JPS60103263A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS60103263A
JPS60103263A JP21291283A JP21291283A JPS60103263A JP S60103263 A JPS60103263 A JP S60103263A JP 21291283 A JP21291283 A JP 21291283A JP 21291283 A JP21291283 A JP 21291283A JP S60103263 A JPS60103263 A JP S60103263A
Authority
JP
Japan
Prior art keywords
compressor
oil
refrigerant
refrigerating machine
compressors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21291283A
Other languages
Japanese (ja)
Other versions
JPH0222875B2 (en
Inventor
中村 節
五十嵐 好信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21291283A priority Critical patent/JPS60103263A/en
Publication of JPS60103263A publication Critical patent/JPS60103263A/en
Publication of JPH0222875B2 publication Critical patent/JPH0222875B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、複数台の圧縮機を備えた空気調和装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an air conditioner equipped with a plurality of compressors.

〔従来技術〕[Prior art]

従来この種の装置として、第1図に示すものがある。 A conventional device of this type is shown in FIG.

第1図は圧縮機2台を使用した例である。Figure 1 shows an example using two compressors.

(1a)、(1b)は圧縮機、(2)は4方弁、(3)
は室外側熱交換器、(4)は絞り装置、(5)は接続配
管、(6)は室内側熱交換器、(7)は接続配管、(8
)はアキュムレータ、(9)は圧縮機(1a)、(1b
)の密閉容器を接続する均油管である。(1a)、(1
b)の圧縮機は空調負荷に応じて、1台運転のみの場合
と、2台並列運転の場合とがある。また均油管(9)は
、圧縮機内部の冷凍機油が片側の圧縮機に片寄るのを防
ぐ、均油管の機能と、1台圧縮機運転の場合、停止して
いる圧縮機の密閉容器内部に冷媒が留まるのを防止する
為に、運転している高温冷媒の一部を均油管(9)を介
して停止している圧縮機の温度を、運転している圧縮機
と同程度の温度に保つことにより、停止している圧縮機
容器内部への冷媒溜まりを防止する護能を有するもので
あるが、1台圧縮機運転の場合、運転している圧縮機の
冷凍機油が停止している圧縮機容器内へ序々溜まり、運
転している圧縮機の冷凍機油不足になりやすく、又、停
止中の圧縮機の吐出弁及びシリンダへの給油管を通して
、シリンダ内に冷凍機油が溜まり、起動時に油逼を起こ
して圧縮機が故障する欠点を有していた。
(1a), (1b) are compressors, (2) is a 4-way valve, (3)
is the outdoor heat exchanger, (4) is the throttle device, (5) is the connecting pipe, (6) is the indoor heat exchanger, (7) is the connecting pipe, (8
) is an accumulator, (9) is a compressor (1a), (1b
) is an oil equalizing pipe that connects sealed containers. (1a), (1
Depending on the air conditioning load, there are cases in which only one compressor (b) is operated, and cases in which two compressors are operated in parallel. In addition, the oil equalizing pipe (9) has the function of preventing the refrigerating machine oil inside the compressor from being concentrated on one side of the compressor, and when operating one compressor, the oil equalizing pipe (9) has the function of preventing the refrigerating machine oil inside the compressor from being concentrated on one side of the compressor. In order to prevent the refrigerant from stagnating, a portion of the high-temperature refrigerant that is in operation is passed through the oil equalizing pipe (9) to bring the temperature of the stopped compressor to the same temperature as the operating compressor. This has the function of preventing refrigerant from accumulating inside the compressor container when the compressor is stopped. However, when one compressor is operated, the refrigerating machine oil of the operating compressor is stopped. Refrigerating machine oil gradually accumulates in the compressor container and tends to cause a shortage of refrigerating machine oil in the operating compressor.Furthermore, refrigerating machine oil accumulates in the cylinder through the discharge valve of the stopped compressor and the oil supply pipe to the cylinder, causing it to become insufficient when starting up. This had the disadvantage of causing oil leakage and causing the compressor to malfunction.

