JPH026433B2 - - Google Patents

Info

Publication number
JPH026433B2
JPH026433B2 JP21290983A JP21290983A JPH026433B2 JP H026433 B2 JPH026433 B2 JP H026433B2 JP 21290983 A JP21290983 A JP 21290983A JP 21290983 A JP21290983 A JP 21290983A JP H026433 B2 JPH026433 B2 JP H026433B2
Authority
JP
Japan
Prior art keywords
compressor
oil
refrigerating machine
refrigerant
machine oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21290983A
Other languages
Japanese (ja)
Other versions
JPS60103260A (en
Inventor
Yoshinobu Igarashi
Setsu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21290983A priority Critical patent/JPS60103260A/en
Publication of JPS60103260A publication Critical patent/JPS60103260A/en
Publication of JPH026433B2 publication Critical patent/JPH026433B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、複数台の圧縮機を備えた空気調和装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an air conditioner equipped with a plurality of compressors.

〔従来技術〕[Prior art]

従来この種の装置として、第1図に示すものが
ある。第1図は、圧縮機2台を使用した例であ
る。1a,1bは圧縮機、2は4方弁、3は室外
側熱交換器、4は絞り装置、5は接続配管、6は
室内側熱交換器、7は接続配管、8はアキユーム
レータ、9は圧縮機1a,1bの密閉容器を接続
する均油管である。1a,1bの圧縮機は空調負
荷に応じて、1台運転のみの場合と、2台並列運
転の場合とがある。また均油管9は、圧縮機内部
の冷凍機油が、片側の圧縮機に片寄るのを防ぐ、
均油管の機能と、1台圧縮機運転の場合、停止し
ている圧縮機の密閉容器内部に冷媒が溜まるのを
防止する為に、運転している高温冷媒の一部を均
油管9を介して停止している圧縮機の密閉容器内
部通過させ、停止している圧縮機の温度を、運転
している圧縮機と同程度の温度に保つことによ
り、停止している圧縮機容器内部への冷媒溜まり
を防止する機能を有するものであるが、1台圧縮
機運転の場合、運転している圧縮機の冷凍機油
が、停止している圧縮機容器内へ序々に溜まり、
運転している圧縮機の冷凍機油不足になりやす
く、又、停止中の圧縮機の吐出弁及びシリンダー
への給油管を通して、シリンダ内に冷凍機油が溜
まり、起動時に油槌を起こして圧縮機が故障する
欠点を有していた。
A conventional device of this type is shown in FIG. FIG. 1 shows an example in which two compressors are used. 1a and 1b are compressors, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a throttle device, 5 is a connecting pipe, 6 is an indoor heat exchanger, 7 is a connecting pipe, 8 is an accumulator, Reference numeral 9 denotes an oil equalizing pipe that connects the closed containers of the compressors 1a and 1b. Depending on the air conditioning load, there are cases in which only one compressor 1a and 1b is operated, and cases in which two compressors are operated in parallel. In addition, the oil equalizing pipe 9 prevents the refrigerating machine oil inside the compressor from being concentrated on one side of the compressor.
In order to prevent the refrigerant from accumulating inside the closed container of the stopped compressor, a part of the high-temperature refrigerant being operated is passed through the oil equalizing pipe 9 when one compressor is operated. By keeping the temperature of the stopped compressor at about the same temperature as that of the operating compressor, the air is passed through the closed container of the stopped compressor. Although it has a function to prevent refrigerant from accumulating, when one compressor is operated, the refrigerating machine oil of the operating compressor gradually accumulates in the compressor container of the stopped compressor.
The compressor that is running is likely to run out of refrigerating oil, and when the compressor is stopped, refrigerating oil may accumulate in the cylinder through the discharge valve and the oil supply pipe to the cylinder, causing an oil hammer to rise when the compressor is started and causing the compressor to overflow. It had the drawback of breaking down.

