わすパルス信号によ
る予定移動速度信号によって駆動し、前記送り運動を行
う部材の移動時、現在移動速度信号と予定移動速度信号
とを比較演算し、この演算結果によって上記駆動源を制
御することにより、切削送り運動をする部材の移動速度
を適宜範囲で増減させるようにしたことを特徴とするも
のである。
The purpose of this was to provide a control method and device that reduces noise, improves surface roughness, and enables heavy cutting, which was previously impossible.The structure of the method is as follows: , characterized in that the selected cutting feed rate in a milling machine is changed by increasing or decreasing the selected cutting feed rate within an appropriate range during cutting, and an apparatus for carrying out this method. The configuration of
The cutting feed rate in a milling machine is expressed as movement amount/time or time/movement amount by correlating a movement pulse signal supplied from a movement pulse detector provided on a member that performs the feed movement with an appropriate time pulse. A movement amount/time that is detected by a current movement speed signal based on a pulse signal, and a movement drive source for the member performing the feed movement is arbitrarily set, including an increase/decrease in the movement speed of the member that performs the cutting feed movement. Alternatively, when the member is moved by a scheduled movement speed signal based on a pulse signal representing time/movement amount, the current movement speed signal and the planned movement speed signal are compared and calculated, and the above-mentioned driving is performed based on the calculation result. The present invention is characterized in that the moving speed of the member that performs the cutting feed movement can be increased or decreased within an appropriate range by controlling the source.

次に本発明の実施の一例を図に拠り説明する。Next, an example of implementation of the present invention will be explained with reference to the drawings.

1はフライス盤の主軸頭において、スピンドル2の下端
に取附けられたカッタ、3はクイル、4は前記カッタ1
の回転駆動源として設けたモータ、5は該モータ4とス
ピンドル2の間に挿入した減速機などを含む伝動機構、
6は上記主軸頭の下方にあって被削材Wを固定セットす
るテーブルで、該テーブル6はフライス盤において切削
送り運動をする部材の一つである。7は前記テーブル6
を支持しその移動を案内するサドル、8は送りネジで、
前記テーブル6に形成したナツト部材6aが螺3− 合されていて、モータ9に回転されることにより、前記
テーブル6に切削送りを始めとする各種の送り運動を与
えるものであり、以上1〜9により立型フライス盤の基
本構造をなす。
1 is a cutter attached to the lower end of the spindle 2 in the main shaft head of the milling machine, 3 is a quill, and 4 is the cutter 1
5 is a transmission mechanism including a speed reducer inserted between the motor 4 and the spindle 2;
Reference numeral 6 denotes a table located below the spindle head, on which the workpiece W is fixedly set, and the table 6 is one of the members that perform cutting and feeding movements in the milling machine. 7 is the table 6
8 is a feed screw, which supports the saddle and guides its movement.
A nut member 6a formed on the table 6 is screwed together and rotated by a motor 9 to give the table 6 various feed movements including cutting feed. 9 forms the basic structure of a vertical milling machine.

尚、フライス盤に於て、切削送りを行う部材としては、
上記テーブル6のほか、サドル7やこのサドルを支持す
るニー(図に表われず)、或は、クイル3があるが、本
発明はこれらのいずれの部材にも、それらが切削送り運
動をする際、以下に述べる実施例と同様に適用できるか
ら、以下の実施例は、上記テーブル6について説明する
In addition, in a milling machine, the parts that perform cutting feed are:
In addition to the table 6, there is a saddle 7 and a knee (not shown in the figure) that supports this saddle, or a quill 3, but the present invention does not require any of these members to perform cutting feed motion. In this case, the table 6 can be applied in the same way as the embodiment described below, so the following embodiment will explain the above table 6.

而して、従来のフライス盤では、フライス加工の際、被
剛材の材質や使用するカッタなどによりスピンドル2の
回転数を予め機械内に設定されている変速範囲内から選
択し、スピンドルを定速回転させると共に、テーブル6
に定速の切削送りを与えてフライス切削を行なっている
のが現状である。
Therefore, in conventional milling machines, when milling, the rotation speed of the spindle 2 is selected from within the variable speed range set in the machine in advance depending on the material of the rigid material and the cutter used, etc., and the spindle is kept at a constant speed. While rotating, table 6
Currently, milling is performed by applying a constant cutting feed rate to the machine.

