JPS60102742A - Controller for substrate temperature - Google Patents

Controller for substrate temperature

Info

Publication number
JPS60102742A
JPS60102742A JP20895783A JP20895783A JPS60102742A JP S60102742 A JPS60102742 A JP S60102742A JP 20895783 A JP20895783 A JP 20895783A JP 20895783 A JP20895783 A JP 20895783A JP S60102742 A JPS60102742 A JP S60102742A
Authority
JP
Japan
Prior art keywords
substrate
gas
temperature control
control device
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20895783A
Other languages
Japanese (ja)
Other versions
JPH0693446B2 (en
Inventor
Minoru Noguchi
稔 野口
Toru Otsubo
徹 大坪
Susumu Aiuchi
進 相内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58208957A priority Critical patent/JPH0693446B2/en
Publication of JPS60102742A publication Critical patent/JPS60102742A/en
Publication of JPH0693446B2 publication Critical patent/JPH0693446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To control the temperature of a substrate in etching, film formation, baking treatment, etc. of a semiconductor device properly by bringing a distance between a susceptor for the substrate and the substrate to the mean free path or less of gas introduced under the pressure of the gas. CONSTITUTION:A substrate 19 is placed on a lower electrode 17 with a convex surface abraded to roughness of 6-S or less by a holding means 23. A distance between two surfaces is made sufficiently smaller than a mean free path of 30mum in 700Pa pressure of helium as the gas for heat transfer extending over the whole surface at that time. Helium gas is fed by an orifice 21 from a gas reservoir 26. The lower electrode 17 and the substrate 19 are disposed in a treating chamber 12 together with an upper electrode 16, and a gas introducing port 24 and an exhaust port 13 for feeding and discharging a reaction gas are formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は基板温度制御装置に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a substrate temperature control device.

〔発明の背景〕[Background of the invention]

現在、半導体装置’Jl tfiにおいて、成膜手段と
して蒸着あるいはスパッタリングを行う際、粒径。
Currently, in semiconductor devices, when vapor deposition or sputtering is used as a film forming method, the particle size is determined.

反射率、比抵抗及び硬度が適切である良好な膜質を得る
ためには、基板のベーキング中、及び、成膜中の基板温
度を効果的に制御する必要がある。
In order to obtain good film quality with appropriate reflectance, resistivity, and hardness, it is necessary to effectively control the substrate temperature during baking of the substrate and during film formation.

特に粒径9反射率は、基板温度の影響が大きい。In particular, the particle size 9 reflectance is greatly affected by the substrate temperature.

また、上記膜上に露光現像によりレジスト・ぐターンを
形成し、ドライエツチングによゆ上記膜をレジスト・母
ターン通りに食刻する際にも基板温度の制御が必要であ
る。これは、基板温度を制御□□することで、レジスト
が耐熱性に乏しいことから生じるレジストの熱的損傷を
防ぎ、忠実な・母ターンを食刻することが可能になるか
らである。
Further, it is also necessary to control the substrate temperature when a resist pattern is formed on the film by exposure and development, and the film is etched according to the resist pattern by dry etching. This is because by controlling the substrate temperature, it is possible to prevent thermal damage to the resist caused by its poor heat resistance, and to etch faithful master turns.

しかしながら、真空中で基板の温度制御をすることは難
しい。温度制御された基板支持台と同じ温度に基板の温
度をするための制御をしても、真空中では基板と支持台
との熱的接触が十分ではないからである。
However, it is difficult to control the temperature of the substrate in a vacuum. This is because even if the temperature of the substrate is controlled to be the same as that of the temperature-controlled substrate support, thermal contact between the substrate and the support is not sufficient in a vacuum.

そこで、従来から基板と基板支持台との2内間の熱的接
触を大きくするために、基板を支持台に機械的に押えつ
けるか、あるいは5静電的な力により基板を支持台に吸
着させるかなどの方法が考案されている。しかしこのよ
うな方法によっても十分な効果は生じていない。すなわ
ち、固体2而間の熱的接触は、2内間に介在する気体分
子によるところが大きく、純粋な固体間での熱のやりと
りは、上記の押えつけ圧力程度では気体分子による熱の
やりとりに比べて無視できる程度に小さいからである。
Therefore, conventionally, in order to increase the thermal contact between the substrate and the substrate support, the substrate is mechanically pressed against the support, or the substrate is attracted to the support using electrostatic force. Methods have been devised to do this. However, even such methods have not produced sufficient effects. In other words, thermal contact between two solid objects is largely due to the gas molecules intervening between the two, and the exchange of heat between pure solids is slower than the exchange of heat between gas molecules at the above-mentioned pressing pressure. This is because it is so small that it can be ignored.

そこで、気体分子を基板と支持台との間に介在させるこ
とにより、熱的接触を大きくしようとする装置が考案さ
れ特開昭56−103442に開示されている。
Therefore, an apparatus was devised to increase the thermal contact by interposing gas molecules between the substrate and the support, and is disclosed in Japanese Patent Application Laid-Open No. 103442/1983.