又、圧縮機(1a)、(1b)の起動時に、冷凍機油中
に寝込んでいた冷媒がフォーミングを起こし、大量の冷
媒機油が吐出され、又連続運転時も絶えず冷凍機油は吐
出され、吐出された冷機(1a),(1b)の吸入側を
循環して、圧縮れぞれの圧縮機起動時のフォーミングに
よる冷凍機油の吐出量の違いや、吸入側に戻って来る冷
凍機油の量の違いにより、冷凍機油が過多、過少になる
圧縮機が出来、油量の過少となった圧縮機が焼き付けを
起こす欠点を有していた。
Furthermore, when the compressors (1a) and (1b) are started up, the refrigerant that has been trapped in the refrigerant oil causes foaming, and a large amount of refrigerant oil is discharged, and even during continuous operation, the refrigerant oil is constantly discharged. There are differences in the amount of refrigerating machine oil that is circulated through the suction sides of the refrigerating machines (1a) and (1b) due to forming when each compressor is started, and differences in the amount of refrigerating machine oil that returns to the suction side. As a result, compressors with too much or too little refrigerating machine oil were created, and compressors with too little oil had the disadvantage of causing seizure.

さらに、従属配管(6)(7)が特に長くなった場合吐
出された冷凍機油が循環して戻って来るまでに時間がか
かり、又、圧縮機1台運転時、冷媒循環量が低下し、配
管内を流れる冷媒スピードが低下する為、冷凍機油の戻
りが悪くなり同様に圧縮機(1a)、(1b)の不良を
起こすという欠点を有していた。
Furthermore, if the dependent pipes (6) and (7) are particularly long, it will take time for the discharged refrigerating machine oil to circulate and return, and when one compressor is operated, the amount of refrigerant circulating will decrease. Since the speed of the refrigerant flowing through the pipes decreases, the refrigerating machine oil does not return easily, which also causes defects in the compressors (1a) and (1b).

また空調機の停止時、接続配管(5)(7)に溜ってい
た冷媒が自重により圧縮機の吐出管、導入管に戻って来
て、圧縮機の吐出口、吸入口に充満し、圧縮機起動時に
弁(図示ぜず)破損を起こすという点を有していた。
In addition, when the air conditioner is stopped, the refrigerant that had accumulated in the connecting pipes (5) and (7) returns to the compressor's discharge pipe and inlet pipe due to its own weight, filling the compressor's discharge port and suction port, causing compression. The problem was that the valve (not shown) was damaged when the machine was started.

〔発明の概要〕[Summary of the invention]

この発明は、上記の如き従来の欠点を除去することを目
的としてなされたもので、各々の圧縮機の吐出側と、4
方弁の間に、逆止弁、油分離器の順に逆止弁を各々設け
、その油分離器より電磁弁で設け、その油分離器より電
磁弁を介して、アキュムレータに到るバイパス路を設け
、冷凍機油をアキュムレータに戻すことにより、冷凍機
油の不足による圧縮機不良を妨げ、デフロスト時吐出ガ
スの一部をアキュムレータに戻すことにより、低圧圧力
を上昇させ、比容積の小さい濃度の濃い冷媒を圧縮機に
送り込むことにより除去能力が大幅に上昇し、炭時間で
デフロストが完了すること、及び並列に配置された圧縮
機が1台運転する場合、均油管(9)が無い為に、運転
している圧縮機の冷凍機油が均油管を介して、停止して
いる圧縮機の内部に溜まり、運転している圧縮機の潤滑
が不足することがなく、停止中の圧縮機の吐出側に逆止
弁を設はたことにより、シリンダ内へ冷凍機油や、冷媒
が溜まり込むこともなく、アキュムレータと各々の圧縮
機の吸入側その間に逆止弁を各々設けたことにより、停
止中の圧縮機の吸入側より、冷凍機油が流れ出すことを
防止でき、圧縮機起動時の弁破損や焼付不良が防止でき
るものである。
This invention was made for the purpose of eliminating the above-mentioned conventional drawbacks.
A check valve is provided in the order of a check valve and an oil separator between the two valves, and a solenoid valve is provided from the oil separator, and a bypass path is provided from the oil separator to the accumulator via the solenoid valve. By returning the refrigerating machine oil to the accumulator, it prevents compressor failure due to a lack of refrigerating machine oil, and by returning a part of the discharged gas during defrost to the accumulator, the low pressure is increased and the refrigerant with a small specific volume and high concentration is used. The removal capacity is greatly increased by feeding the compressor into the compressor, and defrosting can be completed in the coal hour.If one compressor is installed in parallel, the operation will be slow because there is no oil equalizing pipe (9). The refrigerating machine oil from the compressor that is running is collected inside the compressor that is not operating via the oil equalizing pipe, so that the compressor that is running does not lack lubrication and is transferred to the discharge side of the compressor that is not operating. By installing check valves, refrigerating machine oil and refrigerant do not accumulate in the cylinders, and by installing check valves between the accumulator and the suction side of each compressor, compression during stoppage is prevented. This prevents refrigerating machine oil from flowing out from the suction side of the machine, and prevents valve damage and seizure failure when starting the compressor.