しかし、カッタの定速回転及びテーブルの定速送りによ
る切削では、先にも述べたように、切削4一 時に生じる振動が一定周波数であるため共振して増幅さ
れ易く、また、この増幅された振動によって面粗度が低
下するという難点がある。この難点は重切削において特
に顕著に表われ、重切削ができない原因ともなっている
However, in cutting with constant speed rotation of the cutter and constant speed feed of the table, as mentioned earlier, the vibration that occurs during cutting 4 has a constant frequency and is likely to resonate and be amplified. There is a drawback that the surface roughness decreases due to vibration. This difficulty is particularly noticeable in heavy cutting, and is the reason why heavy cutting cannot be performed.

そこで、本発明では、カッタの定速回転と定速での切削
送りによる切削に生じていた難点を解消するため、切削
中の切削送り運動を行う部材、ここではテーブル6の切
削送り速度を、被剛材の材質などに応じ、選択された切
削送り速度において増減変更し、切削時に生じる振動の
周波数を変え主として共振現象を防ぐようにしたのであ
る。以下、この点について説明する。
Therefore, in the present invention, in order to solve the difficulties that have arisen in cutting due to constant speed rotation of the cutter and constant speed cutting feed, the cutting feed speed of the member that performs the cutting feed movement during cutting, here the table 6, is changed to The selected cutting feed rate is increased or decreased depending on the material of the rigid material, etc., and the frequency of vibrations generated during cutting is changed to mainly prevent resonance phenomena. This point will be explained below.

図において、10はテーブル6に関連付けて設け、その
単位移動量、例えば1mm当り100個のパルス信号を
発生する移動パルス検出器で、適宜距離当りのパルス信
号を生じるようにした測長器を用いるが、送りネジ8に
エンコーダ或はそれと同等の機能を持つ器具を用いても
よい。而して、テーブル6は送りネジ8に直結されてい
るので、ここでの送りネジ8の回転検出はテーブル6の
移動量検出を意味する。
In the figure, reference numeral 10 is a moving pulse detector which is provided in association with the table 6 and which generates 100 pulse signals per unit movement amount, for example 1 mm, and uses a length measuring device which generates pulse signals per appropriate distance. However, an encoder or a device having an equivalent function may be used for the feed screw 8. Since the table 6 is directly connected to the feed screw 8, detection of the rotation of the feed screw 8 here means detection of the amount of movement of the table 6.

11は上記パルス検出器10から供給されるパルス信号
を時計パルス発生器12から供給される任意の時間を表
わすパルス信号、例えば1秒当り100個のパルスに対
応させ、テーブル6の移動速度を移動量/時間または時
間/移動量を表わす信号に形成する現在速度検出部、1
3は前記モータ9の回転出力の可変範囲を、テーブル6
の移動速度(圃/m1n)を表わす数値で任意に設定で
きるようにした設定部で、テーブル6の切削送り速度が
180nwn/minに設定されているとき、次のよう
な設定を行なうことができるようにしである。
11 corresponds the pulse signal supplied from the pulse detector 10 to a pulse signal representing an arbitrary time supplied from the clock pulse generator 12, for example, 100 pulses per second, and moves the table 6 at a moving speed. a current speed detection unit that forms a signal representing amount/time or time/movement amount, 1
3 shows the variable range of the rotational output of the motor 9 in the table 6.
When the cutting feed rate of table 6 is set to 180 nwn/min, the following settings can be made in the setting section that can be arbitrarily set with a numerical value representing the moving speed (field/m1n). That's how it is.

而して、設定部13では、上記の選択された切削送り速
度におけるテーブル6の移動モードを、その速度の例え
ば約10%前後で任意に増減させるための信号を形成す
る。
The setting unit 13 generates a signal for arbitrarily increasing or decreasing the movement mode of the table 6 at the selected cutting feed rate, for example, around 10% of that speed.