−C1 この装置の基板温度制御部を第1図に示すO基板3が、
数個のクリップ4によりスペーサ9を介して支持台5に
接近させて支持されている。
-C1 The O substrate 3 shown in FIG. 1 is the substrate temperature control section of this device.
It is supported by several clips 4 in close proximity to a support base 5 via spacers 9.

支持台5上には、冷却もしくは加熱機構をそなえた温度
制御装置6が設けられている。処理室1は排気口2より
排気される。同時に、気体導入ロアよりアルゴンが導入
され、このガスは温度制御装置6と基板3の間を流れ8
のように処理室1内に入る。この時、基板3と温度制御
装置6との空間10内の圧力は、10〜100Paにな
るように制御され、処理室1内の圧力は、IPa程度に
なるよう排気される。
A temperature control device 6 equipped with a cooling or heating mechanism is provided on the support base 5. The processing chamber 1 is exhausted from the exhaust port 2. At the same time, argon is introduced from the gas introduction lower, and this gas flows between the temperature control device 6 and the substrate 3 8.
Enter the processing chamber 1 as follows. At this time, the pressure in the space 10 between the substrate 3 and the temperature control device 6 is controlled to be 10 to 100 Pa, and the pressure in the processing chamber 1 is evacuated to about IPa.

従って、基板3は、100Pa程度の圧力を持つ介在ガ
スの熱伝導に助けられ温度制御装置6により温度制御さ
れる。
Therefore, the temperature of the substrate 3 is controlled by the temperature control device 6 with the help of heat conduction of the intervening gas having a pressure of about 100 Pa.

しかしながら、この種の装置においても、基板3の温度
制御は十分でない。たとえば直径Loom。
However, even in this type of device, temperature control of the substrate 3 is not sufficient. For example, the diameter Loom.

厚さ0.45+gのシリコン基板を温度制御する場合、
時定数は加秒程度もあり、印加電力500Wのドライエ
ツチングを行った場合温度制御装置との温度6 頁 差は130℃にもなりレジストが熱的損傷を受ける。
When controlling the temperature of a silicon substrate with a thickness of 0.45+g,
The time constant is on the order of seconds, and when dry etching is performed with an applied power of 500 W, the temperature difference with the temperature control device is as much as 130° C., and the resist is thermally damaged.

従って、500W程度以上の電力を印加することはでき
ない。また、この種の装置にはもう一つの問題がある。
Therefore, it is not possible to apply power of about 500W or more. There is also another problem with this type of device.

すなわち、熱伝導用ガスをもれさせることにより処理が
スとしても用いる機構になっているため熱伝導用ガス以
外の処理ガスを、別の流路で導入したい場合にも熱伝導
用がスのもれをなくすことができないという問題である
In other words, the mechanism is such that the process is also used as a gas by leaking the heat conduction gas, so even if you want to introduce a process gas other than the heat conduction gas through a separate flow path, the heat conduction gas can also be used as a gas. The problem is that it is impossible to eliminate leaks.

上記問題を解決すべく本発明者は鋭意工夫を重ねたとこ
ろ次の知見を得た。
In order to solve the above problem, the inventors of the present invention have made extensive efforts and have obtained the following knowledge.

まず、基板と支持台との温度差を小さくし、基板温度制
御の応答速度を速くするためには′、基板と支持台との
間を単位時間、単位温度差当りに流れる熱!(以下単位
熱流量と言う。)を大きくする必要がある。単位熱流量
を大きくするには、圧力を上げ、同時に、2面間の距離
をその圧力下でのその気体の平均自由行程以下にする必
要がある。
First, in order to reduce the temperature difference between the substrate and the support stand and increase the response speed of substrate temperature control, the heat that flows between the substrate and the support stand per unit time and unit temperature difference must be increased. (hereinafter referred to as unit heat flow rate) needs to be increased. In order to increase the unit heat flow rate, it is necessary to increase the pressure and at the same time make the distance between the two surfaces less than or equal to the mean free path of the gas under that pressure.

処理中の基板温度は次の式に従って経時変化する。The temperature of the substrate during processing changes over time according to the following equation:

(1) Tw(1−exp(−kt/C))Qi/に+
T。
(1) Tw(1-exp(-kt/C))Qi/+
T.

7(1 ここで、T、は基板温度、Cは基板の熱容量、kは単位
熱流量、Qiは処理時に単位時間当り基板に与えられる
一定熱量、Toは支持台の温度5tは時間であり、1=
0においてTw = Toとしている。
7 (1 Here, T is the substrate temperature, C is the heat capacity of the substrate, k is the unit heat flow rate, Qi is the constant amount of heat given to the substrate per unit time during processing, To is the temperature of the support stage, t is the time, 1=
0, Tw = To.

また、支持台の温度が定常値T。にあり、基板の初基温
度Two ”;; To の時は次の式に従う。
Also, the temperature of the support stand is at a steady value T. , and when the initial temperature of the substrate is Two'';;To, the following equation is followed.

