JPS60127902A - Method for controlling lathe cutting - Google Patents

Method for controlling lathe cutting

Info

Publication number
JPS60127902A
JPS60127902A JP23496283A JP23496283A JPS60127902A JP S60127902 A JPS60127902 A JP S60127902A JP 23496283 A JP23496283 A JP 23496283A JP 23496283 A JP23496283 A JP 23496283A JP S60127902 A JPS60127902 A JP S60127902A
Authority
JP
Japan
Prior art keywords
rotation speed
signal
cutting
rotation
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23496283A
Other languages
Japanese (ja)
Inventor
Masayuki Taguchi
田口 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP23496283A priority Critical patent/JPS60127902A/en
Publication of JPS60127902A publication Critical patent/JPS60127902A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Turning (AREA)

Abstract

PURPOSE:To prevent catching-in and/or vibration due to sticky motion by performing operation to compare the present rotating speed signal with an expected rotating speed signal and controlling a rotation drive power source according to the result of the operation, in cut processing. CONSTITUTION:When a material to be cut W pinched by a chuck 3 in a lathe is processed by a cutting tool 10 while being rotated by the rotation of a motor 21 through a reduction mechanism 22, transmission system 23 and clutch 24, the present rotating speed of a main shaft 2 is detected by a present rotating speed detecting unit 12 by means of the pulse signal coming from a rotating angle (number) pulse detecting unit 11. This present rotating speed is compared with an expected rotating mode from an expected rotating speed memory unit 15 by an operating unit 16, and a deflection signal is output to a correcting unit 17. And the corrected signal obtained here is given to a control unit 18 and a motor control signal by a setting unit 14 is corrected, then the motor 21 is controlled so that the main shaft 2 can be rotated in the expected rotating mode having selected rotating number.

Description

【発明の詳細な説明】 本発明は旋盤における切削制御方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cutting control method in a lathe.

旋盤による切削は回転されている被削材に対しバイトを
送り込むことにより行なわれるが、旋盤加工における面
粗度やこの面粗度に影響を及ぼす振動、或はこの振動に
起因する騒音などには、旋盤削りの切削運動や送り運動
が深く関与している。
Cutting with a lathe is performed by feeding a cutting tool into the rotating workpiece, but it is important to avoid problems such as surface roughness during lathe machining, vibrations that affect this surface roughness, and noise caused by this vibration. , the cutting motion and feed motion of lathe cutting are deeply involved.

即ち、従来、面粗度の向上や振動、騒音の低減は、被剛
材の材質などを考慮して、被剛材を支持した主軸の回転
数、バイトの切込量、或はバイトの切削送り速度を経験
的に最適と考えられている条件に設定して切削している
からである。
In other words, conventionally, improvement of surface roughness and reduction of vibration and noise have been achieved by adjusting the rotation speed of the spindle that supports the rigid material, the depth of cut of the cutting tool, or the cutting depth of the cutting tool, taking into account the material of the rigid material. This is because cutting is performed with the feed rate set to conditions that are empirically considered to be optimal.

しかし、従来の対応策でも依然としてくい込みやビビリ
振動の問題や構成刃先による仕上りの乱れがある。また
、上記の問題点は重切削において特に顕著である。
However, even with conventional countermeasures, there are still problems with biting, chatter vibration, and uneven finish due to built-up cutting edges. Moreover, the above-mentioned problems are particularly noticeable in heavy cutting.