即ち、選択された送り速度が]80mn/minのとき
、テーブル6は1秒で3n+m移動し、その移動モード
は一定であるが、本発明では、例えば、上記選択送り速
度による切削送り中に、1.1秒で3■、或は0.9秒
で3nwnの移動をさせるといった具合に、その移動モ
ードを任意に変更するため、3nITlの移動量を表わ
す300個のパルスを1.1秒を表わす11個のパルス
に対応させた信号、或は、0.9秒を表わす9個のパル
スに対応させた信号によって設定するのである。尚、こ
こでの選択送り速度を表わす信号は300個の移動量パ
ルスに10個の時間パルスが対応されて形成される。
That is, when the selected feed rate is] 80 mn/min, the table 6 moves 3n+m in 1 second, and the movement mode is constant, but in the present invention, for example, during cutting feed at the selected feed rate, In order to arbitrarily change the movement mode, such as moving 3■ in 1.1 seconds or 3nwn in 0.9 seconds, 300 pulses representing the amount of movement of 3nITl are generated in 1.1 seconds. It is set by a signal corresponding to 11 pulses representing 0.9 seconds or a signal corresponding to 9 pulses representing 0.9 seconds. The signal representing the selected feed rate here is formed by associating 300 movement amount pulses with 10 time pulses.

而して、上記設定部13には、上記のようにして任意に
設定できる予定移動モード信号がテーブル6の移動に応
じどこで供給されるかを決定するため、上記パルス検出
器]0及び/又は時間パルス発生器12からのパルス信
号が供給されるようにしてあり、この設定部13で形成
される予定移動モード信号は、予定速度記憶部14に、
例えば、テーブル6の適宜の単位移動量或は適宜の単位
移動時間に対応して記憶される。
In order to determine where the scheduled movement mode signal, which can be arbitrarily set as described above, is supplied to the setting unit 13 in accordance with the movement of the table 6, the setting unit 13 includes the pulse detector ]0 and/or A pulse signal from a time pulse generator 12 is supplied, and a scheduled movement mode signal formed by this setting section 13 is stored in a scheduled speed storage section 14.
For example, it is stored in correspondence with an appropriate unit movement amount or an appropriate unit movement time of the table 6.

15は現在速度検出部11と予定速度記憶部14から供
給される速度信号を逐次比較演算し、両者の偏7− 差を計数する演算部、16は前記演算部15の偏差を測
微部17の補正信号に形成する補正部で、始動時には予
定速度記憶部14から供給された信号がそのまま制御部
17に供給される。
Reference numeral 15 denotes a calculation unit that performs a successive approximation calculation on the speed signals supplied from the current speed detection unit 11 and the scheduled speed storage unit 14, and counts the difference between the two; and 16, a differential measurement unit 17 that measures the deviation of the calculation unit 15. The correction section forms a correction signal for the control section 17, and the signal supplied from the scheduled speed storage section 14 is directly supplied to the control section 17 at the time of starting.

このようにすると、当初テーブル6は予め選択された切
削送り速度で移動し始めるが、テーブル6の移動開始と
同時に移動パルス検出器10から供給されるパルス信号
が現在速度検出部11に送られ、ここでテーブル6の適
宜の単位移動量或は単位移動時間当りについての上記パ
ルス信号が計数されると共に時計パルス発生器8からの
パルス信号に対応させられて前記テーブル6の現在速度
が検出される。この現在移動速度は演算部15において
予定移動モードと比較演算され、演算結果よる偏差信号
が補正部16に供給される。補正部16はそこで形成し
た補正信号を制御部17に供給するので、制御部17で
はモータ制御信号が補正され、この結果、モータ9はテ
ーブル6が選択された切削送り速度における予定移動モ
ードで移動するようにモータの回転が制御されるのであ
る。
In this way, the table 6 initially starts to move at the preselected cutting feed rate, but at the same time as the table 6 starts moving, a pulse signal supplied from the movement pulse detector 10 is sent to the current speed detection section 11. Here, the pulse signal per unit movement amount or unit movement time of the table 6 is counted, and the current speed of the table 6 is detected in correspondence with the pulse signal from the clock pulse generator 8. . This current moving speed is compared and calculated with the scheduled movement mode in the calculating section 15, and a deviation signal based on the calculation result is supplied to the correcting section 16. The correction unit 16 supplies the correction signal formed there to the control unit 17, so the control unit 17 corrects the motor control signal, and as a result, the motor 9 moves the table 6 in the scheduled movement mode at the selected cutting feed rate. The rotation of the motor is controlled to do so.