%式% 以上、いずれの場合も、基板温度制御の応答速度は5基
板の熱容量Cと、2而間の単位熱流量kにのみ依存する
。Cの値は基板固有の値で、たとえば、直径100mm
、厚さ0.45 mmのシリコン基板では約6.2J−
に’ である。従って、基板と支持台の温度差を小さく
し、基板温度制御の応答速度を速くするには、単位熱流
量を大きくする必要がある。
% formula % In either case, the response speed of substrate temperature control depends only on the heat capacity C of the five substrates and the unit heat flow rate k between the two substrates. The value of C is a value specific to the substrate, for example, if the diameter is 100 mm
, approximately 6.2 J- for a silicon substrate with a thickness of 0.45 mm.
ni'. Therefore, in order to reduce the temperature difference between the substrate and the support and to increase the response speed of substrate temperature control, it is necessary to increase the unit heat flow rate.

ところで、2而間に窒素を介在させ、その圧力を変えた
時、単位熱流量がどう変化するかを示す実測値を第2図
に示す。基板はシリコンで表面は薄い酸化シリコンでお
おい、支持材としては研摩特開口UGO−102742
(3) したアルミニウムを用いた。表面は十分に洗浄して2面
間には直径100mm当りI Krの荷重をかけた。
By the way, Fig. 2 shows actual measured values showing how the unit heat flow rate changes when nitrogen is interposed between the two and the pressure is changed. The substrate is silicon, the surface is covered with thin silicon oxide, and the supporting material is polished special opening UGO-102742.
(3) aluminum was used. The surfaces were thoroughly cleaned and a load of I Kr per 100 mm diameter was applied between the two surfaces.

曲線が、原点を通る直線に近く、この条件下では純粋に
固体間だけの熱伝達は無視できることが証明される。す
なわち、固体2而間に力学的な接触があっても、熱的な
接触の大部分は2面間に介在する気体によるものである
。また、介在気体の圧力を従来装置における値100P
aより大きくすると単位熱流量が増すことがわかる。
It is proven that the curve is close to a straight line passing through the origin, and that under this condition purely solid-solid heat transfer can be ignored. In other words, even if there is mechanical contact between two solid surfaces, most of the thermal contact is due to the gas intervening between the two surfaces. In addition, the pressure of the intervening gas was reduced to 100P, which is the value in the conventional device.
It can be seen that when the value is larger than a, the unit heat flow rate increases.

以上の実測値は、以下の理論式に従うものである。すな
わち、2而間を単位時間当りに通過する熱量rdQ/d
tjは次の式に従う。
The above measured values comply with the following theoretical formula. In other words, the amount of heat passing through the two spaces per unit time rdQ/d
tj follows the following formula.

%式%) ) ここで、kl+に2は定数、Tw、Toはそれぞれ基板
、基板支持台の温度、eは2面間の距離5pは介在気体
の圧力、λはその圧力下での平均自由行程である。この
式は、圧力が低く平均自由行程が十分長い条件下では、
rdQ/dtJはpに比例し、9頁 圧力が高く平均自由行程が十分短くなるとrdQ/d 
tJはeに比例することを示している。
% formula %)) Here, 2 is a constant for kl+, Tw and To are the temperatures of the substrate and substrate support, respectively, e is the distance between the two surfaces 5p is the pressure of the intervening gas, and λ is the mean freedom under that pressure. It is a process. This formula shows that under conditions of low pressure and a sufficiently long mean free path,
rdQ/dtJ is proportional to p, and when the pressure is high and the mean free path is sufficiently short, rdQ/d
It shows that tJ is proportional to e.

従って、2面間に介在する気体の圧力を上げ、かつ、2
面間の距離をその圧力下での平均自由行程程度以下にす
る機構を設けることによって、単位熱流量は大きくでき
る。
Therefore, the pressure of the gas interposed between the two surfaces is increased, and
The unit heat flow rate can be increased by providing a mechanism that makes the distance between the surfaces equal to or less than the mean free path under the pressure.

ところで、従来の装置においては、pは100Pa程度
であるからArの平均自由行程λは約(資)μmである
。したがって、間隔は(支)μm程度まで小さくするこ
とが望ましいのだが、この装置によっては不可能である
。すなわち、基板3は100Paの圧力差により第1図
11のごとく中央部がふくらむからである。例えば、直
径100+n+++厚さ0.45mのシリコンウェハに
おいては、100Paの圧力差により中央部のふくらみ
量は150μmに達している。したがって、すでに、平
均自由行程である関μmをこえていて、さらに圧力を上
げても単位熱流量を増すことはできない。
By the way, in the conventional device, since p is about 100 Pa, the mean free path λ of Ar is about μm. Therefore, although it is desirable to reduce the spacing to about micrometers, this is not possible with this device. That is, the center portion of the substrate 3 bulges as shown in FIG. 11 due to a pressure difference of 100 Pa. For example, in a silicon wafer having a diameter of 100+n+++ and a thickness of 0.45 m, the amount of bulge in the center reaches 150 μm due to a pressure difference of 100 Pa. Therefore, the mean free path has already exceeded μm, and the unit heat flow cannot be increased even if the pressure is further increased.