本発明は上記の旋盤削りの現状に鑑み、旋盤加工におい
て特に主軸の回転速度をその運動中に可変制御すること
により、くい込みやビビリ振動、或はこの振動に起因す
る騒音の軽減と共に、構成刃先の生成を阻止して各種旋
盤加工における面粗度の向上を図り、また、従来は上記
難点のため不可能であった重切削をも可能にする制御方
法を提供することを目的としてなされたもので、その構
成は、旋盤における主軸の回転速度を、その主軸に対し
て設けた回転角パルス検出器から供給される回転角パル
ス信号を適宜の時間パルスに対応させて回転数(角)7
時間、又は、時間/回転数(角)で表わされるパルス信
号による現在移動速度信号で検出するようにしておく一
方、前記主軸の回転駆動源を、選択された主軸回転数に
おいてその速度の増減を含み任意に設定する回転数(角
)7時間、又は、時間/回転数(角)を表わすパルス信
号による予定回転速度信号によって駆動し、切削加工時
、現在回転速度信号と予定回転速度信号とを比較演算し
、この演算結果によって上記回転駆動源を制御すること
により、主軸の回転速度を適宜範囲で増減させることを
特徴とするものである。
In view of the above-mentioned current state of lathe cutting, the present invention has been developed to reduce biting, chatter vibrations, and noise caused by these vibrations, and to improve the structure of the built-up cutting edge by variably controlling the rotational speed of the main spindle during lathe machining. This was done with the aim of preventing the formation of slag and improving surface roughness in various types of lathe machining, and also to provide a control method that enables heavy cutting, which was previously impossible due to the above-mentioned difficulties. The configuration is such that the rotational speed of the main spindle in the lathe is determined by making the rotational angle pulse signal supplied from the rotational angle pulse detector provided for the main spindle correspond to an appropriate time pulse to determine the rotational speed (angle) of 7.
While detection is made using a current moving speed signal based on a pulse signal expressed in time or time/rotational speed (angle), the rotational drive source of the spindle is detected by increasing or decreasing the speed at the selected spindle rotational speed. The current rotation speed signal and the planned rotation speed signal are used during cutting. The present invention is characterized in that the rotational speed of the main shaft is increased or decreased within an appropriate range by performing a comparison calculation and controlling the rotational drive source based on the calculation result.

次に本発明の実施の一例を図に拠り説明する。Next, an example of implementation of the present invention will be explained with reference to the drawings.

■は旋盤のベッド、2は該ベッドの一側に配設された主
軸台の内部に設けた主軸、3は該主軸2の先端側に設け
たチャックで、前記主軸2には主軸モータ21の出力が
減速機構22、伝導系23、クラッチ24等を介して伝
達されるようにしである。4は前記ベッド1の他側に於
て、ベッドの縦方向に移動固定自在に配設した心押台で
、被削材Wは丸削りに於ては上記チャック3と心押台4
の止りセンタ4aの間に支持される。5は上記主軸台と
心押台3の間において、上記ベッド1にその縦方向に移
動自在に架装したサドルで、その送り機構は、ベッド1
の縦方向に設けた縦送りネジ6に、サドル5側に設けた
ナツト部材5aを螺合させ、前記ネジ6が減速系を含む
縦送リモータ7に正、逆転されることによりベッドの縦
方向で移動するようになっている。8は前記サドルの上
面にベッドの横方向において移動自在に載架した刃物台
で、その送り機構は、サドル5に設けた横送りネジ9に
、前記刃物台8にそれと一体に設けられたナツト部材(
図に表われず)を螺合させ、前記ネジ9を横送りモータ
(図に表われず)により回転させることにより、前記刃
物台8が横送りされるようにしである。10は上記刃物
台8の上面に固定されたバイ1へであり、以上]〜10
により自動切削送り形式の旋盤の一例の基本構成をなす
2 is a bed of the lathe, 2 is a main spindle installed inside a headstock disposed on one side of the bed, 3 is a chuck provided on the tip side of the main spindle 2, and the main spindle 2 is equipped with a main spindle motor 21. The output is transmitted via a reduction gear mechanism 22, a transmission system 23, a clutch 24, and the like. Reference numeral 4 denotes a tailstock disposed on the other side of the bed 1 so as to be movable and fixed in the vertical direction of the bed, and when the workpiece W is rounded, the chuck 3 and the tailstock 4
It is supported between the stop centers 4a. 5 is a saddle mounted on the bed 1 between the headstock and the tailstock 3 so as to be movable in the vertical direction;
A nut member 5a provided on the saddle 5 side is screwed into a vertical feed screw 6 provided in the vertical direction of the bed, and the screw 6 is rotated forward and reversely by a vertical feed remoter 7 including a reduction system, thereby moving the bed in the vertical direction. It is designed to move with. Reference numeral 8 denotes a tool rest mounted on the upper surface of the saddle so as to be movable in the lateral direction of the bed, and its feeding mechanism includes a lateral feed screw 9 provided on the saddle 5 and a nut provided integrally with the tool rest 8. Element(
By screwing together the screws 9 (not shown in the figure) and rotating the screw 9 by a traverse feed motor (not shown), the tool rest 8 is moved laterally. 10 is to the bi 1 fixed on the upper surface of the tool rest 8, and the above] ~ 10
This forms the basic configuration of an example of an automatic cutting feed type lathe.

