JPS60106126A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPS60106126A
JPS60106126A JP58216765A JP21676583A JPS60106126A JP S60106126 A JPS60106126 A JP S60106126A JP 58216765 A JP58216765 A JP 58216765A JP 21676583 A JP21676583 A JP 21676583A JP S60106126 A JPS60106126 A JP S60106126A
Authority
JP
Japan
Prior art keywords
crucible
magnetic field
vapor
temperature
clusters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58216765A
Other languages
Japanese (ja)
Inventor
Tadashi Nishimura
正 西村
Masahide Inuishi
犬石 昌秀
Shuji Nakao
中尾 修治
Shigeo Nagao
長尾 繁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58216765A priority Critical patent/JPS60106126A/en
Priority to KR1019840006293A priority patent/KR910007157B1/en
Priority to DE19843441471 priority patent/DE3441471A1/en
Publication of JPS60106126A publication Critical patent/JPS60106126A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain a stable evaporated film in which impurities are mixed in small amount and to improbe the lifetime of a crucible, by giving a magnetic field to the whole of the crucible of a cluster ion beam depot device to circulate a melted evaporation material by convection so that the distribution of temperature inside the crucible may be uniform. CONSTITUTION:A hollow cylinder 31 (magnetic field generating means) made of stainless steel is put on a crucible 1 and filament 4. A thin plate made of molybdenum is stuck on the inside of the hollow cylinder 31, and a copper wire 32 is wound on the outside thereof, giving a magnetic field to the whole of the crucible 1 forming an electromagnet in parallel to the direction of the outlet thereof. In the device thus prepared, a turbulent flow 41 of melted silicon 3 caused by a local difference in temperature in the crucible, as shown in the figure (a), is curved by the magnetic field of said electromagnet to be stable convection 42 in the vertical direction in the central part of the crucible, as shown in the figure (b). Thereby the distribution of temperature on the surface of the melted silicon 3 is stabilized, and thus a desired vapor pressure can be obtained not only from a local region, but from the entire surface of the melted silicon 3.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、開口部を持ったるつぼ内に基板に蒸着すべ
き固体材料を充填し、上記るつぼを加熱して、その中の
固体材料の蒸気を該るつぼの開口部より真空中に吹き出
させ、これを基板へ蒸着させて薄膜を形成する薄膜形成
装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention involves filling a crucible with an opening with a solid material to be deposited on a substrate, heating the crucible, and vaporizing the solid material in the crucible. The present invention relates to a thin film forming apparatus that blows out the liquid from the opening of the crucible into a vacuum and evaporates the liquid onto a substrate to form a thin film.

〔従来技術〕[Prior art]

従来この種の装置としては第1図に示すものがあった。 A conventional device of this type is shown in FIG.

第1図に示す装置はクラスタイオンビームデポ装置と呼
ばれるもので、図において、1はグラファイトで形成さ
れ、その頭部に微少な開口部2が設けられたるつぼであ
り、このるつぼl内部には基板に蒸着すべき物質として
固体シリコン3が充填されている。4は上記るつぼの周
囲に配置され、該るつぼ1全体を加熱して上記蒸着物質
の蒸気を発生させるためのフィラメント(加熱手段)で
あり、上記るつぼ1及びフィラメント4により、上記蒸
着物質の蒸気を高真空中に噴出して該蒸気中の多数の原
子が緩く結合したクラスタ6を生成せしめる蒸気発生源
が構成されている。
The apparatus shown in Fig. 1 is called a cluster ion beam deposition apparatus. In the figure, 1 is a crucible made of graphite and has a minute opening 2 in its head. Solid silicon 3 is filled as the material to be deposited on the substrate. Reference numeral 4 denotes a filament (heating means) disposed around the crucible to heat the entire crucible 1 to generate vapor of the vapor deposition material. A steam generation source is constructed which ejects into a high vacuum and generates clusters 6 in which a large number of atoms in the steam are loosely bonded.