〔発明の目的〕[Purpose of the invention]

本発明は、半導体装置製造時の食刻、成膜、べ10 ’
ii −キング処理において、処理中の基板温度を効果的に制
御できる制御装置を提供することを目的とする。
The present invention is directed to etching, film formation, and polishing during the manufacture of semiconductor devices.
An object of the present invention is to provide a control device that can effectively control the temperature of a substrate during processing in ii-king processing.

〔発明の概要〕[Summary of the invention]

本発明は、自らの温度を自在に制御できる基板の支持台
と、該支持台に載置される基板を該支持台に保持するだ
めの保持手段と、該支持台に基板を載置したときに該支
持台と基板とで形成される空間に気体を導入するための
気体導入手段とを有する基板温度制御装置において、該
支持台と基板との距離を、導入した気体の圧力下におけ
る該気体の平均自由行程以下にする機構を設けたことを
特徴とする。
The present invention provides a support stand for a substrate that can freely control its own temperature, a holding means for holding a substrate placed on the support stand, and a case where the substrate is placed on the support stand. In a substrate temperature control device having a gas introducing means for introducing gas into a space formed by the support stand and the substrate, the distance between the support stand and the substrate is determined by the distance between the support stand and the substrate under the pressure of the introduced gas. The feature is that a mechanism is provided to reduce the mean free path to less than or equal to the mean free path.

支持台と基板との距離を導入した気体の圧力下における
該気体の平均自由行程以下にする機構としては、たとえ
ば次のようにして達成される。
A mechanism for making the distance between the support stand and the substrate equal to or less than the mean free path of the introduced gas under the pressure of the gas is achieved, for example, as follows.

支持台の、基板に対向する而を、基板の変位量に合わせ
て凸面としておく。あるいは、支持台又は支持台表面を
軟質の有機材料で構成する。
The part of the support base that faces the substrate is made convex in accordance with the amount of displacement of the substrate. Alternatively, the support or the surface of the support may be made of a soft organic material.

以上の構成とすることにより、半導体装置製造11頁 時の食刻処理等において、処理中の基板温度を効果的に
制御できる。
With the above configuration, it is possible to effectively control the temperature of the substrate during the etching process and the like during the 11th page of semiconductor device manufacturing.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

まず、実施例の骨子を第3図に基づいて説明する。First, the outline of the embodiment will be explained based on FIG. 3.

本実施例では、基板19の支持台17と、基板】9を保
持するための保持手段乙と、基板19と支持台17とで
形成される空間側に気体を導入するための気体導入手段
52を有する基板温度制呻装置において、支持台17と
基板19との距離を5導入した気体の圧力下におけるそ
の気体の平均自由行程以下にする機構を設けている。
In this embodiment, a support stand 17 for the substrate 19, a holding means B for holding the substrate 9, and a gas introduction means 52 for introducing gas into the space formed by the substrate 19 and the support stand 17 are used. In this substrate temperature control device, a mechanism is provided to make the distance between the support stand 17 and the substrate 19 equal to or less than the mean free path of the introduced gas under the pressure of the gas.

これにより、半導体装置製造時の食刻処理等において、
処理中の基板温度を効果的に割仰しうる。
As a result, in the etching process etc. during semiconductor device manufacturing,
The temperature of the substrate during processing can be effectively controlled.

実施例1 第1実施例を第3図に基づいて説明する。Example 1 The first embodiment will be explained based on FIG.

本実施例に係る装置は、基本的には、処理室12、表面
が研磨された凸面である下部電極17及び上部電極16
から構成される平行平板型のドライエッチ特開昭GO−
102742(4) ング装置である。本実施例においては下部電極17が支
持台となる。
The apparatus according to this embodiment basically includes a processing chamber 12, a lower electrode 17 whose surface is a convex polished surface, and an upper electrode 16.
Parallel plate type dry etch JP-A Sho GO-
102742(4) In this embodiment, the lower electrode 17 serves as a support base.

処理室12は、排気口13を介して真空排気系(図示せ
ず)に接続されている。処理室12にはガス導入口冴を
介して反応がスが導入される。また、処理室12には適
宜の位置に基板加を出し入れする。ための取入取出口1
4が設けられている。
The processing chamber 12 is connected to a vacuum exhaust system (not shown) via an exhaust port 13. A reaction gas is introduced into the processing chamber 12 through a gas inlet. Further, substrates are inserted into and removed from the processing chamber 12 at appropriate positions. Intake/outlet port 1 for
4 are provided.

上部電極16と下部電極17との間には高周波電源5が
接続烙れている。
A high frequency power source 5 is connected between the upper electrode 16 and the lower electrode 17.

下部電極17には、液体熱媒体が流れる流路48、ポン
f42、液体熱媒体の温度制御装置43が設けられてい
る。また、オリフィス21、バルブ15ヲ介して熱伝達
用ガスのガスだめがか設けられている。
The lower electrode 17 is provided with a channel 48 through which a liquid heat medium flows, a pump f42, and a temperature control device 43 for the liquid heat medium. Further, a gas reservoir for heat transfer gas is provided via the orifice 21 and the valve 15.