而して、旋盤用りに於ては、バイト10の横送りを切込
量として位置決めし、そのバイト10を縦送りネジ6に
より回転する被削材Wに対しその軸に沿って移動させる
丸削りの送り運動と、バイト10の縦送りを切込量とし
て位置決めし、そのバイト10を横送りネジ9により回
転する被削材Wの端面に対して移動させる面削りの送り
運動とがあるが、いずれの切削においても被削材Wは、
予め選択された主軸回転数によって一定速度で回転させ
られる。
For lathes, the horizontal feed of the cutting tool 10 is positioned as the depth of cut, and the cutting tool 10 is moved along the axis of the workpiece W rotated by the vertical feed screw 6. There is a feed motion for cutting, and a feed motion for face milling, in which the vertical feed of the cutting tool 10 is positioned as the depth of cut, and the cutting tool 10 is moved relative to the end surface of the workpiece W being rotated by the horizontal feed screw 9. , in any cutting, the workpiece W is
It is rotated at a constant speed according to a preselected spindle rotation speed.

例えば、一般的な丸削りにおいては、被削材Wの材質や
使用バイ1−10の材質などを考慮した上で、主軸の回
転数(rpm) 、バイト10の縦送り速度(nIn/
rpm)及び切込量(mn )が予め所定の値に選択さ
れるので、これを機械側に設定し、これらの数値によっ
て切削加工を行うようになっている。
For example, in general round cutting, the rotation speed (rpm) of the spindle and the vertical feed rate (nIn/
rpm) and depth of cut (mn) are selected in advance to predetermined values, so these are set on the machine side and cutting is performed using these values.

しかし、主軸2の定速回転及びパイ1〜の定速縦送りに
よる切削では、先にも述へたように、切削時に生じる振
動が一定周波数となりがちのためこれが共振して増幅さ
れ易く、また、この増幅された振動によって面粗度が低
下するという難点がある。この難点は重切削において特
に顕著に表われ、重切削ができ難い原因ともなっている
However, in cutting with constant speed rotation of the spindle 2 and constant speed vertical feed of the pi 1~, as mentioned earlier, the vibrations generated during cutting tend to have a constant frequency, which tends to resonate and be amplified. However, this amplified vibration causes a reduction in surface roughness. This difficulty is particularly noticeable in heavy cutting, and is the reason why heavy cutting is difficult to perform.

そこで、本発明では、主軸、即ち被削材の定速回転と定
速でのバイトの切削送りによる従来の旋盤加工に生じて
いた難点を解消するため、切削中の主軸2の回転速度を
、被剛材の材質などに応じ、予め選択された主軸回転数
を予め適宜の範囲において適宜増減変更できるようにし
ておき、切削時に生じる振動の周波数を変え主として共
振現象を防ぐようにしたのである。以下、この点につい
て説明する。
Therefore, in the present invention, in order to solve the difficulties that have arisen in conventional lathe machining due to the constant speed rotation of the main spindle, that is, the workpiece, and the cutting feed of the cutting tool at a constant speed, the rotational speed of the main spindle 2 during cutting is changed to The preselected spindle rotational speed can be increased or decreased within an appropriate range depending on the material of the rigid material, etc., and the frequency of vibrations generated during cutting is changed to mainly prevent resonance phenomena. This point will be explained below.

図において、11は主軸2に関連付けて設け、その単位
回転角及び回転数を検出するため例えば1度当り10個
の及び1回転当り1個のパルス信号を発生する回転角(
数)パルス検出器で、エンコーダ或はそれと同等の機能
を持つ器具を用いる。
In the figure, reference numeral 11 is provided in association with the main shaft 2, and a rotation angle (
Number) A pulse detector using an encoder or a device with an equivalent function.