7は上記クラスタ6に熱電子を照射してその一部をイオ
ン化するためのフィラメント(イオン化手段)、9は上
記るつぼ1と基板8間に電圧を印加するための電源(電
界加速手段)であり、これは上記イオン化されたクラス
タ・イオンを加速して該クラスタ・イオンを基板8に衝
突させて薄膜を蒸着形成するためのものである。そして
、上記るつぼ1.加速用フィラメント4.イオン化用フ
ィラメント7、及び基板8は図示しない真空槽に収納さ
れている。
7 is a filament (ionization means) for ionizing a part of the cluster 6 by irradiating thermionic electrons; 9 is a power source (electric field acceleration means) for applying a voltage between the crucible 1 and the substrate 8; , which accelerates the ionized cluster ions and causes them to collide with the substrate 8 to deposit a thin film. And the above crucible 1. Accelerating filament 4. The ionization filament 7 and the substrate 8 are housed in a vacuum chamber (not shown).

次に動作について説明する。Next, the operation will be explained.

まず、固体シリコン3が充填されたるつぼ1全体を、フ
ィラメント4からの熱電子照射によって加熱する。この
るつぼ1内では上記シリコン3の蒸気5が発生し、この
シリコン蒸気5はるつぼ1の開口部2から高真空中へ放
出され、その際該シリコン蒸気5は断熱膨張により該シ
リコン蒸気5中の多数の原子が緩く結合したクラスタ6
となる。
First, the entire crucible 1 filled with solid silicon 3 is heated by thermionic irradiation from the filament 4. In this crucible 1, a vapor 5 of the silicon 3 is generated, and this silicon vapor 5 is discharged from the opening 2 of the crucible 1 into a high vacuum. Cluster 6 where many atoms are loosely bonded
becomes.

そしてさらに、これらのクラスタ6にフィラメント7か
らの熱電子を照射すると、該クラスタ6の一部がイオン
化され、このイオン化されたクラスタ・イオンは電源9
により電界加速されて基板8に衝突し、これにより該基
板8上に薄膜が蒸着形成される。またこの際、イオン化
されていない中し、上記クラスタ・イオンとともに該基
板8上に蒸着される。
Furthermore, when these clusters 6 are irradiated with thermoelectrons from the filament 7, a part of the clusters 6 are ionized, and the ionized cluster ions are supplied to the power source 9.
It is accelerated by an electric field and collides with the substrate 8, whereby a thin film is deposited on the substrate 8. At this time, the non-ionized particles are deposited on the substrate 8 together with the cluster ions.

しかるにこの従来装置には以下のような技術的問題点が
ある。即ち、その問題点は、蒸着物質としての固体材料
の蒸気圧を一定以上に上げるために、るつぼlを非常に
高温にする必要があることで、特にシリコンを蒸着物質
とする場合には2000℃程度の温度が必要である。こ
の時一定容量のるつぼ1内では、溶融シリコンが対流し
て温度の均一性がくずれるのに加え、加熱用フィラメン
ト4の配置の微妙な違いによって大きな温度の不均一が
生じてしまう。従って、実際のるつぼ1内の温度は、最
高温度部で2200℃を越え、最低温度部で1900℃
以下というように、このように300℃近い温度差をる
つぼ1内に持たせた状態で必要な蒸気圧を得ていた。
However, this conventional device has the following technical problems. That is, the problem is that in order to raise the vapor pressure of the solid material as the vapor deposition material above a certain level, it is necessary to heat the crucible to a very high temperature, especially when silicon is the vapor deposition material, 2000 degrees Celsius. A certain temperature is required. At this time, in the crucible 1 having a constant capacity, the molten silicon convects and the temperature uniformity is disrupted, and in addition, subtle differences in the arrangement of the heating filaments 4 cause large temperature non-uniformities. Therefore, the actual temperature inside the crucible 1 exceeds 2200°C at the highest temperature and 1900°C at the lowest temperature.
As described below, the necessary vapor pressure was obtained with a temperature difference of nearly 300° C. inside the crucible 1.