ガスだめかには、流量調節バルブ45を介してガスポン
ベ44が、また流量調節バルブ46を介してロータリー
ポンプ47が接続されている。
A gas pump 44 is connected to the gas tank via a flow rate control valve 45, and a rotary pump 47 is connected to the gas tank via a flow rate control valve 46.

基板の保持手段乙はセラミックなどの絶縁材で作成され
ていて、バネ39を介してボールネジ40及びモータ4
1に接続ちれている。
The board holding means B is made of an insulating material such as ceramic, and is connected to a ball screw 40 and a motor 4 via a spring 39.
It is connected to 1.

基板19と下部電極17との間にはOリング18が設置
3.−頁 けられていて、0リング18は、基板19と下部電極と
で形成される空間側を処理室12から封止している。′ 以上の装置において、下部電極17は、適切な一定温度
に保たれた液体熱媒体が循壊避れることにより、一定温
度に保たれる。液体熱媒体としては、20 ’Cに保た
れた水を用いるが、目的に応じ、温度制御された水以外
の流体を用いても良い。また、下部電極17は、′醒気
抵抗を用いて温度制御しても良い。
3. An O-ring 18 is installed between the substrate 19 and the lower electrode 17. - The O-ring 18 seals the space formed by the substrate 19 and the lower electrode from the processing chamber 12. ' In the above device, the lower electrode 17 is maintained at a constant temperature by circulating a liquid heat medium maintained at an appropriate constant temperature. As the liquid heat medium, water maintained at 20'C is used, but depending on the purpose, a temperature-controlled fluid other than water may be used. Further, the temperature of the lower electrode 17 may be controlled by using an aeration resistance.

基板19は、モータ41とボールネジ40とによって昇
降する基板保持手段乙によって下部電極17に押えつけ
られる。この符、バネ39は、基板19を常に一定の加
重で押える役目、すなわち機械的接触を生じさせる機構
をなす。
The substrate 19 is pressed against the lower electrode 17 by a substrate holding means B which is moved up and down by a motor 41 and a ball screw 40. This mark, spring 39, serves to press the substrate 19 with a constant load, that is, serves as a mechanism for creating mechanical contact.

また、ガスだめかは、流量調節バルブ45,46、がス
ゴンペ44及びロータリーポンプ47により常に一定の
圧力に保たれ、熱伝達用気体で満たされている。空間側
には、ガスだめ局からオリフィス21を介して熱伝達用
ガスが導入される。すなわち、14、頁 気体導入手段はガスだめ26と気体導入口となるオリフ
ィス21とからなっている。
In addition, the gas tank is filled with heat transfer gas, with flow control valves 45 and 46 kept at a constant pressure by a pump 44 and a rotary pump 47. Heat transfer gas is introduced into the space through an orifice 21 from a gas reservoir station. That is, page 14, the gas introduction means consists of a gas reservoir 26 and an orifice 21 serving as a gas introduction port.

次に、本実施例における処理中の基板温度制御がどのよ
うに行なわれているか、熱伝達用ガスとしてヘリウムを
用い、基板が直径100q厚さ0.45朋のシリコン基
板の時を例にして説明する。
Next, how the temperature of the substrate during processing is controlled in this example will be explained using an example in which helium is used as the heat transfer gas and the substrate is a silicon substrate with a diameter of 100q and a thickness of 0.45mm. explain.

基板19が載置された後、従来例より1桁大きい700
Pa程度の圧力のガスだめ部からヘリウムガスが導入さ
れる。700Paの圧力を待つガスが導入された時、基
板19は中央が、約800μm凸状にふくらむ。また、
基板中心から半径方向にrの距離にある点の変化量Wは
、次の式に従う。
After the substrate 19 is placed, the temperature is 700, which is one order of magnitude larger than the conventional example.
Helium gas is introduced from a gas reservoir with a pressure of about Pa. When the gas is introduced under a pressure of 700 Pa, the center of the substrate 19 swells to a convex shape of about 800 μm. Also,
The amount of change W at a point located at a distance r in the radial direction from the center of the substrate follows the following equation.

ここでk E lνはそれぞれシリコンのヤング率及び
ポアソン比、h、aはそれぞれ基板19の厚さ及び半径
、pはガスの圧力である。
Here, k E lν is the Young's modulus and Poisson's ratio of silicon, h and a are the thickness and radius of the substrate 19, respectively, and p is the gas pressure.

そこで、下部電極17の凸面を予め上記の式に従う形の
曲面、あるいは、それ以上ふくらんだ曲面に加工してお
く。この時、基板19は基板支持具nにより押えられて
いるため凸面に沿って変形し応力を持つ。
Therefore, the convex surface of the lower electrode 17 is processed in advance into a curved surface conforming to the above formula or a curved surface that is more convex. At this time, since the substrate 19 is held down by the substrate support n, it deforms along the convex surface and has stress.