又、圧縮機1a,1bの起動時に、冷凍機油中
に寝込んでいた冷媒がフオーミングを起こし、大
量の冷凍機油が吐出され、又連続運転時も絶えず
冷凍機油は吐出され、吐出された冷凍機油は、上
記冷凍サイクルを循環して、圧縮機1a,1bの
吸入側に戻つて来るが、それぞれの圧縮機、起動
時のフオーミングによる冷凍機油の吐出量の違い
や、吸入側に戻つて来る冷凍機油の量の違いによ
り、冷凍機油が過多、過少になる圧縮機が出来、
油量の過少となつた、圧縮機が焼き付けを起こす
欠点を有していた。さらに、接続配管5,7が特
に長くなつた場合吐出された冷凍機油が循環して
戻つて来るまでに時間がかかり、又圧縮機1台運
転時、冷媒循環量が低下し、配管内を流れる冷媒
スピードが低下する為、冷凍機油の戻りが悪くな
り同様に圧縮機1a,1bの不良を起こすという
欠点を有していた。
Furthermore, when the compressors 1a and 1b are started, the refrigerant that has been trapped in the refrigerating machine oil forms and a large amount of refrigerating machine oil is discharged, and even during continuous operation, the refrigerating machine oil is constantly discharged, and the discharged refrigerating machine oil is The refrigerating machine oil circulates through the refrigeration cycle and returns to the suction side of the compressors 1a and 1b, but there are differences in the discharge amount of the refrigerating machine oil depending on the forming of each compressor at startup, and the amount of refrigerating machine oil that returns to the suction side. Due to the difference in the amount of refrigeration oil, the compressor may have too much or too little refrigerating machine oil.
The problem was that the compressor could seize up due to an insufficient amount of oil. Furthermore, if the connecting pipes 5 and 7 are particularly long, it will take time for the discharged refrigerating machine oil to circulate and return, and when one compressor is operated, the amount of refrigerant circulating will decrease, causing the refrigerant to flow inside the pipes. Since the refrigerant speed decreases, the return of the refrigerating machine oil becomes difficult, which also causes defects in the compressors 1a and 1b.

また空調機の停止時、接続配管5,7に溜つて
いた冷媒が自重により圧縮機の吐出管吸入管に戻
つて来て、圧縮機の吐出口、吸入口に充満し、圧
縮機起動時に弁(図示せず)破損を起こすという
欠点を有していた。
In addition, when the air conditioner is stopped, the refrigerant that had accumulated in the connecting pipes 5 and 7 returns to the compressor's discharge pipe and suction pipe due to its own weight, filling the compressor's discharge port and suction port, and when the compressor is started, This has the drawback of causing damage to the valve (not shown).

〔発明の概要〕[Summary of the invention]