12は上記パルス検出器11から供給される回転角(数
)パルス信号を時計パルス発生器13から供給される任
意の時間を表わすパルス信号、例えば1秒当り100個
のパルスに対応させ、主軸2の回転速度を回転角(数)
7時間または時間/回転角(数)を表わす信号に形成す
る現在回転速度検出部、14は前記モー的2Jの回転出
力の可変範囲を、主軸の回転角(数) (rev/mi
n、又は、rev/secなど)を表わす数値で任意に
設定できるようにした設定部で、例えハフ20ハイド1
0の切削送り速度が、1.0rttn/rev又は6w
l/secで、主軸2の回転数が36Orpmに設定さ
れているとき、その主軸の回転速度について次のような
設定を行なうことができるようにしである。
Reference numeral 12 makes the rotation angle (number) pulse signal supplied from the pulse detector 11 correspond to a pulse signal representing an arbitrary time supplied from the clock pulse generator 13, for example, 100 pulses per second. The rotation speed is the rotation angle (number)
7 A current rotational speed detection unit 14 forms a signal representing time or time/rotation angle (number), and a current rotational speed detection unit 14 converts the variable range of the rotational output of the motor 2J into a signal representing the rotational angle (number) of the main shaft (rev/mi
n, rev/sec, etc.) in the setting section that can be set arbitrarily with a numerical value representing Huff 20 Hyde 1
Cutting feed rate of 0 is 1.0rttn/rev or 6w
When the rotational speed of the main shaft 2 is set to 1/sec and 36 Orpm, the following settings can be made for the rotational speed of the main shaft.

而して、設定部14では、上記の選択された主軸回転数
の回転モードを、その速度の例えば約10%前後で任意
に増減させるための信号を形成する。
The setting unit 14 then generates a signal for arbitrarily increasing or decreasing the rotation mode of the selected spindle rotation speed, for example, around 10% of that speed.

即ち、選択された主軸回転数36Orpmは、6rev
/secに置換され、主軸2が1秒で6回転し、その回
転モードは一定であるが1本発明では、上記の選択回転
数による主軸2の回転中に、それが、1.1秒で6回転
したり、或は0.9秒で6回転するといった具合に、そ
の回転モードを任意に変更するため、6回転の回転数(
角)を表わす21600個のパルスを1.1秒を表わす
110個のパルスに対応させた形の信号、或は、0.9
秒を表わす90個のパルスに対応させた形の信号によっ
て設定するのである。尚、ここでの選択された主軸回転
数を表わす信号は21600個の移動量パルスに100
個の時間パルスが対応された形で形成される。
That is, the selected spindle rotation speed 36Orpm is 6rev
/sec, the spindle 2 rotates 6 times in 1 second, and the rotation mode is constant.1 In the present invention, while the spindle 2 rotates at the selected rotation speed above, it rotates in 1.1 seconds. In order to arbitrarily change the rotation mode, such as 6 rotations or 6 rotations in 0.9 seconds, the rotation speed of 6 rotations (
A signal in the form of 21,600 pulses representing 1.1 seconds corresponding to 110 pulses representing 1.1 seconds, or 0.9
It is set by a signal that corresponds to 90 pulses representing seconds. Note that the signal representing the selected spindle rotation speed is 21,600 movement pulses and 100
time pulses are formed in a corresponding manner.

尚、主軸に選択された回転数が高い場合には、微小単位
時間、例えば0.1秒当りの主軸回転数(角)を表わす
パルス数をJ41減した形の(if号を形成して、上記
設定を行うようにしてもよい。
In addition, when the rotation speed selected for the spindle is high, the number of pulses representing the spindle rotation speed (angle) per minute unit time, for example, 0.1 seconds, is reduced by J41 to form (if), The above settings may be performed.

而して、上記設定部14には、上記のようにして任意に
設定できる予定回転モード信号が主軸2の回転に応じど
のようなタイミングで供給されるかを設定するため、上
記パルス検出器11及び/又は時間パルス発生器13、
或は、刃物台8の移動パルス検出器19がらのパルス信
号が供稍さ九るようにしてあり、この設定部14で形成
される予定回転モートイ6号は、予定回転速度記憶部1
5に、例えば、主軸2について適宜設定する単位回転数
或は単位回転時間に対応して記憶される。
The setting unit 14 is configured to control the pulse detector 11 in order to set the timing at which the scheduled rotation mode signal, which can be arbitrarily set as described above, is supplied in accordance with the rotation of the main shaft 2. and/or a time pulse generator 13,
Alternatively, the pulse signal from the moving pulse detector 19 of the tool rest 8 is made to be inconsistent, and the scheduled rotation motor toy No. 6 formed by this setting section 14 is stored in the scheduled rotation speed storage section 1.
5 is stored in correspondence with, for example, the unit rotation speed or unit rotation time that is appropriately set for the main shaft 2.