この時、ガス圧によって基板19が受ける力は、基板1
9が持っている応力と等しいかまたは小さいため、基板
19はガス圧によりすでに待っているひずみ以上のひず
みを生じることがなく下部電極17に沿って機械的に接
触したままである。また、下部電極17の表面は、表面
粗さ6−8 以下に研磨されている。そのため、2面間
の距離は全面にわたって700Paにおけるヘリウムの
平均自由行程間μmより十分小さく保たれる。
At this time, the force that the substrate 19 receives due to the gas pressure is
9 has a stress that is equal to or less than the stress that substrate 19 has, so that substrate 19 remains in mechanical contact along bottom electrode 17 without straining beyond that already present due to gas pressure. Further, the surface of the lower electrode 17 is polished to a surface roughness of 6-8 or less. Therefore, the distance between the two surfaces is kept sufficiently smaller than the mean free path of helium (μm) at 700 Pa over the entire surface.

ここで、純粋に固体間の熱的接触は無視できることを考
えると、熱的接触は全面にわたって均一である。従って
、十分な熱的接触が実現し、単位熱流量を十分大きくで
きる。
Here, considering that thermal contact between pure solids can be ignored, thermal contact is uniform over the entire surface. Therefore, sufficient thermal contact is achieved and the unit heat flow rate can be sufficiently increased.

また、本実施例においては、空間加に熱伝導用ガスを導
入するため導入手段として、オリフィス21を設けてい
る。このオリフィス21は、ヘリウムに対するコンダク
タンスが約I X 10−’ m3/see ニするよ
うに、直径を約40μmにしである。
Further, in this embodiment, an orifice 21 is provided as an introduction means for introducing heat conduction gas into the space. The orifice 21 has a diameter of about 40 μm so that the conductance for helium is about I x 10-' m3/see.

基板17が載置されていない場合に、ガスだめ26から
このオリアイスを通して圧力差700Paの処理室12
に流出するガス量は、7 X 10 ’Pa・m3/s
ec程度である。これは、反応ガス導入口Mから導入さ
れる反応ガス導入量8X10−2Pa−m3/sec 
に対し十分小さい。したがって、空間加と処理室12と
の封正に洩れが発生しても、処理に対し悪影響を及ぼす
ことがないため、本実施例による温度制御機構の信頼性
が向上することになる。また、このオリフィスをつける
ことで、0リング18による封止をなくすことも可能で
あり、同時に、基板19の搬入。
When the substrate 17 is not placed, the processing chamber 12 with a pressure difference of 700 Pa is supplied from the gas reservoir 26 through this orifice.
The amount of gas flowing out is 7 x 10'Pa・m3/s
It is about ec. This is the amount of reaction gas introduced from the reaction gas inlet M, 8X10-2Pa-m3/sec.
It is sufficiently small. Therefore, even if a leak occurs in the seal between the space and the processing chamber 12, it will not have an adverse effect on the processing, and the reliability of the temperature control mechanism according to this embodiment will be improved. Further, by providing this orifice, it is possible to eliminate the sealing by the O-ring 18, and at the same time, it is possible to carry in the substrate 19.

搬出を処理室12の真空を破壊しないで行う場合でもパ
ルプ15が不必要になる。
Even when carrying out the process without breaking the vacuum in the processing chamber 12, the pulp 15 becomes unnecessary.

ここで、基板19が載置された後、空間加がガスだめか
と同じ圧力になるまでに要する時間が十分短い必要があ
る。空間加の体積をV、オリフィスのコンダクタンスを
C,ガスだめ26内の圧力をP。
Here, after the substrate 19 is placed, the time required for the space pressure to reach the same pressure as the gas reservoir needs to be sufficiently short. The volume of the space is V, the conductance of the orifice is C, and the pressure inside the gas reservoir 26 is P.

とじた時5空間加の圧力pは次の式に従う。The pressure p applied to the 5 spaces when closing follows the following formula.

%式%)) ここで5空間頷け、大きくても厚さ100μmの円筒で
あるため、v = 7.s xto−7m3であるから
pの応答の時定数は約1 secとなり、十分早い応答
となる。
% formula %)) Here, there are 5 spaces, and since it is a cylinder with a thickness of 100 μm at most, v = 7. Since s xto-7m3, the time constant of the response of p is about 1 sec, which is a sufficiently fast response.

以上の装置構成において、200W〜500Wの高周波
電力を印加した時にプラズマから受ける熱量によって昇
温する基板19の昇温曲線を第4図に示す。ここで、応
答速度の時定数は約3 secとなり十分良好なtff
i!1 両特性を示す。また、下部電極17との温度差
もそれぞれ8℃、20℃におさえられている0 また、レジストの耐熱温度が約120°Cであるから、
この装置では、付加高周波電力を2.5KWまで大きく
することが可能ということになる。
FIG. 4 shows a temperature rise curve of the substrate 19, which is heated by the amount of heat received from the plasma when high frequency power of 200 W to 500 W is applied in the above apparatus configuration. Here, the time constant of the response speed is approximately 3 seconds, which is a sufficiently good tff.
i! 1 Shows both characteristics. In addition, the temperature difference with the lower electrode 17 is suppressed to 8°C and 20°C, respectively. Also, since the resist temperature limit is about 120°C,
With this device, it is possible to increase the additional high-frequency power to 2.5 KW.