空調機停止時において、吐出配管系内に留まっていた冷
媒及び冷凍機油が自重及び圧力により、圧縮機(1a)
、(1b)の吐出側に戻って来ても、油分離器に溜めら
れ、かつ逆止弁により圧縮機吐出側内部に入り込むこと
を防ぎ、又、吸入機管系内に溜まっていた冷媒及び冷凍
機油が自重及び圧力により、圧縮機の吸入側に戻って来
ても、アキュムレータに溜められ、かつ逆止弁により圧
縮機吸入側内部に入り込むことを防ぐことができるもの
である。
When the air conditioner is stopped, the refrigerant and refrigeration oil that remained in the discharge piping system are damaged by their own weight and pressure, causing damage to the compressor (1a).
Even if the refrigerant returns to the discharge side of (1b), it is collected in the oil separator and prevented from entering the compressor discharge side by the check valve, and the refrigerant and Even if the refrigerating machine oil returns to the suction side of the compressor due to its own weight and pressure, it is stored in the accumulator and can be prevented from entering the inside of the compressor suction side by the check valve.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を第2図及び第3図を参照して
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3.

第2図において、第1図と同一又は相当部分は同一符号
で示すものとする。第2図において、(13a)(13
b)は圧縮機吐出側に取り付けた逆止弁、(14a)(
14b)は圧縮機吸入側に取り付けた逆止弁である。即
ち、第2図に図示するように、各々の圧縮機(1a)(
1b)の吐出側と、4方弁(2)の間に、逆止弁(13
a)(13b)(d)分離器(10)の順に逆止弁を各
々配置し、該油分離器(10)より、電磁弁(12)を
介してアキュムレータ(8)に至るバイパス路(11)
を設ける共に、各々の圧縮機(1a)(1b)の吐出側
と上記油分離器(10)の途中に逆止弁(13a)(1
3b)を設け、前後の圧力が同じときは閉とする。又、
アキュムレータ(8)と各々の圧縮機(1a)(1b)
の吸入側との間に逆止弁(14a)(14b)を設け、
前記の圧力が同じときは閉とする。
In FIG. 2, the same or equivalent parts as in FIG. 1 are indicated by the same reference numerals. In Figure 2, (13a) (13
b) is a check valve installed on the compressor discharge side, (14a) (
14b) is a check valve installed on the suction side of the compressor. That is, as shown in FIG. 2, each compressor (1a) (
A check valve (13) is installed between the discharge side of 1b) and the four-way valve (2).
a) (13b) (d) A check valve is arranged in the order of the separator (10), and a bypass path (11) leads from the oil separator (10) to the accumulator (8) via the solenoid valve (12). )
In addition, check valves (13a) (1) are installed between the discharge side of each compressor (1a) (1b) and the oil separator (10).
3b) is provided and is closed when the pressures before and after are the same. or,
Accumulator (8) and each compressor (1a) (1b)
A check valve (14a) (14b) is provided between the suction side of the
When the above pressure is the same, it is closed.