この発明は、上記の如き従来の欠点を除去する
ことを目的としてなされたもので、各々の圧縮機
の吐出側と、4方弁の間に、逆止弁、油分離器の
順に逆止弁を各々設け、その油分離器より電磁弁
を設け、その油分離器より電磁弁を介して、アキ
ユムレーターに到るバイパス路を設け、冷凍機油
をアキユムレータに戻すことにより、冷凍機油の
不足による圧縮機不良を防げ、デフロスト時吐出
ガスの一部をアキユームレーターに戻すことによ
り、低圧圧力を上昇させ、比容積の小さい濃度の
濃い冷媒を圧縮機に送り込むことにより除霜能力
が大幅に上昇し、短時間でデフロストが完了する
こと、及び並列に配置された圧縮機が1台運転す
る場合、均油管9が無い為に、運転している圧縮
機の冷凍機油が、均油管を介して、停止している
圧縮機の内部に溜まり、運転している圧縮機の潤
滑が不足することがなく、停止中の圧縮機の吐出
側に逆止弁を設けたことにより、シリンダ内へ冷
凍機油や、冷媒が溜まり込むこともなく、アキユ
ムレーターと各々の圧縮機の吸入側との間に逆止
弁を各々設けたことにより、停止中の圧縮機の吸
入側より、冷凍機油が流れ出すことを防止でき、
圧縮機起動時の弁破損や焼付不良が防止できるも
のである。又、空調機停止時において、吐出配管
系内に溜まつていた冷媒及び冷凍機油が自重及び
圧力により、圧縮機1a,1bの吐出側に戻つて
来ても、油分離器に溜められ、かつ逆止弁により
圧縮機吐出側内部に入り込むことを防ぎ、又、吸
入配管系内に溜まつていた冷媒及び冷凍機油が自
重及び圧力により、圧縮機の吸入側に戻つて来て
も、アキユームレーターに溜められ、かつ逆止弁
により圧縮機吸入側内部に入り込むことを防ぐこ
とができるものである。
This invention was made with the aim of eliminating the above-mentioned drawbacks of the conventional technology, and includes a check valve and an oil separator between the discharge side of each compressor and the four-way valve. A solenoid valve is installed from the oil separator, and a bypass path is provided from the oil separator to the accumulator via the solenoid valve, and the refrigerating machine oil is returned to the accumulator, thereby preventing the compressor from running out of refrigerating machine oil. By returning part of the gas discharged during defrosting to the accumulator, the defrosting capacity can be greatly increased by increasing the low pressure and sending a highly concentrated refrigerant with a small specific volume to the compressor. Defrosting can be completed in a short time, and when one compressor arranged in parallel is operated, since there is no oil equalizing pipe 9, the refrigerating machine oil of the operating compressor passes through the oil equalizing pipe and stops. By installing a check valve on the discharge side of the compressor when the compressor is stopped, refrigerating machine oil or Refrigerant does not accumulate, and by installing a check valve between the accumulator and the suction side of each compressor, it is possible to prevent refrigerating machine oil from flowing out from the suction side of the compressor when it is stopped.
This prevents valve damage and seizure defects when starting the compressor. Furthermore, even if the refrigerant and refrigerating machine oil that had accumulated in the discharge piping system return to the discharge side of the compressors 1a and 1b due to their own weight and pressure when the air conditioner is stopped, they will be accumulated in the oil separator and The check valve prevents the refrigerant and refrigeration oil accumulated in the suction piping system from entering the inside of the compressor discharge side, and even if the refrigerant and refrigeration oil accumulated in the suction piping system return to the suction side of the compressor due to their own weight and pressure, the It is stored in the rotor and can be prevented from entering the inside of the compressor suction side by a check valve.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例を、第2図及び第3図
を参照して説明する。第2図において、第1図と
同一又は相当部分は同一符号で示すものとする。
第2図において、10は油分離器、11はバイパ
ス路、12は電磁弁、13a,13bは圧縮機吐
出側に取り付けた逆止弁、14a,14bは圧縮
機吸入側に取り付けた逆止弁である。即ち第2図
に図示するように、各々の圧縮機1a,1bの吐
出側と、4方弁2の間に、逆止弁13a,13b
油分離器10の順に逆止弁を各々配置し、該油分
離器10より、電磁弁12を介してアキユムレー
ター8に至るバイパス路11を設けると共に、
各々の圧縮機1a,1bの吐出側と上記油分離器
10の途中に逆止弁13a,13bを設け、前後
の圧力が同じときは、閉とする。又、アキユムレ
ーター8と各々の圧縮機1a,1bの吸入側との
間に逆止弁14a,14bを設け、前後の圧力が
同じときは閉とする。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. In FIG. 2, the same or equivalent parts as in FIG. 1 are indicated by the same reference numerals.
In Fig. 2, 10 is an oil separator, 11 is a bypass path, 12 is a solenoid valve, 13a and 13b are check valves installed on the compressor discharge side, and 14a and 14b are check valves installed on the compressor suction side. It is. That is, as shown in FIG.
A check valve is arranged in the order of the oil separator 10, and a bypass path 11 is provided from the oil separator 10 to the accumulator 8 via a solenoid valve 12.
Check valves 13a, 13b are provided between the discharge side of each compressor 1a, 1b and the oil separator 10, and are closed when the pressures before and after are the same. Further, check valves 14a and 14b are provided between the accumulator 8 and the suction side of each of the compressors 1a and 1b, and are closed when the pressures before and after are the same.