このように、従来の装置では、るっぽ工内部で非常に高
温な状態の部分ができ、そのためこの部分でるつぼ材で
あるグラファイトと蒸着物質であ、るシリコンとが反応
することがあり、これにより蒸着シリコン膜へカーボン
が混入したり、またシリコンとカーボンの反応生成物で
あるSiCがグラファイトるつぼの低温部の壁面へ付着
し、それらの熱膨張係数の違いからるっぽ1の割れの原
因となったりしていた。第2図はこの状態を説明するた
めの図で、フィラメント4がるっぽ1を比較的荒い巻き
密度で取り囲んでいる様子を示している。
In this way, with conventional equipment, there is a very high temperature area inside the Ruppoko, and as a result, the crucible material, graphite, and the vapor deposited material, silicon, may react in this area. As a result, carbon gets mixed into the deposited silicon film, and SiC, which is a reaction product of silicon and carbon, adheres to the wall of the low-temperature part of the graphite crucible. It may have been the cause. FIG. 2 is a diagram for explaining this state, and shows how the filament 4 surrounds the wrapper 1 with a relatively rough winding density.

この場合、フィラメント4からるっぽ1までの距離が温
度上昇に大きく影響するが、図中C部のように両者が近
接している所のるっぽ1の部分は、他のa、t)部のよ
うに両者が離れている所のるつぼ10部分に比べて非常
に高温となる。
In this case, the distance from the filament 4 to Ruppo 1 has a large effect on the temperature rise, but the part of Ruppo 1 where the two are close, as shown in section C in the figure, is different from other a, t ) The temperature is much higher than in the 10 parts of the crucible where the two parts are far apart.

(発明の概要) この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、るつぼを加熱して蒸着物質の蒸
気を得る際に、該るつぼ全体に磁場を与えてるつぼ内部
の温度分布が均一になるよう溶融蒸着物質を対流させる
ことにより、不純物混入の少ない安定な蒸着膜を得るこ
とができ、さらにるつぼの寿命の改善をも図ることので
きる薄膜形成装置を提供することを目的としている。
(Summary of the Invention) This invention was made to eliminate the drawbacks of the conventional crucible as described above. To provide a thin film forming device capable of obtaining a stable vapor deposited film with less contamination of impurities by causing convection of a molten vapor deposition material so that the internal temperature distribution is uniform, and further improving the life of a crucible. The purpose is to

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図について説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第3図は本発明の一実施例による薄膜形成装置のるつぼ
近傍部分を示し、図において、1はその頭部に開口部2
を有し、内部に蒸着物質が充填され蒸着物質の蒸気を発
生させるためのものである。
FIG. 3 shows a part near the crucible of a thin film forming apparatus according to an embodiment of the present invention.
The inside is filled with a vapor deposition material to generate vapor of the vapor deposition material.

そして本実施例においては、上記るつぼ1及びフィラメ
ント4はステンレス製円筒31 (磁界発生手段)がか
ぶせられている。ここでこのステンレス製円筒31は、
その内部にモリブデン製の薄板(図示せず)が貼り付け
られ、その外部には銅線32が巻かれて、電磁石を構成
するものとなっており、上記るつぼ1全体にその上記出
口方向と平行に磁場を与えるものとなっている。
In this embodiment, the crucible 1 and filament 4 are covered with a stainless steel cylinder 31 (magnetic field generating means). Here, this stainless steel cylinder 31 is
A thin molybdenum plate (not shown) is attached to the inside of the crucible 1, and a copper wire 32 is wound around the outside thereof to constitute an electromagnet. It provides a magnetic field to.

このような構成になる本実施例装置では、第4図(a)
に示すように、るつぼ1内での局所的な温度差によって
住じた溶融シリコン3の乱れた流れ41が、上記電磁石
の磁界によって曲げられ、第4図(blに示すように、
るつぼ中央部での上下方向の安定した対流42となる。
In the device of this embodiment having such a configuration, as shown in FIG. 4(a).
As shown in FIG. 4, the turbulent flow 41 of the molten silicon 3 caused by the local temperature difference in the crucible 1 is bent by the magnetic field of the electromagnet, and as shown in FIG.
This results in stable convection 42 in the vertical direction at the center of the crucible.