又、第3図に示す電気回路は停止スイッチ(16)、運
転スイッチ(16)、自己保持リレー(17)及び(1
9)、初期起動時に所定時間、圧縮様(1a)(1b)
を強制運転させるための設定時間の異なるタイマー(2
0)(26)油分離器(10)からアキュムレータ(9
)からアキュムレータ(9)タ(9)のバイパス弁(1
2)を開閉するための電磁弁コイル(21)、2台の圧
縮機(1a)(1b)を運転するための圧縮機用接触器
(22)(23)、2ステージサーモ(24)、冷暖切
替スイッチ(25)等から構成されている。
The electric circuit shown in Fig. 3 includes a stop switch (16), a run switch (16), a self-holding relay (17), and (1)
9), Compression mode (1a) (1b) for a predetermined time at initial startup
Timers with different set times to force operation (2
0) (26) Oil separator (10) to accumulator (9)
) to the bypass valve (1) of the accumulator (9)
2) Solenoid valve coil (21) for opening and closing, compressor contactor (22) (23) for operating the two compressors (1a) (1b), two-stage thermostat (24), cooling/heating It is composed of a changeover switch (25) and the like.

上記構成においてこの発明の動作を説明する。The operation of the present invention will be explained in the above configuration.

第2図にかいて実線の矢印は冷房、デフロスト運転時の
冷媒の流れを示し、破線の矢印は暖房時における冷媒の
流れを示し、又一点鎖線はバイパス路中の冷媒、冷凍油
の流れを表わすものである。
In Figure 2, solid arrows indicate the flow of refrigerant during cooling and defrosting operations, dashed arrows indicate the flow of refrigerant during heating, and dashed lines indicate the flow of refrigerant and freezing oil in the bypass path. It represents.

冷房時、並列に配置された圧縮機(1a)(1b)より
出た高温、高圧の冷媒と冷凍機油は各々逆止弁(13a
)(13b)を経て、油分離器(10)にその上部より
入り冷凍機油はこの油分離器(10)内で分離され、分
離された油は油分離器(10)の底部に溜り、また冷凍
機油と分離した冷媒は、油分離器(10)の上部より出
て4方弁(2)、室外側交換器(3)に到り、この熱交
換器(3)で熱交換して高温、高圧の液となり、次いで
、絞り装置(4)で減圧され、接続配管(5)を経て、
室内側熱交換器(6)で、蒸発し、接続配管(7)、4
方弁(2)、アキュムレータ(8)、各連止弁(14a
)(14b)を経て再び並列に接続された圧縮設(1a
)(1b)に帰る。なおこの運転中、バイパス路用の途
中にある電磁(PU2)は閉じられているが、分電気(
10)に油が溜まると、油分離器(10)内の油溜検出
器(図示せず)の油溜検出出力信号により電磁弁(12
)が開けられ、油分離器(10)の下部に溜まった冷凍
機油は、この電磁弁(12)及びバイパス路(11)を
経由してアキュムレータ(8)に返され、室内側熱交換
器(6)より帰ってきた低温、低圧のガスと共に圧縮機
(1a)(1b)に帰ることになり冷凍機油の循環回路
は第1図に示す従来装置に比べて大巾に短縮される。暖
房運転時も点線の矢印で示す冷媒流から明らかなように
、上記冷房運転時と同様の油循環回路となる。
During cooling, high-temperature, high-pressure refrigerant and refrigerating machine oil discharged from compressors (1a) and (1b) arranged in parallel are discharged through check valves (13a), respectively.
) (13b), the refrigerating machine oil enters the oil separator (10) from the top and is separated in this oil separator (10), and the separated oil accumulates at the bottom of the oil separator (10) and is The refrigerant separated from the refrigeration oil comes out from the upper part of the oil separator (10), reaches the four-way valve (2) and the outdoor exchanger (3), and exchanges heat with this heat exchanger (3) to reach a high temperature. , it becomes a high-pressure liquid, then it is depressurized by the throttle device (4), passes through the connecting pipe (5),
The indoor heat exchanger (6) evaporates, and the connecting pipes (7), 4
Directional valve (2), accumulator (8), each connecting valve (14a
) (14b) and the compression equipment (1a) connected again in parallel.
) Return to (1b). During this operation, the solenoid (PU2) in the middle of the bypass path is closed, but the branch electricity (PU2) is closed.
10), the solenoid valve (12) is activated by the oil sump detection output signal from the oil sump detector (not shown) in the oil separator (10).
) is opened, and the refrigerating machine oil accumulated at the bottom of the oil separator (10) is returned to the accumulator (8) via this solenoid valve (12) and the bypass path (11), and is returned to the indoor heat exchanger ( 6) returns to the compressors (1a) (1b) together with the low-temperature, low-pressure gas returned from the refrigerating machine oil, so that the refrigerating machine oil circulation circuit is greatly shortened compared to the conventional device shown in FIG. As is clear from the refrigerant flow indicated by the dotted arrows during the heating operation, the oil circulation circuit is similar to that during the cooling operation.