又、第3図に示す電気回路は停止スイツチ1
5、運転スイツチ16、自己保持リレー17及び
19、初期起動時に所定時間、圧縮機1a,1b
を強制運転させるためのタイマー20、油分離器
10からアキユムレータ9へのバイパス弁12を
開閉するための電磁弁コイル21、2台の圧縮機
1a,1bを運転するための圧縮機用接触器2
2,23、2ステージサーモ24、冷暖切替スイ
ツチ25等から構成されている。
In addition, the electric circuit shown in FIG.
5. Operation switch 16, self-holding relays 17 and 19, compressor 1a, 1b for a predetermined time at initial startup
a timer 20 for forced operation, a solenoid valve coil 21 for opening and closing the bypass valve 12 from the oil separator 10 to the accumulator 9, and a compressor contactor 2 for operating the two compressors 1a and 1b.
2, 23, a 2-stage thermostat 24, a heating/cooling switch 25, and the like.

上記構成においてこの発明の動作を説明する。 The operation of the present invention will be explained in the above configuration.

第2図において実線の矢印は冷房、デフロスト
運転時の冷媒の流れを示し、破線の矢印は暖房時
における冷媒の流れを示し、又一点鎖線はバイパ
ス路中の冷媒、冷凍機油の流れを表わすものであ
る。
In Fig. 2, solid arrows indicate the flow of refrigerant during cooling and defrosting operations, dashed arrows indicate the flow of refrigerant during heating, and dashed-dotted lines indicate the flow of refrigerant and refrigerating machine oil in the bypass path. It is.

冷房時、並列に配置された圧縮機1a,1bよ
り出た高温、高圧の冷媒と冷凍機油は各々逆止弁
13a,13bを経て、油分離器10にその上部
より入り冷凍機油はこの油分離器10内で分離さ
れ、分離された油は油分離器10の底部に溜ま
り、また冷凍機油と分離した冷媒は、油分離器1
0の上部より出て4方弁2、室外側熱交換器3に
到り、この熱交換器3で熱交換して高温・高圧の
液となり、次いで絞り装置4で減圧され、接続配
管5を経て、室内側熱交換器6で、蒸発し、接続
配管7、4方弁2アキユムレーター8、各逆止弁
14a,14bを経て再び並列に接続された圧縮
機1a,1bに帰る。なおこの運転中バイパス路
11の途中にある電磁弁12は閉じられている
が、油分離器10に油が溜まると、油分離器10
内の油溜検出器(図示せず)の油溜検出出力信号
により電磁弁12が開けられ、油分離器10の下
部に溜まつた冷凍機油は、この電磁弁12及びバ
イパス路11を経由してアキユームレータ8に返
され、室内側熱交換器6より帰つてきた低温、低
圧のガスと共に圧縮機1a,1bに帰ることにな
り冷凍機油の循環回路は第1図に示す従来装置に
比べて大巾に短縮される。暖房運転時も点線の矢
印で示す冷媒流から明らかなように、上記冷房運
転時と同様の油循環回路となる。
During cooling, the high-temperature, high-pressure refrigerant and refrigerating machine oil discharged from the compressors 1a and 1b arranged in parallel pass through check valves 13a and 13b, respectively, and enter the oil separator 10 from above, where the refrigerating machine oil is separated. The separated oil is collected at the bottom of the oil separator 10, and the refrigerant separated from the refrigeration oil is collected in the oil separator 1.
It exits from the upper part of the 0, reaches the 4-way valve 2 and the outdoor heat exchanger 3, exchanges heat with the heat exchanger 3 to become a high-temperature, high-pressure liquid, is then depressurized by the expansion device 4, and passes through the connecting pipe 5. After that, it is evaporated in the indoor heat exchanger 6, and returns to the compressors 1a, 1b connected in parallel again via the connecting pipe 7, the four-way valve 2, the accumulator 8, and each check valve 14a, 14b. Note that during this operation, the solenoid valve 12 located in the middle of the bypass path 11 is closed, but if oil accumulates in the oil separator 10, the oil separator 10
The solenoid valve 12 is opened by the oil sump detection output signal of the oil sump detector (not shown) inside the oil separator 10, and the refrigerating machine oil accumulated at the bottom of the oil separator 10 is passed through the solenoid valve 12 and the bypass path 11. The refrigerating machine oil is returned to the accumulator 8, and returns to the compressors 1a and 1b together with the low temperature, low pressure gas returned from the indoor heat exchanger 6. The refrigerating machine oil circulation circuit is different from that of the conventional system shown in Fig. 1. It is shortened to a large width. As is clear from the refrigerant flow indicated by the dotted arrows during the heating operation, the oil circulation circuit is similar to that during the cooling operation.