8− 而して、モータ9の回転をテーブル6の選択送り速度に
おいて制御し、テーブル6の切削送りに不等速運動をさ
せると、切刃の被削材に対する相対速度が切削中微細に
増減変更されることとなる。
8- Therefore, when the rotation of the motor 9 is controlled at the selected feed rate of the table 6 and the cutting feed of the table 6 is made to move at an inconstant velocity, the relative speed of the cutting blade to the workpiece material increases or decreases minutely during cutting. This is subject to change.

尚、本発明において、テーブル6の不等速切削送りは、
面粗度に悪影響を及ぼすことがないように、一般的には
、被削材の材質などに応じて予め選択されるテーブル6
の切削送り速度の±10〜15%前後の範囲で与えられ
るが、被削材の材質など。
In addition, in the present invention, the inconstant speed cutting feed of the table 6 is as follows:
In general, the table 6 is selected in advance according to the material of the workpiece so as not to adversely affect the surface roughness.
It is given in the range of around ±10 to 15% of the cutting feed rate, but it depends on the material of the workpiece, etc.

切削条件によっては上記範囲を上記実施例の範囲より大
きくしたり、或は逆に小さくしてもよい。
Depending on the cutting conditions, the above range may be made larger than the range of the above embodiment, or conversely may be made smaller.

また、速度の増減周期など送り速度変更のタイミングも
、被剛材の材質など切削条件に応じ任意に設定すること
ができる。
Furthermore, the timing of changing the feed rate, such as the rate of increase/decrease in speed, can be arbitrarily set depending on the cutting conditions such as the material of the rigid material.

上述のように、本発明は切削中のテーブルのような切削
送りを行う部材に不等速運動をさせるから、従来の定速
回転のカッタと定速切削送りによるフライス切削におい
て切削抵抗の周期的変動によって生じている強制振動、
或は、この強制振動により励起される自励振動を軽減な
いしはそのような振動を起させない切削を実現し、また
、上記振動による騒音を軽減ないしは発生させない切削
を可能とし、更には、従来は不可能であった重切削を実
施できるなどの作用効果がある。
As mentioned above, since the present invention causes a member that performs cutting feed, such as a table during cutting, to move at an inconstant speed, the periodicity of cutting resistance is reduced in milling using a conventional constant-speed rotation cutter and constant-speed cutting feed. forced vibration caused by fluctuations,
Alternatively, it is possible to realize cutting that reduces self-excited vibration excited by this forced vibration or does not cause such vibration, and also enables cutting that reduces or does not generate noise due to the vibration, and furthermore, There are effects such as being able to carry out heavy cutting that was previously possible.

尚、本発明の実施に当っては、テーブルを始めとする切
削送りを行う部材の不等速移動時、その送り速度変動に
同期してカッタの回転速度を変更してやり、カッタの各
切刃と被剛材との相対速度を一定に維持するようにした
り、或は、非同期的にカッタの回転速度を変更し、カッ
タにおける各回の被剛材に対する相対速度を更に不等速
になるようにしてもよい。
In carrying out the present invention, when a table or other member that performs cutting feed moves at an inconstant speed, the rotational speed of the cutter is changed in synchronization with the feed rate fluctuation, and each cutting edge of the cutter and Either the relative speed with the rigid material is maintained constant, or the rotational speed of the cutter is changed asynchronously, so that the relative velocity of the cutter with respect to the rigid material each time becomes even more inconstant. Good too.