従って、圧縮機(1a)(1b)の起動時には、上記電
磁弁(12)を起動後一定時間(例えば5分間)開とし
ておくことにより、停止時に冷凍機油中に寝込んでいた
冷媒が圧縮液の起動によりフオーミングを起こし通常の
連続運転に比べ大量の冷凍機油が圧縮機(1a)(1b
)により吐出されても油分離器により冷凍機油だけ分離
され、上記冷媒回路を循環することなくバイパス回路(
11)を経由して開となっている電磁弁(12)を介し
て、アキュムレータ(8)に返り、低圧のガスと共に圧
縮機(1a)(1b)にもどり冷媒機油不足を短時間で
補うことが可能となる。又、暖房時、起動前油分離器(
10)が冷えている為、吐出された冷媒が油分離器内に
凝縮し液となる。従って、一定時間後、油分離器が暖ま
り冷媒が凝縮しなくなるまで電磁弁(12)を開け、戻
すことにより、細分離器内より冷媒回路内に冷凍機油が
流出することが妨げる。すなわち、冷房より暖房時の方
が圧縮機の同時運転及び電磁弁開の時間を長くすること
により冷媒機油不足を短時間で補うことが可能となる。
Therefore, when starting the compressors (1a) (1b), by keeping the solenoid valve (12) open for a certain period of time (for example, 5 minutes) after starting, the refrigerant that was trapped in the refrigerating machine oil when the compressor was stopped is removed from the compressed liquid. Forming occurs upon startup, and a large amount of refrigerating machine oil is released into the compressors (1a) (1b) compared to normal continuous operation.
), only the refrigerating machine oil is separated by the oil separator, and the refrigerant oil does not circulate through the refrigerant circuit mentioned above, but instead enters the bypass circuit (
11) and then returns to the accumulator (8) through the open solenoid valve (12), and returns to the compressors (1a) and (1b) together with low-pressure gas, thereby making up for the lack of refrigerant machine oil in a short time. becomes possible. Also, during heating, the oil separator (
10) is cold, the discharged refrigerant condenses in the oil separator and becomes liquid. Therefore, after a certain period of time, the solenoid valve (12) is opened and returned until the oil separator warms up and the refrigerant no longer condenses, thereby preventing refrigerating machine oil from flowing out from the fine separator into the refrigerant circuit. That is, by simultaneously operating the compressors and making the electromagnetic valve open longer during heating than during cooling, it is possible to compensate for a shortage of refrigerant oil in a shorter time.

また、並列に接続された圧縮機(1a)(1b)内の冷
凍機油量がアンバランスになった時も、冷凍機油が多い
圧縮機の冷凍機油吐出量は多く冷凍機油が少ない圧縮機
の冷凍機油吐出量は少ないという圧縮機自信が持ってい
る調整機能の働きが、冷凍機の循環回路が短かいことに
より十分に機能することができ、短時間にアンバランス
の解消が可能となる。
In addition, even when the amount of refrigerating machine oil in the compressors (1a) and (1b) connected in parallel becomes unbalanced, the amount of refrigerating machine oil discharged by the compressor with more refrigerating machine oil is high, and the amount of refrigerating machine oil discharged by the compressor with less refrigerating machine oil is refrigeration. The compressor's own adjustment function, which has a small output of machine oil, can function adequately because of the short circulation circuit of the refrigerator, making it possible to eliminate imbalances in a short time.

また、侵込起励後一定時間(例えば5分間)は2台の圧
縮機(1a)(1b)を同時に強制的に運転させること
により、寝込起動により大量に吐出される冷凍機油全強
制的に回収し又2台同時に起動し、一定時間運転するこ
とにより、冷凍機油中に寝込んでいた冷媒も追いだしか
つ、冷凍機油量のバランスが取れた状態を積極的に作り
出すことが可能となる。
In addition, by forcibly operating the two compressors (1a) and (1b) at the same time for a certain period of time (for example, 5 minutes) after the intrusion activation, all of the refrigerating machine oil that is discharged in large quantities due to sleep startup can be By collecting the refrigerant at the same time, starting the two units at the same time, and operating them for a certain period of time, it is possible to drive out the refrigerant trapped in the refrigerating machine oil and actively create a state in which the amount of refrigerating machine oil is balanced.