従つて、圧縮機1a,1bの起動時には、上記
電磁弁12を起動後一定時間、(例えば5分間)
開としておくことにより、停止時に冷凍機油中に
寝込んでいた冷媒が圧縮機の起動によりフオーミ
ングを起こし通常の連続運転に比べ大量の冷凍機
油が圧縮機1a,1bより吐出されでも油分離器
により冷凍機油だけ分離され、上記冷媒回路を循
環することなくバイパス回路11を経由して開と
なつている電磁弁12を介して、アキユームレー
ター8に返り、低圧のガスと共に圧縮機1a,1
bにもどり冷凍機油不足を短時間で補うことが可
能となる。
Therefore, when starting the compressors 1a and 1b, the solenoid valve 12 is activated for a certain period of time (for example, 5 minutes).
By leaving the refrigerant open, the refrigerant that was trapped in the refrigerating machine oil at the time of shutdown will form when the compressor is started, and even if a large amount of refrigerating machine oil is discharged from the compressors 1a and 1b compared to normal continuous operation, the oil separator will still be able to refrigerate it. Only the machine oil is separated, and without circulating through the refrigerant circuit, it is returned to the accumulator 8 via the solenoid valve 12 which is opened via the bypass circuit 11, and is sent to the compressors 1a and 1 together with the low pressure gas.
Returning to step b, it becomes possible to compensate for the shortage of refrigerating machine oil in a short time.

また、並列に接続された圧縮機1a,1b内の
冷凍機油量がアンバランスになつた時も、冷凍機
油が多い圧縮機の冷凍機油吐出量は多く、冷凍機
油が少ない圧縮機の冷凍機油吐出量は少ないとい
う圧縮機自身が持つている調整機能の働きが、冷
凍機の循環回路が短かいことにより十分に機能す
ることが出来、短時間にアンバランスの解消が可
能となる。
In addition, even when the amount of refrigerating machine oil in the compressors 1a and 1b connected in parallel becomes unbalanced, the compressor with more refrigerating machine oil discharges a large amount of refrigerating machine oil, and the compressor with less refrigerating machine oil discharges a large amount of refrigerating machine oil. Due to the short circulation circuit of the refrigerator, the compressor's own adjustment function, which has a small amount, can function sufficiently, making it possible to eliminate imbalances in a short time.