実施例2 次に第2の実施例を、第5゛図を用いて説明する。Example 2 Next, a second embodiment will be explained using FIG. 5.

第1の実施例と異なる部分についてのみ説明を行う。Only the parts that are different from the first embodiment will be explained.

第2の実施例は、特告昭57−44747号公報に開示
された静電気力による吸引を利用して基板19の支持を
行っている点、及び、熱伝導用ガスに、液−−18−頁 体向体だめ27内の液体あるいは固体37の蒸気を利用
している点に特徴がある。
The second embodiment has the following features: the substrate 19 is supported using the suction caused by electrostatic force disclosed in Japanese Patent Publication No. 57-44747; The feature is that the vapor of the liquid or solid 37 in the page body reservoir 27 is used.

静電気による吸引力を利用した装置は、絶縁された2つ
の電極33.36間に直流電源間から直流電圧が付加で
きる機構を有する。この静電気による吸引力のために、
基板19は全面にわたって約10fffi−2の力で吸
引され、全面にわたって絶縁材間との間に機械的な接触
が生じる。この時、基板19と下部電極29上の絶縁材
Iとの間にできた空間加と処理室12とを封止するため
のOリング18が設けられていること、及び、空間加へ
の気体の導入手段としてオリフィス21が設けられてい
ることは第1の実施例と同じである。本実施例では絶縁
付加が支持台となる。
The device that utilizes the attraction force due to static electricity has a mechanism that allows a DC voltage to be applied between the two insulated electrodes 33 and 36 from a DC power source. Due to the attraction force caused by this static electricity,
The substrate 19 is attracted over its entire surface with a force of about 10 fffi-2, and mechanical contact is created between the insulating materials over its entire surface. At this time, an O-ring 18 is provided to seal the processing chamber 12 and the space formed between the substrate 19 and the insulating material I on the lower electrode 29, and gas is not allowed to enter the space. This is the same as in the first embodiment in that an orifice 21 is provided as an introduction means. In this embodiment, the insulating addition serves as a support.

ここで、熱伝達用ガスを発生する気体あるいは固体の蒸
気圧が、温度制御された下部電極四と等温の時、700
Pa程度の圧になるよう気体あるいは固体を選ぶ。
Here, when the vapor pressure of the gas or solid that generates the heat transfer gas is the same temperature as the temperature-controlled lower electrode 4, 700
Choose a gas or solid so that the pressure is around Pa.

本実施例においては、1.1.2.2−テトラクロルエ
タンを用いているため、常温で700Pa程度にな19
、頁 る。ここで、使用する液体・固体は1.1.2.2−テ
トラクロルエタンに限らず他の蒸気圧を待った液体固体
であっても艮い。
In this example, since 1.1.2.2-tetrachloroethane is used, the pressure is about 700 Pa at room temperature.
, p. The liquid/solid used here is not limited to 1.1.2.2-tetrachloroethane, but may also be other liquid solids that have a vapor pressure.

この符の平均自由行程は3μmとなるので、絶縁物刃の
表面は0.8S以下に研磨しておく必要がある。また、
絶縁材30に軟質の有機化合物を用い、基板J9の下面
の形状に沿って柔軟に変形きせることによっても、2而
間を平均自由行程より小さくできる。
Since the mean free path of this mark is 3 μm, the surface of the insulating blade must be polished to 0.8S or less. Also,
By using a soft organic compound for the insulating material 30 and allowing it to flexibly deform along the shape of the lower surface of the substrate J9, the distance between the two can be made smaller than the mean free path.

この時、機械的には接触している2面間には、気化した
ガスが介在し、2而間の距離はこの時のガスの平均自由
行程である3μmよりも十分小さくなる。その結果、2
面間の熱的接触は十分大きくなり、単位熱流量も大きく
なる。
At this time, vaporized gas exists between the two surfaces that are in mechanical contact, and the distance between the two surfaces is sufficiently smaller than 3 μm, which is the mean free path of the gas at this time. As a result, 2
The thermal contact between the surfaces becomes sufficiently large, and the unit heat flow also becomes large.

また、空間側内をl sec程度で700Paにするた
めに、オリフィス21の1.1.2. 2−テトラクロ
ルエタンに対するコンダクタンスが1×10−6m3/
/8ecになるよう直径90μmにしである。
In addition, in order to make the inside of the space 700 Pa in about 1 sec, 1.1.2 of the orifice 21. The conductance for 2-tetrachloroethane is 1 x 10-6 m3/
The diameter was set to 90 μm so as to obtain /8 ec.

以上の装置における基板19の昇温曲線を第6図に示す
。300Wの高周波電力を付加してドライエツチングを
行った場合の例である。時定数は5 secとなり十分
な値となっている。またこの装置においては熱伝導用ガ
スのガス流ガス圧の制御をする必要がなく、構造が簡単
になるという利点がある。
FIG. 6 shows the temperature rise curve of the substrate 19 in the above apparatus. This is an example in which dry etching is performed by adding 300 W of high frequency power. The time constant is 5 seconds, which is a sufficient value. Further, this device has the advantage that it is not necessary to control the gas flow pressure of the heat transfer gas, and the structure is simple.