また、上記実施例では、切削送りを行う部材の一例とし
てのテーブル6の送り速度の制御装置をクローズトルー
プ方式で構成したが、本発明方法はオープンループ方式
の制御装置により制御することもできること勿論である
。更に、本発明方法が適用できるフライス盤は、その機
械型式、制御方式などを問わず、いずれのものにも適用
可能である。
Furthermore, in the above embodiment, the control device for the feed rate of the table 6, which is an example of a member that performs cutting feed, is constructed using a closed-loop system, but it goes without saying that the method of the present invention can also be controlled using an open-loop system. It is. Furthermore, the method of the present invention can be applied to any milling machine, regardless of its mechanical type or control system.

本発明は以上の通りであるから、フライス盤の制御方法
及びそのための装置として極めて有用である。
Since the present invention is as described above, it is extremely useful as a control method for a milling machine and a device therefor.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法の実施の一例を表わした制御ブロック図
である。 1・・・カッタ、2・・・スピンドル、3・・・クイル
、4・・・モータ、5・・・伝動機構、6・・・テーブ
ル、7・・・サドル、8・・・送りネジ、9・・・モー
タ、10・・・移動パルス検出器、11・・・現在速度
検出部、12・・・時計パルス発生器、13・・・設定
部、14・・・予定移動速度記憶部、15・・・演算部
、16・・・補正部、17・・・制御部代理人 小泉良
邦 11− ト、 12− 手続補正書 昭和58年12月26日 特許庁長官 若 杉 和 夫 殿 ■、事件の表示 昭和58年 特許願 第225458号2、発明の名称 フライス盤の切削制御方法及びその装置3、補正をする
者 事件との関係 特許出願人 神奈川県伊勢原市石田200番地 株式会社 ア マ ダ 代表者 天 1) 満 明 4、代理人 郵便番号 105 東京都港区新橋2丁目5′番6号 大村ビル5、補正の
対象 6、補正の内容 (1)本願の「発明の詳細な説明」において、明細書第
8頁第4行の「11個」を、 1.10個 に補正する。 (2)同じく、同頁第6行の「9個」を、90個 に補正する。 (3)同じく、同頁第8行のrl−Q個jを、100個 に補正する。 (4)本願の代理権を証する書面を添付別紙のとおり補
正する。 2−
The figure is a control block diagram showing an example of implementing the method of the present invention. DESCRIPTION OF SYMBOLS 1... Cutter, 2... Spindle, 3... Quill, 4... Motor, 5... Transmission mechanism, 6... Table, 7... Saddle, 8... Feed screw, 9...Motor, 10...Movement pulse detector, 11...Current speed detection section, 12...Clock pulse generator, 13...Setting section, 14...Planned movement speed storage section, 15...Arithmetic section, 16...Amendment section, 17...Control department agent Yoshikuni Koizumi 11-t, 12- Procedural amendment December 26, 1980 Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office■ , Indication of the case 1982 Patent Application No. 225458 2 Name of the invention Cutting control method for a milling machine and its device 3 Person making the amendment Relationship to the case Patent applicant Amada Co., Ltd. 200 Ishida, Isehara City, Kanagawa Prefecture Representative Ten 1) Mitsuru Akira 4, Agent postal code 105 Omura Building 5, 2-5'-6 Shinbashi, Minato-ku, Tokyo, Subject of amendment 6, Contents of amendment (1) "Detailed description of the invention" of the application , "11 pieces" on page 8, line 4 of the specification is amended to 1.10 pieces. (2) Similarly, "9 pieces" in the 6th line of the same page is corrected to 90 pieces. (3) Similarly, rl-Q pieces j in the 8th line of the same page are corrected to 100 pieces. (4) Amend the document certifying the power of attorney for the application as shown in the attached attachment. 2-

Claims (1)