また、寝込起動後一定時間(例えば5分間)は
2台の圧縮機1a,1bを同時に強制的に運転さ
せることにより、寝込起動により大量に吐出され
る冷凍機油を強制的に回収し、又2台同時に起動
し、一定時間運転することにより、冷凍機油中に
寝込んでいた冷媒も追いだし、かつ、冷凍機油量
のバランスが取れた状態を積極的に作り出すこと
が可能となる。
In addition, by forcibly operating the two compressors 1a and 1b at the same time for a certain period of time (for example, 5 minutes) after the sleep start, the refrigerating machine oil discharged in large quantities due to the sleep start is forcibly recovered. Furthermore, by starting up two units at the same time and operating them for a certain period of time, it is possible to drive out the refrigerant that has settled in the refrigerating machine oil and actively create a state in which the amount of refrigerating machine oil is balanced.

又、室内側ユニツトと、室外側ユニツトの距離
が大巾に離れている場合、すなわち、接続配管
5,7が長い時でも、冷凍機油の循環回路は接続
配管5,7の長さに影響されることなく短いバイ
パス回路で決定されている為、圧縮機1a,1b
の冷凍機油不足を起こすことがない。
Furthermore, even if the distance between the indoor unit and the outdoor unit is large, that is, the connection pipes 5 and 7 are long, the refrigerating machine oil circulation circuit will not be affected by the length of the connection pipes 5 and 7. Compressors 1a and 1b
There will be no refrigeration oil shortage.

また、圧縮機が1台運転の場合、冷媒の循環量
が大巾に減少し、小量となる時、すなわち冷媒配
管内を動く冷媒速度が小さくなつても、冷凍機油
の循環する回路即ちバイパス回路の長さは一定で
あり、しかも、短い為に冷凍機油の戻り不足を起
こすことがない。
In addition, when one compressor is in operation, the amount of refrigerant circulated is greatly reduced, and even when the amount becomes small, that is, the speed of refrigerant moving in the refrigerant piping is reduced, the refrigerant oil circulation circuit, that is, the bypass The length of the circuit is constant, and since it is short, there is no possibility of insufficient return of refrigerating machine oil.