16は現在回転速度検出部12と予定回転速度記憶部1
5から供給される速度信号を逐次比較演算し、両者の偏
差を計数する演算部、17は前記演算部16の偏差を制
御部18の補正信号に形成する補正部で、始動時には予
定速度記憶部15から供給された信号がそのまま制御部
18に供給される。
16 is a current rotation speed detection section 12 and a scheduled rotation speed storage section 1
A calculation section 17 performs a successive comparison operation on the speed signal supplied from 5 and counts the deviation between the two; 17 is a correction section that forms the deviation of the calculation section 16 into a correction signal for the control section 18; The signal supplied from 15 is supplied to the control section 18 as is.

このようにすると、当初主軸2は予め選択された主軸回
転数で回転し始めるが、主軸2の回転開始と同時に回転
角(数)パルス検出器11から供給されるパルス信号が
現在回転速度検出部12に送られ、ここで主軸2の適宜
の単位回転数或は単位回転時間当りについての上記パル
ス信号が計数されると共に時計パルス発生器13からの
パルス信号に対応させられて前記主軸2の現在回転速度
が検出される。この現在回転速度は演算部16において
予定回転モードと比較演算され、演算結果よる偏差信号
が補正部17に供給される。補正部17はそこで形成し
た補正信号を制御部18に供給するので、制御部18で
はモータ2Iの制御信号が補正され、この結果、モータ
21は主軸2が選択された回転数における予定回転モー
ドで回転するようにそのモータ21の回転が制御される
のである。
In this way, the spindle 2 initially starts to rotate at the preselected spindle rotation speed, but at the same time as the rotation of the spindle 2 starts, the pulse signal supplied from the rotation angle (number) pulse detector 11 is detected by the current rotation speed detection section. 12, where the above-mentioned pulse signals per appropriate unit rotational speed or unit rotation time of the main shaft 2 are counted, and are made to correspond to the pulse signals from the clock pulse generator 13 to determine the current state of the main shaft 2. Rotation speed is detected. This current rotation speed is compared with the scheduled rotation mode in the calculation section 16, and a deviation signal based on the calculation result is supplied to the correction section 17. The correction unit 17 supplies the correction signal formed therein to the control unit 18, so the control unit 18 corrects the control signal for the motor 2I, and as a result, the motor 21 maintains the main shaft 2 in the scheduled rotation mode at the selected rotation speed. The rotation of the motor 21 is controlled so as to rotate.

而して、モータ21の回転を主軸2の選択回転数におい
て制御し、被削材Wに不等速の回転運動をさせると、切
刃の被削材に対する相対速度が切削中微細に増減変更さ
れることとなるので、一定の相対速度でなされる切削に
生じる振動の発生を予防できるのである。
When the rotation of the motor 21 is controlled at the selected rotation speed of the main shaft 2 and the workpiece W is rotated at an inconstant speed, the relative speed of the cutting blade to the workpiece changes minutely during cutting. Therefore, it is possible to prevent the occurrence of vibrations that occur when cutting is performed at a constant relative speed.

尚、本発明において、主軸2の回転数の変更は、面粗度
に悪影響を及ぼすことがないように、一般的には、被削
材の材質などに応じて予め選択される主軸2の回転数の
±10〜15%前後の範囲で与えられるが、被削材の材
質など、切削条件によっては上記範囲を上記実施例の範
囲より大きくしたり、或は逆に小さくしてもよい。また
、速度の増減周期など送り速度変更のタイミングも、被
剛材の材質など切削条件に応じ任意に設定することがで
きる。更に、回転数の変更を、その増加側又は減少側の
いずれかにらいて行うことも任意である。
In addition, in the present invention, the rotation speed of the main spindle 2 is generally changed by changing the rotation speed of the main spindle 2, which is selected in advance according to the material of the workpiece, etc., so as not to adversely affect the surface roughness. However, depending on the cutting conditions such as the material of the workpiece, the above range may be made larger than the range of the above embodiment, or conversely may be made smaller. Furthermore, the timing of changing the feed rate, such as the rate of increase/decrease in speed, can be arbitrarily set depending on the cutting conditions such as the material of the rigid material. Furthermore, it is also optional to change the rotational speed either on the increasing side or on the decreasing side.