これにより溶融シリコン3表面での温度分布が安定化し
、局所的な領域のみからではなく溶融シリコン3表面全
体から所望の蒸気圧が得られることとなる。従って従来
のように弗素に高温となる部分を無くすることができ、
シリコンとカーボンの反応を最少限におさえて蒸着シリ
コン膜へのカーボンの混入を防止できるとともに、るつ
ぼ1の長寿命化を図ることができる。
This stabilizes the temperature distribution on the surface of the molten silicon 3, and the desired vapor pressure can be obtained not only from a local area but from the entire surface of the molten silicon 3. Therefore, it is possible to eliminate the high temperature part of fluorine as in the past.
The reaction between silicon and carbon can be suppressed to a minimum to prevent carbon from being mixed into the deposited silicon film, and the life of the crucible 1 can be extended.

なお、上記実施例では磁場方向を蒸気の吹き出し方向と
平行にしたが、これを垂直方向にしても上記と同様の効
果が得られる。
In the above embodiment, the direction of the magnetic field is parallel to the steam blowing direction, but the same effect as above can be obtained even if the direction is perpendicular.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る薄膜形成装置によれば、
るつぼに磁場を与えて該磁場内でるつぼの加熱を行い、
該るつぼ内部の温度分布が均一になるよう溶融蒸着物質
の対流を制御するようにしたので、局所的な高1温部を
発使させることなく、所望の蒸気圧を得ることができ、
るつぼ材質の蒸着膜への混入を防止でき、またるつぼの
長寿命化を図ることができる効果がある。
As described above, according to the thin film forming apparatus according to the present invention,
Applying a magnetic field to the crucible and heating the crucible within the magnetic field,
Since the convection of the molten vapor-deposited material is controlled so that the temperature distribution inside the crucible is uniform, the desired vapor pressure can be obtained without causing localized high-temperature areas to be activated.
This has the effect of preventing crucible material from being mixed into the deposited film and extending the life of the crucible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のクラスタイオンビームデボ装置の構成図
、第2図は該装置のるつぼとフィラメントの配置を示す
図、第3図は本発明の一実施例による薄膜形成装置の要
部構成図、第4図はその動作を説明するための図である
。 1・・・るつぼ、2・・・開口部、3・・・溶融した蒸
着物質、4・・・るつぼ加熱用フィラメント(加熱手段
)、5・・・蒸着物質の蒸気、6・・・クラスタ、7・
・・電子放出用フィラメント(イオン化手段)、8・・
・蒸着用基板、9・・・電源(電界加速手段)、31・
・・ステンレス製円筒(磁界発生手段)。 なお図中同一符号は同−又は相当部分を示す。 代理人 大 岩 増 雄 第3図 第4図
FIG. 1 is a block diagram of a conventional cluster ion beam deposition apparatus, FIG. 2 is a diagram showing the arrangement of a crucible and filament in the apparatus, and FIG. 3 is a block diagram of main parts of a thin film forming apparatus according to an embodiment of the present invention. , FIG. 4 is a diagram for explaining the operation. DESCRIPTION OF SYMBOLS 1... Crucible, 2... Opening, 3... Melted vapor deposition material, 4... Filament for heating crucible (heating means), 5... Vapor of vapor deposition material, 6... Cluster, 7.
...Filament for electron emission (ionization means), 8...
・Substrate for deposition, 9... Power source (electric field acceleration means), 31.
...Stainless steel cylinder (magnetic field generating means). Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1) 所定の真空度に保持された真空槽と、該真空槽
内に設けられ少なくとも1つの開口部を有しその内部に
基板に蒸着すべき物質が充填されたるつぼ、このるつぼ
を加熱して上記蒸着物質の蒸気を発生せしめる加熱手段
、及び上記るつぼ全体に磁場を与え上記るつぼ内部の温
度分布が均一となるよう該るつぼ内の溶融蒸着物質を対
流させる磁界発生手段を有し上記るつぼの開口部から蒸
着物質の蒸気を噴出して上記蒸着物質の多数の原子が緩
く結合したクラスタを発生する蒸気発生源と、該蒸気発
生源からのクラスタをイオン化するイオン化手段と、該
イオン化されたクラスタ・イオンを加速しこれをイオン
化されていない中性クラスタとともに基板に衝突させて
薄膜を蒸着せしめる電界加速手段とを備えたことを特徴
とするi膜形成装置。
(1) A vacuum chamber maintained at a predetermined degree of vacuum, a crucible provided in the vacuum chamber and having at least one opening, the inside of which is filled with a substance to be deposited on a substrate, and heating this crucible. heating means for generating vapor of the vapor deposited material, and magnetic field generating means for applying a magnetic field to the entire crucible to cause convection of the molten vapor deposition material in the crucible so that the temperature distribution inside the crucible is uniform. a steam generation source that spouts vapor of a vapor deposition material from an opening to generate clusters in which a large number of atoms of the vapor deposition material are loosely bonded; an ionization means for ionizing the clusters from the vapor generation source; and an ionization means for ionizing the clusters from the vapor generation source; - An i-film forming apparatus characterized by comprising an electric field accelerating means for accelerating ions and causing them to collide with a substrate together with non-ionized neutral clusters to deposit a thin film.
JP58216765A 1983-11-15 1983-11-15 Thin film forming device Pending JPS60106126A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58216765A JPS60106126A (en) 1983-11-15 1983-11-15 Thin film forming device
KR1019840006293A KR910007157B1 (en) 1983-11-15 1984-10-11 Thin film forming device
DE19843441471 DE3441471A1 (en) 1983-11-15 1984-11-13 Film deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58216765A JPS60106126A (en) 1983-11-15 1983-11-15 Thin film forming device