第3図のように構成された空調機において、運
転スイツチ16を入れると補助リレー117が励
磁され17のa接点17aにより、自己保持され
る。このとき2ステージサーモ24の接点が片方
でも入つていたら、圧縮機用接触器22,23が
励磁され圧縮機1a,1bのいずれか、又は2台
とも運転を開始する。同時に22のa接点22
a、23のa接点23aのいずれでも閉じること
によつてタイマー20が励磁されるとともにタイ
マー接点20aを介して電磁弁コイル21が励磁
されバイパス弁12が開き油分離器10からアキ
ユームレータ9へ油戻しが行なわれる。一方補助
リレー218が励磁され、18のa接点18aが
閉じ2ステージサーモ24の入切にかかわらず、
圧縮機用接触器22,23ともに励磁し圧縮機1
a,1bをともに強制運転を行う。そしてタイマ
ー20により所定時間後タイマー接点20aが反
転し、電磁弁コイル21及び補助リレー218を
消磁し同時に補助リレー319が励磁され、19
のa接点により自己保持され以後タイマー20は
停止スイツチ15を切らないかぎり無効となる。
又、電磁弁コイル21が消磁されることによりバ
イパス弁12が閉じ、補助リレー218が消磁さ
れ18のa接点18aが開くことにより圧縮機2
2,23の2台強制運転を解除して、2ステージ
サーモ24を有効とする。
In the air conditioner configured as shown in FIG. 3, when the operation switch 16 is turned on, the auxiliary relay 117 is energized and self-held by the a contact 17a of the relay 17. At this time, if even one of the contacts of the two-stage thermostat 24 is closed, the compressor contactors 22 and 23 are energized and one or both of the compressors 1a and 1b starts operating. 22 a contacts 22 at the same time
By closing any of the A contacts 23a, the timer 20 is energized, and the solenoid valve coil 21 is energized via the timer contact 20a, and the bypass valve 12 is opened to transfer the flow from the oil separator 10 to the accumulator 9. Oil return is performed. On the other hand, the auxiliary relay 218 is energized, and the 18 a contacts 18a are closed, regardless of whether the 2-stage thermostat 24 is on or off.
Both the compressor contactors 22 and 23 are energized and the compressor 1
Perform forced operation on both a and 1b. After a predetermined time, the timer contact 20a is reversed by the timer 20, demagnetizing the solenoid valve coil 21 and the auxiliary relay 218, and simultaneously energizing the auxiliary relay 319.
The timer 20 is self-maintained by the a contact of the timer 20, and thereafter becomes ineffective unless the stop switch 15 is turned off.
In addition, the bypass valve 12 is closed by demagnetizing the solenoid valve coil 21, and the auxiliary relay 218 is demagnetized and the a contact 18a of the auxiliary relay 18 is opened, so that the compressor 2 is closed.
The forced operation of two units 2 and 23 is canceled and the two-stage thermostat 24 is enabled.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、圧縮機初期起
動時、停止時に圧縮機内の冷凍機油中に寝込んで
いる冷媒が圧縮機の起動によりフオーミングを起
こし通常の連続運転にくらべ大量の冷凍機油が圧
縮機より吐出されるが、上記電磁弁12を所定時
間開くことにより、油分離器で分離された冷凍機
油は上記冷媒回路を循環することなくバイパス路
11介してアキユームレータ8に戻り低圧のガス
とともに圧縮機に戻り、冷凍機油不足を短時間で
補うことができ、油不足による圧縮機不良を防止
する効果がある。
As explained above, in this invention, when the compressor is initially started and stopped, the refrigerant lying in the refrigerant oil inside the compressor forms when the compressor starts, and a large amount of refrigerant oil is released from the compressor compared to normal continuous operation. However, by opening the solenoid valve 12 for a predetermined period of time, the refrigerating machine oil separated by the oil separator returns to the accumulator 8 via the bypass path 11 without circulating through the refrigerant circuit and is compressed together with the low-pressure gas. Returning to the machine, the refrigerating machine oil shortage can be compensated for in a short time, which has the effect of preventing compressor failures due to oil shortage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の例を示す冷媒系統図、第2図は
この発明の一実施例の冷媒系統図、第3図はこの
発明の一実施例の制御回路図である。 図において、1a,1bは複数の圧縮機、2は
四方弁、3は室外コイル、4は絞り装置、5及び
7は接続配管、6は室内コイル、8はアキユーム
レータ、9は均油管、10は油分離器、11はバ
イパス路、12はバイパス弁、13a,13bは
吐出逆止弁、14a,14bは吸入逆止弁、15
は停止スイツチ、16は運転スイツチ、17は補
助リレー1、17aは補助リレー1のa接点、1
8は圧縮機1a,1bを強制運転させるために温
調24を短絡する補助リレー2、18aは補助リ
レー2のa接点、19はタイマー20を初期起動
以外は無効にする補助リレー3、19aは補助リ
レー3のa接点、20aはタイマー20の接点、
21はバイパス弁12を開閉するための電磁弁コ
イル、22,23は圧縮機用接触器、22a,2
3aは圧縮機用接触器のa接点、25は冷暖切替
スイツチを示す。なお図中同一符号は同一又は相
当部分を示す。
FIG. 1 is a refrigerant system diagram showing a conventional example, FIG. 2 is a refrigerant system diagram of an embodiment of the present invention, and FIG. 3 is a control circuit diagram of an embodiment of the invention. In the figure, 1a and 1b are plural compressors, 2 is a four-way valve, 3 is an outdoor coil, 4 is a throttle device, 5 and 7 are connecting pipes, 6 is an indoor coil, 8 is an accumulator, 9 is an oil equalizing pipe, 10 is an oil separator, 11 is a bypass path, 12 is a bypass valve, 13a, 13b are discharge check valves, 14a, 14b are suction check valves, 15
is a stop switch, 16 is a run switch, 17 is auxiliary relay 1, 17a is a contact of auxiliary relay 1, 1
8 is an auxiliary relay 2 that short-circuits the temperature controller 24 in order to forcefully operate the compressors 1a and 1b, 18a is the a contact of the auxiliary relay 2, and 19 is an auxiliary relay 3 that disables the timer 20 except for initial startup. A contact of the auxiliary relay 3, 20a is the contact of the timer 20,
21 is a solenoid valve coil for opening and closing the bypass valve 12; 22 and 23 are compressor contactors; 22a and 2
3a is an a contact point of a compressor contactor, and 25 is a heating/cooling changeover switch. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 並列に接続された複数台の圧縮機と、4方
弁、室外熱交換器、絞り装置、室内側熱交換器、
及びアキユムレータを環状に接続して循環サイク
ルとし、上記圧縮機の吐出側と、上記4方弁の間
に、油分離器を設け、その油分離器より電磁弁を
介してアキユムレータに至るバイパス路を設け、
上記各々の圧縮機の吐出側と、油分離器の間に
各々に逆止弁を設け、さらに上記アキユムレータ
ーと、各々の圧縮機の吸入側との間に逆止弁を設
けた空気調和装置において、上記電磁弁を圧縮機
起動時に開き、所定時間後に閉じる手段を持つ制
御装置を設けたことを特徴とする空気調和装置。
1 Multiple compressors connected in parallel, 4-way valve, outdoor heat exchanger, throttling device, indoor heat exchanger,
and an accumulator are connected in a ring to form a circulation cycle, an oil separator is provided between the discharge side of the compressor and the four-way valve, and a bypass path is provided from the oil separator to the accumulator via a solenoid valve. established,
In an air conditioner in which a check valve is provided between the discharge side of each of the above compressors and the oil separator, and a check valve is further provided between the above accumulator and the suction side of each compressor. An air conditioner comprising: a control device having means for opening the electromagnetic valve when starting the compressor and closing it after a predetermined period of time.
JP21290983A 1983-11-11 1983-11-11 Air conditioner Granted JPS60103260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21290983A JPS60103260A (en) 1983-11-11 1983-11-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21290983A JPS60103260A (en) 1983-11-11 1983-11-11 Air conditioner