【特許請求の範囲】 1 フライス盤における選択された切削送り速度を、切
削中にその選択された切削送り速度において適宜の範囲
で増減させて変更することを特徴とするフライス盤の切
削制御方法。 2 フライス盤における切削送り速度を、その送り運動
を行う部材に設けた移動パルス検出器から供給される移
動パルス信号を適宜の時間パルスに対応させて移動量/
時間、又は、時間/移動量で表わされるパルス信号によ
る現在移動速度信号で検出するようにしておく一方、前
記送り運動を行う部材の移動駆動源を、切削送り運動を
行う部材について移動速度の増減を含み任意に設定する
移動量/時間、又は、時間/移動量を表わすパルス信号
による予定移動速度信号によって駆動し、前記送り運動
を行う部材の移動時、現在移動速度信号と予定移動速度
信号と髪比較演算し、この演算結果によって上記駆動源
を制御することにより、切削送り運動をする部材の移動
速度を適宜範囲で増減させるようにしたことを特徴とす
るフライス盤の切削制御装置。
[Scope of Claims] 1. A cutting control method for a milling machine, which comprises changing a selected cutting feed rate in the milling machine by increasing or decreasing the selected cutting feed rate within an appropriate range during cutting. 2 The cutting feed rate in a milling machine is calculated by matching the movement pulse signal supplied from the movement pulse detector provided on the member that performs the feed movement with an appropriate time pulse to calculate the movement amount/
While detection is performed using a current moving speed signal based on a pulse signal expressed by time or time/travel amount, the movement drive source of the member performing the feeding motion is changed to increase or decrease the moving speed of the member performing the cutting feed motion. When moving the member that performs the feeding motion, the current moving speed signal and the scheduled moving speed signal are A cutting control device for a milling machine, characterized in that the moving speed of a member that performs a cutting feed motion is increased or decreased within an appropriate range by performing a hair comparison calculation and controlling the drive source based on the calculation result.
JP22545883A 1983-12-01 1983-12-01 Method and apparatus for controlling cutting operation of milling machine Pending JPS60118449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22545883A JPS60118449A (en) 1983-12-01 1983-12-01 Method and apparatus for controlling cutting operation of milling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22545883A JPS60118449A (en) 1983-12-01 1983-12-01 Method and apparatus for controlling cutting operation of milling machine

Publications (1)

Publication Number Publication Date
JPS60118449A true JPS60118449A (en) 1985-06-25

Family

ID=16829652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22545883A Pending JPS60118449A (en) 1983-12-01 1983-12-01 Method and apparatus for controlling cutting operation of milling machine

Country Status (1)

Country Link
JP (1) JPS60118449A (en)

Similar Documents

Publication Publication Date Title
EP0098309B1 (en) Numerical control machining system
CN1127954A (en) Method and apparatus for controlling motor
CN100519024C (en) Reverse rotation preventing electronic cam curve generating method and control device therefor
US4375670A (en) Machine tool for machining crankshafts and control system for the machine tool
WO1986003150A1 (en) Rotary cutter control method
JPS60118449A (en) Method and apparatus for controlling cutting operation of milling machine
GB2061554A (en) Control System for Producing Crankshafts
JPH05138497A (en) Correction of wear of tool
JPS60118448A (en) Method and apparatus for controlling cutting operation of milling machine
JPS60127907A (en) Control method of cutting in boring machine
JPS60123252A (en) Method of controlling cutting of milling machine and device therefor
JPS60127909A (en) Control method and its device of cutting in boring machine
JPS60141418A (en) Cutting control method of planer
JPS60131161A (en) Control of grinding of grinder and apparatus thereof
JPS6094217A (en) Method of controlling cutting by sawing machine
US5054304A (en) Sheet stock feed line with deceleration and acceleration
JPS60131162A (en) Control of grinding of grinder
JPS60127910A (en) Control method of cutting in drilling machine
JPS60127903A (en) Method for controlling lathe cutting and its device
JPS60127902A (en) Method for controlling lathe cutting
JPH049139Y2 (en)
JP3781996B2 (en) Rotary shear control device and method
JPH05200648A (en) Main spindle speed control device for numerically controlled machine tool
JP2664294B2 (en) Running material cutting method in numerical controller
JPS60141431A (en) Control for wire-cut electric-discharge machining and apparatus thereof