又、室内側ユニットと、室外側ユニットの距離が大巾に
離れている場合、すなわち、接続配管(5)(7)が長
い影響されることなく短いバイパス回路で決定されてい
る為圧縮機(1a)(1b)の冷凍機油不足を起こすこ
とがない。
In addition, if the distance between the indoor unit and the outdoor unit is large, in other words, the connection pipes (5) and (7) are determined by a short bypass circuit without being affected by long connections, so the compressor ( 1a) There is no shortage of refrigerating machine oil in (1b).

また、圧縮機が1第運転の場合、冷媒の循環量が大巾に
減少し、小量となる時、即ち冷媒配管内を動く冷媒速度
が小さくなっても、冷凍機油の循環する回路即ちバイパ
ス回路の長さは一定であり、しかも短い為に冷凍機油の
戻り不足を起こすことがない。
In addition, when the compressor is in the first operation, the amount of refrigerant circulated is greatly reduced, and even when the amount becomes small, that is, even if the speed of refrigerant moving in the refrigerant piping is reduced, the refrigerant oil circulating circuit, ie, the bypass The length of the circuit is constant and short, so there is no possibility of insufficient return of refrigerating machine oil.

第3図のように構成された空調後において、連転スイッ
チ(16)を入れると補助リレー1(17)が励磁され
(17)の後点(17a)により自己保持される。
After the air conditioning is configured as shown in FIG. 3, when the continuous switch (16) is turned on, the auxiliary relay 1 (17) is energized and self-held by the rear point (17a) of the relay (17).

このとき2ステージサーモ(24)の接点が片方でも入
っていたら、圧縮機用接触器(22)、(23)が励磁
され圧縮機(1a)(1b)のいずれか、又は2台とも
運転を開始する。同時に(22)のa接点(22a)、
(23)のa接点(23a)のいずれでも閉じることに
よってタイマー(20a)又は(26a)を介して電磁
弁コイル(21)が励磁されバイパス弁(12)が開き
油分離器(10)からアキュムレータ(9)へ油戻しが
行なわれる。一方補助リレー2(18)が励磁され、(
18)のa接点(18a)が閉じ2ステージサーモ(2
4)の入切にかかわらず、圧縮機用接触器(22)、(
23)ともに励磁し圧縮機(1a)(1b)をともに強
強運転を行う。そしてタイマー(20)又は(26)に
より所定時間後タイマー接点(20a)又は(26a)
が反転し電磁弁コイル(21)及び補助リレー2(18
)を消磁し同時に補助リレー3(19)が励磁され、(
19)のa接点により自己保持され以後タイマー(20
)及び(26)は停止スイッチ(15)を切らないかぎ
り無効となる。又、電磁弁コイル(21)が消磁される
ことによりバイパス弁(12)が閉じ、補助リレー2(
18)が消磁され(18)のa接点(18a)が開くこ
とにより圧縮機(22)、(23)の2台強制運転を解
除して、2ステージサーモ(24)を有効とする。
At this time, if even one of the contacts of the 2-stage thermostat (24) is engaged, the compressor contactors (22) and (23) will be energized and either or both of the compressors (1a) and (1b) will start operating. Start. At the same time, the a contact (22a) of (22),
By closing any of the a contacts (23a) of (23), the solenoid valve coil (21) is energized via the timer (20a) or (26a), and the bypass valve (12) is opened to transfer the oil from the oil separator (10) to the accumulator. Oil is returned to (9). On the other hand, auxiliary relay 2 (18) is energized and (
The a contact (18a) of 18) is closed and the 2-stage thermometer (2
Regardless of whether 4) is on or off, the compressor contactor (22), (
23) Both are excited and the compressors (1a) and (1b) are both operated strongly. Then, after a predetermined time by the timer (20) or (26), the timer contact (20a) or (26a)
is reversed and the solenoid valve coil (21) and auxiliary relay 2 (18
) is demagnetized and at the same time auxiliary relay 3 (19) is energized, (
It is self-maintained by the a contact of 19) and then the timer (20
) and (26) become invalid unless the stop switch (15) is turned off. In addition, the bypass valve (12) is closed by demagnetizing the solenoid valve coil (21), and the auxiliary relay 2 (
18) is demagnetized and the a contact (18a) of (18) opens, thereby canceling the forced operation of the two compressors (22) and (23), and enabling the two-stage thermostat (24).