Publications (2)

Publication Number Publication Date
JPS60103260A JPS60103260A (en) 1985-06-07
JPH026433B2 true JPH026433B2 (en) 1990-02-09

Family

ID=16630284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21290983A Granted JPS60103260A (en) 1983-11-11 1983-11-11 Air conditioner

Country Status (1)

Country Link
JP (1) JPS60103260A (en)

Also Published As

Publication number Publication date
JPS60103260A (en) 1985-06-07

Similar Documents

Publication Publication Date Title
JPH049982B2 (en)
CN101233375B (en) Method for preventing spill start in heat pump and controller
KR100564444B1 (en) Apparatus and method for liquid refrigerant temperature preventing accumulation of air conditioner
WO2006088717A2 (en) Prevention of flooded starts in heat pumps
JP3757796B2 (en) Air conditioner and outdoor unit used therefor
JPH0222874B2 (en)
JPH026433B2 (en)
JPH01196462A (en) Heat pump device
JPH04324069A (en) Refrigerating plant
JPH0222873B2 (en)
KR101599537B1 (en) Refrigerating system
JPH0222875B2 (en)
JPH048704B2 (en)
JP3883725B2 (en) Method of operating air conditioner and air conditioner
JPH03122460A (en) Operating controller for refrigerating machine
JPH05240522A (en) Air conditioning apparatus
JPH0353553B2 (en)
JPS6015082Y2 (en) Refrigeration equipment
JPH048703B2 (en)
JPS63306374A (en) Air conditioner
JPS6015849B2 (en) air conditioner
JPH04320764A (en) Freezer device
JPH0214626B2 (en)
JPH05322331A (en) Air conditioner
JPS6221889Y2 (en)