上述のように、本発明は切削中の主軸に、その選択され
た回転数において、それを適宜タイミングで増減させて
不等速回転運動をさせるから、従来の定速回転させられ
る被剛材と定速によるバイトのり削送りによってなされ
る切削において、切削抵抗の周期的変動によって生じて
いる強制振動、或は、この強制振動により励起される自
励振動を軽減ないしはそのような振動を起させない切削
を実現し、また、上記振動による騒音を軽減ないしは発
生させない切削を可能とし、更には、従来は振動、騒音
のため実施されなかった重切削が可能になるなどの作用
効果がある。
As mentioned above, the present invention allows the main shaft during cutting to perform non-uniform rotational motion at a selected rotation speed by increasing or decreasing it at appropriate timing, so it is different from the conventional workpiece that is rotated at a constant speed. Cutting that reduces forced vibration caused by periodic fluctuations in cutting resistance, or self-excited vibration excited by forced vibration, or does not cause such vibration in cutting performed by cutting tool feed at a constant speed. In addition, it is possible to perform cutting that reduces or does not generate the noise caused by the vibration, and furthermore, it has the effect of making it possible to carry out heavy cutting, which was conventionally not possible due to vibration and noise.

また、本発明では、主軸2の回転速度を常時直接検出す
るから電圧変動や負荷変動等の外的要因の有無に拘らず
主軸2の実際の回転数を検出できまた、この検出回転数
をその主軸の予定回転モー1−と対比して主軸の回転駆
動源を制御するから、当該主軸はその選択された回転数
において常時予定回転モードで回転させることが可能と
なり、従って、被剛材が特定されればそれについて最適
と考えられいくつかの切削条件で切削を実行することに
より、振動を発生させない主軸の回転モードなどのデー
タを得て本発明方法を適用した切削を行えば、凡そビビ
リ振動などの発生が見られない切削加工ができる。
Furthermore, in the present invention, since the rotation speed of the spindle 2 is directly detected at all times, the actual rotation speed of the spindle 2 can be detected regardless of the presence or absence of external factors such as voltage fluctuations and load fluctuations. Since the rotational drive source of the spindle is controlled in contrast to the scheduled rotation mode 1- of the spindle, the spindle can always be rotated in the scheduled rotation mode at the selected rotation speed. If this is the case, then by performing cutting under several cutting conditions that are considered optimal, data such as the spindle rotation mode that does not generate vibration can be obtained, and if cutting is performed using the method of the present invention, chatter vibration will generally be eliminated. Cutting can be performed without any occurrence of such problems.

尚、本発明の実施に当っては、主軸の回転数の変更制御
と共に、サドルや刃物台のようにバイI〜に切削送りを
行わせる部材の送り速度を変更してもよい。
In carrying out the present invention, in addition to changing the rotational speed of the main spindle, the feed speed of a member such as a saddle or a tool post that performs cutting feed in the bi-I~ direction may be changed.

また、本発明方法が適用できる旋盤は、その機械型式、
制御方式などを問わず、いずれのものにも適用可能であ
る。
In addition, the lathe to which the method of the present invention can be applied is the machine type,
It is applicable to any control method, etc.

本発明は以上の通りであるから、旋盤の切削制御方法及
びそのための装置として極めて有用である。
As described above, the present invention is extremely useful as a cutting control method for a lathe and an apparatus therefor.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法の実施の一例を表わした制御ブロック図
である。 1・・・ベッド、2・・主軸、21・・・主軸モータ、
22・・・減速機、23・・伝動系、3・・・チャック
、4・・心押台、5・・・サドル、6・・縦送りネジ、
7・・・縦送リモータ、8・・複式刃物台、9・・・横
送りネジ、1o・・・バイト、月・・・回転角パルス検
出器、12・・現在回転速度検出部、13・・時計パル
ス発生器、14・・・設定部、15・・・予定回転速度
記憶部、16・・・演算部、17・・補正部、18・・
制御部 代理人 小泉良邦
The figure is a control block diagram showing an example of implementing the method of the present invention. 1... Bed, 2... Main shaft, 21... Main shaft motor,
22...Reducer, 23...Transmission system, 3...Chuck, 4...Tailstock, 5...Saddle, 6...Vertical feed screw,
7...Vertical feed remoter, 8...Double turret, 9...Horizontal feed screw, 1o...Bite, Moon...Rotation angle pulse detector, 12...Current rotation speed detection unit, 13... - Clock pulse generator, 14... Setting unit, 15... Scheduled rotation speed storage unit, 16... Calculating unit, 17... Correction unit, 18...
Control Department Agent Yoshikuni Koizumi