Publications (1)

Publication Number Publication Date
JPS60106126A true JPS60106126A (en) 1985-06-11

Family

ID=16693552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58216765A Pending JPS60106126A (en) 1983-11-15 1983-11-15 Thin film forming device

Country Status (3)

Country Link
JP (1) JPS60106126A (en)
KR (1) KR910007157B1 (en)
DE (1) DE3441471A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212120A (en) * 1985-07-09 1987-01-21 Mitsubishi Electric Corp Heating filament for evaporation source

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082636A (en) * 1975-01-13 1978-04-04 Sharp Kabushiki Kaisha Ion plating method
JPS5181791A (en) * 1975-01-13 1976-07-17 Osaka Koon Denki Kk IONKAPUREETEINGUHOHO

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212120A (en) * 1985-07-09 1987-01-21 Mitsubishi Electric Corp Heating filament for evaporation source

Also Published As

Publication number Publication date
KR850004128A (en) 1985-07-01
DE3441471A1 (en) 1985-05-23
KR910007157B1 (en) 1991-09-18
DE3441471C2 (en) 1990-03-15

Similar Documents

Publication Publication Date Title
US4812326A (en) Evaporation source with a shaped nozzle
JP5062458B2 (en) Ionizer
US5180477A (en) Thin film deposition apparatus
JPS63307263A (en) Vapor deposition device for thin film
JPS60106126A (en) Thin film forming device
JPH06108236A (en) Thin film forming device
JPH0543784B2 (en)
JPS63472A (en) Vacuum device for forming film
JPH0364454A (en) Crucible for vapor source
JP4065725B2 (en) Piercing-type electron gun and vacuum deposition apparatus provided with the same
JPH05339720A (en) Device for formation of thin film
JPH03287761A (en) Thin film forming device
JPS63282257A (en) Ion plating device
JPH0830265B2 (en) Thin film forming equipment
JPS60124932A (en) Device for vapor deposition of thin film
JPS63179060A (en) Device for forming thin film
JPH0227432B2 (en) IONKAKIKO
JPH0735569B2 (en) Thin film forming equipment
JPS6212120A (en) Heating filament for evaporation source
JPS6320820A (en) Vapor deposition apparatus for thin film
JPS60124923A (en) Device for vapor deposition of thin film
JPH0578828A (en) Device for forming thin film
JPH03294474A (en) Film formation apparatus
JPH0419950A (en) Electron gun
JPS6218019A (en) Thin-film evaporating device