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、圧縮機初期起動時、停
止時に冷凍機油中読込んでいる冷媒が圧縮機の起動によ
りフォーミングを起こし通常の連続運転にくらべ大量の
冷凍機油が圧縮機より吐出されるが、上記電磁弁(12
)冷房、暖房各々に適した所定時間開くことにより、油
分離器で分離され冷凍機油バイパス路(11)を介して
、アキュムレータ(8)に戻す、低圧のガスとともに圧
縮機に戻され、又、上記電磁弁(12)と同時間、圧縮
機(1a)(1b)を同時強制運転させることにより、
寝込起動により大量に吐出される冷凍機油を強制的に回
収し、又、2台同時に起動し一定時間運転することによ
り冷凍機油中に寝込んでいた冷媒もおいだしかつ冷凍機
油量のバランスのとれた状態とすることができ、油不足
により圧縮機不良を防止できる効果がある。
As explained above, in this invention, when the compressor is initially started and stopped, the refrigerant loaded in the refrigerant oil forms when the compressor starts, and a large amount of refrigerant oil is discharged from the compressor compared to normal continuous operation. , the above solenoid valve (12
) By opening for a predetermined time suitable for each of cooling and heating, the oil is separated by an oil separator and returned to the accumulator (8) via a refrigerating machine oil bypass path (11), and is returned to the compressor together with low-pressure gas, and By forcedly operating the compressors (1a) and (1b) at the same time as the solenoid valve (12),
The system forcibly recovers the large amount of refrigerating machine oil that is discharged due to the drowsy startup, and by starting up two units at the same time and running them for a certain period of time, the refrigerant that has been stagnant in the refrigerating machine oil is discharged and the amount of refrigerating machine oil is balanced. This has the effect of preventing compressor failures due to oil shortage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の例を示す冷媒系統図、第2図はこの発明
の一実施例の冷媒系統図、第3図はこの発明の一実施例
の制御回路図である。 図において、(1a)(1b)は複数の圧縮機、(2)
は4方弁、(3)は室外コイル、(4)は紋り装置、(
5)及び(7)は接続配管、(6)は室内コイル、(8
)はアキュムレータ、(9)は均油管、(10)は油分
離器、(11)はバイパス路、(12)はバイパス弁、
(18a)(18b)は吐出逆止弁、(14a)(14
b)は吸入逆止弁、(15)は停止スイッチ、(16)
は運転スイッチ、(17)は補助リレー1、(17a)
は補助リレーのa接点、(18)は圧縮機(1a)(1
b)を強制運転させるために温度(24)を短絡する補
助リレー2、(18a)は補助リレー2のa接点、(1
9)はタイマー(20)及び(26)を初期起動以外は
無効にする補助リレー3、(198)は補助リレー3の
a接点、(20a)はタイマー(支)の接点、(26a
)けタイマー竣の接点、(21)はバイパス弁(12)
を開閉するたの電磁弁コイル、(22)、(23)は圧
縮機用接触器、(22a)(23a)は圧縮機用接触器
のa接点、(25)は冷暖房切替スイッチを示す。 なお図中同一符号は同一又は相当部分を示す。 代理人大岩増雄 第1図 第2図 第3図 iffII)
FIG. 1 is a refrigerant system diagram showing a conventional example, FIG. 2 is a refrigerant system diagram of an embodiment of the present invention, and FIG. 3 is a control circuit diagram of an embodiment of the invention. In the figure, (1a) and (1b) are multiple compressors, (2)
is a 4-way valve, (3) is an outdoor coil, (4) is a crest device, (
5) and (7) are connection pipes, (6) is indoor coil, (8
) is an accumulator, (9) is an oil equalizing pipe, (10) is an oil separator, (11) is a bypass path, (12) is a bypass valve,
(18a) (18b) are discharge check valves, (14a) (14
b) is the suction check valve, (15) is the stop switch, (16)
is the operation switch, (17) is the auxiliary relay 1, (17a)
is the A contact of the auxiliary relay, (18) is the compressor (1a) (1
Auxiliary relay 2 (18a) short-circuits temperature (24) to force operation of auxiliary relay 2, (18a)
9) is the auxiliary relay 3 that disables the timers (20) and (26) except for the initial startup, (198) is the a contact of the auxiliary relay 3, (20a) is the contact of the timer (support), (26a)
) is the contact for the timer completion, (21) is the bypass valve (12)
(22) and (23) are the compressor contactors, (22a) and (23a) are the a contacts of the compressor contactors, and (25) is the air conditioning/heating changeover switch. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1 Figure 2 Figure 3 iffII)