Claims (1)

【特許請求の範囲】[Claims] 旋盤における主軸の回転速度を、その主軸に対して設け
た回転角パルス検出器から供給される回転角パルス信号
を適宜の時間パルスに対応させて回転数(角)7時間、
又は、時間/回転数(角)で表わされるパルス信号によ
る現在移動速度信号で検出するようにしておく一方、前
記主軸の回転駆動源を、選択された主軸回転数において
その速度の増減を含み任意に設定する回転数(角)7時
間、又は、時間/回転数(角)を表わすパルス信号によ
る予定回転速度信号によって駆動し、切削加工時、現在
回転速度信号と予定回転速度信号とを比較演算し、この
演算結果によって上記回転駆動源を制御することにより
、主軸の回□転速度を適宜範囲で増減させることを特徴
とする旋盤の切削制御方法。
The rotation speed of the main spindle in the lathe is determined by making the rotation angle pulse signal supplied from the rotation angle pulse detector provided for the main spindle correspond to an appropriate time pulse, and the number of rotations (angle) is 7 hours.
Alternatively, while the current movement speed signal is detected by a pulse signal expressed in time/rotation speed (angle), the rotational drive source of the spindle can be controlled arbitrarily, including an increase/decrease in the speed at the selected spindle rotation speed. It is driven by a scheduled rotation speed signal based on a pulse signal representing the rotation speed (angle) set to 7 hours or a pulse signal representing time/rotation speed (angle), and during cutting, the current rotation speed signal and the planned rotation speed signal are compared and calculated. A cutting control method for a lathe, characterized in that the rotational speed of the main spindle is increased or decreased within an appropriate range by controlling the rotational drive source based on the calculation result.
JP23496283A 1983-12-15 1983-12-15 Method for controlling lathe cutting Pending JPS60127902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23496283A JPS60127902A (en) 1983-12-15 1983-12-15 Method for controlling lathe cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23496283A JPS60127902A (en) 1983-12-15 1983-12-15 Method for controlling lathe cutting

Publications (1)

Publication Number Publication Date
JPS60127902A true JPS60127902A (en) 1985-07-08

Family

ID=16978979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23496283A Pending JPS60127902A (en) 1983-12-15 1983-12-15 Method for controlling lathe cutting

Country Status (1)

Country Link
JP (1) JPS60127902A (en)

Similar Documents

Publication Publication Date Title
US4353018A (en) Control system for synchronized operation of machine tool motors
EP0098309B1 (en) Numerical control machining system
US5010286A (en) Method of synchronous control of spindle motor and feed motor
WO1993004817A1 (en) Numerical control device
JPS63120055A (en) Numerically controlled feeding device
US5062744A (en) Apparatus for confirming movement of tap when rigid tapping
JPH11129144A (en) Control device for nc machine tool
GB2061554A (en) Control System for Producing Crankshafts
JPS60127902A (en) Method for controlling lathe cutting
JPH08323584A (en) Tool wear compensator
US5654894A (en) Gain changing control system for a threading apparatus
JP3423119B2 (en) Machine Tools
JPS60131147A (en) Control of optimum grinding feed amount
JPS60127903A (en) Method for controlling lathe cutting and its device
JPS60127907A (en) Control method of cutting in boring machine
JPS632643A (en) Cutting machine
JPH0751992A (en) Drilling work method
JPS60127908A (en) Control method of cutting in drilling machine
JPH01218780A (en) Method for controlling start of work in laser beam machine
JPS60131162A (en) Control of grinding of grinder
JPS60131161A (en) Control of grinding of grinder and apparatus thereof
JPS60127909A (en) Control method and its device of cutting in boring machine
JPS60118448A (en) Method and apparatus for controlling cutting operation of milling machine
JPS60127910A (en) Control method of cutting in drilling machine
JPH05200648A (en) Main spindle speed control device for numerically controlled machine tool