Claims (1)

【特許請求の範囲】[Claims] 並列に接続された複数台の圧縮機と、4方弁、室外熱交
換器、絞り装置、室内側熱交換器、及びアキュムレータ
を環状に接続して循環サイクルとし、上記圧縮機の吐出
側と、上記4方弁の間に、油分離器を設け、その油分離
器より電磁弁を介して、アキュムレータに至るバイパス
路を設け、上記各々の圧縮機の吐出側と油分離器の向に
に各々に逆止弁を設け、さらに上記アキュムレータと、
各々の圧縮機の吸入側との間に逆止弁を設けた空気調和
装置において、上記複数台の圧縮機を冷房、暖房各々異
なった所定時間同時強制運転し、上記電磁弁を圧縮機起
動時に開き、上記所定時間後に閉じる手段を持つ制御装
置を設けたことを特徴とする空気調和装置。
A plurality of compressors connected in parallel, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and an accumulator are connected in a ring to form a circulation cycle, and the discharge side of the compressor, An oil separator is provided between the four-way valves, and a bypass path is provided from the oil separator to the accumulator via a solenoid valve, and a bypass path is provided between the oil separator and the oil separator. is provided with a check valve, and further includes the above accumulator,
In an air conditioner in which a check valve is provided between the suction side of each compressor, the plurality of compressors described above are forced to operate simultaneously for different predetermined times for cooling and heating, and the solenoid valve is activated when the compressors are started. An air conditioner comprising a control device having means for opening and closing after the predetermined time.
JP21291283A 1983-11-11 1983-11-11 Air conditioner Granted JPS60103263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21291283A JPS60103263A (en) 1983-11-11 1983-11-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21291283A JPS60103263A (en) 1983-11-11 1983-11-11 Air conditioner

Publications (2)

Publication Number Publication Date
JPS60103263A true JPS60103263A (en) 1985-06-07
JPH0222875B2 JPH0222875B2 (en) 1990-05-22

Family

ID=16630335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21291283A Granted JPS60103263A (en) 1983-11-11 1983-11-11 Air conditioner

Country Status (1)

Country Link
JP (1) JPS60103263A (en)

Also Published As

Publication number Publication date
JPH0222875B2 (en) 1990-05-22

Similar Documents

Publication Publication Date Title
KR890006727Y1 (en) Heat pump with multiple compressors
CN101233375B (en) Method for preventing spill start in heat pump and controller
KR100564444B1 (en) Apparatus and method for liquid refrigerant temperature preventing accumulation of air conditioner
JPS60103263A (en) Air conditioner
JPH0222874B2 (en)
JPH0222873B2 (en)
JPH026433B2 (en)
JPH048704B2 (en)
JPH03122460A (en) Operating controller for refrigerating machine
JP3134350B2 (en) Defrost control device
JPS5856529Y2 (en) Refrigeration equipment
JP3182206B2 (en) Refrigeration equipment
JPS6015849B2 (en) air conditioner
JPS6221889Y2 (en)
JPS59217463A (en) Refrigeration cycle of air conditioner
JPH048705B2 (en)
JPS60245967A (en) Air conditioner
JPH05322331A (en) Air conditioner
JPH048703B2 (en)
JPS63306374A (en) Air conditioner
JPS6021716Y2 (en) Refrigerator defrost device
JPS5885041A (en) Air conditioning system
JPS6314269B2 (en)
JPS5926197Y2 (en) Refrigeration equipment
JPH0328668A (en) Air conditioner