また、基板19と支持台との距離を小さくするだめの装
置として特開昭56−131930号公報に開示きれた
、ウェハ温度コントロール装置を用いても同様の効果が
期待できる。
Further, similar effects can be expected by using a wafer temperature control device disclosed in Japanese Patent Application Laid-open No. 131930/1983 as a device for reducing the distance between the substrate 19 and the support stand.

また、支持台もしくは支持台表面を軟質の有機化合物で
構成することは、2面間の距離を小さくする上で大きな
効果がある。
Furthermore, forming the support stand or the support stand surface with a soft organic compound has a great effect in reducing the distance between the two surfaces.

以上の2つの実施例はいずれも本発明をドライエツチン
グ装置に適用した例であるが、スノクツタリング、蒸着
などの成膜装置あるいは、基板のベーキング装置に適用
しても同等の効果が期待でき、その他の基板温度制御を
必要とする真空装置にも適用できることは容易に類推で
きる。
Both of the above two embodiments are examples in which the present invention is applied to a dry etching device, but the same effect can be expected even if it is applied to a film forming device such as a snottering or vapor deposition device, or a substrate baking device. It can be easily inferred that the present invention can also be applied to other vacuum devices requiring substrate temperature control.

以上の実施例によれば、基板と支持台間に介在するガス
圧を十分上げた上で、2面間の距離を、そのガス圧での
ガスの平均自由行程より小さくで21 −1−一百 きるので、2面間の単位時間、単位面積、単位温度差当
りの熱流量を、従来の50WK m から250W、に
−’ m−2に向上することができる。その結果、処理
時の基板と支持台との温度差と、基板温度制御の時定数
を、それぞれ、従来の値の5分の1程度に小さくするこ
とができる。
According to the above embodiment, the gas pressure between the substrate and the support is sufficiently increased, and the distance between the two surfaces is set to be smaller than the mean free path of the gas at that gas pressure. Therefore, the heat flow rate per unit time, unit area, and unit temperature difference between two surfaces can be improved from the conventional 50 WK m to 250 W, or -' m-2. As a result, the temperature difference between the substrate and the support during processing and the time constant for controlling the substrate temperature can each be reduced to about one-fifth of the conventional values.

なお当然のことではあるが本発明範囲は以上の実施例に
限定されるものではない。
It goes without saying that the scope of the present invention is not limited to the above embodiments.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体装置の食刻、成膜、ベーキング
処理等において、処理中の基板温度を効果的に制御しう
る。
According to the present invention, it is possible to effectively control the substrate temperature during etching, film formation, baking, etc. of a semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の基板温度制御装置の縦断面図、第2図は
2面間を流れる熱量と介在気体圧力の関係を示したグラ
フ、第3図は第1の実施例の縦断面図、第4図は第1の
実施例による基板の昇温曲線を示したグラフ、第5図は
第2の実施例の縦断面図、第6図は第2の実施例による
基板の昇温曲線を示したグラフである。 22 頁 l・・・処理室、3・・・基板、4・・・クリップ、5
・・・支持台56・・・温度制御装置、7・・・気体導
入口、8・・・流れ、9・・・スペーサ、10・・・空
間、12・・・処理室、17・・・支持台(下部電極)
、18・・・Ol)ング、19・・・基板、加・・・空
間、21・・・気体導入口(オリフィス)、乙・・・保
持手段、26・・・ガスだめ、n・・・液体固体だめ。 代理人 弁理士 秋 本 正 実 第1図 第2図 500 1000
FIG. 1 is a longitudinal sectional view of a conventional substrate temperature control device, FIG. 2 is a graph showing the relationship between the amount of heat flowing between two surfaces and the intervening gas pressure, and FIG. 3 is a longitudinal sectional view of the first embodiment. FIG. 4 is a graph showing the temperature rise curve of the substrate according to the first embodiment, FIG. 5 is a longitudinal cross-sectional view of the second embodiment, and FIG. 6 is a graph showing the temperature rise curve of the substrate according to the second embodiment. This is the graph shown. 22 Page l...Processing chamber, 3...Substrate, 4...Clip, 5
...Support stand 56...Temperature control device, 7...Gas inlet, 8...Flow, 9...Spacer, 10...Space, 12...Processing chamber, 17... Support stand (lower electrode)
, 18...Ol) ring, 19...substrate, addition...space, 21...gas inlet (orifice), B...holding means, 26...gas reservoir, n... Liquid solid no. Agent Patent Attorney Tadashi Akimoto Figure 1 Figure 2 500 1000

Claims (1)

【特許請求の範囲】 1、 自らの温度を自在に制御できる基板支持台と、該
支持台に載置される基板を該支持台に保持するための保
持手段と、該支持台に基板を載置したときに該支持台と
基板とで形成きれる空間に気体を導入するための気体導
入手段とを有する基板温度制御装置において5該支持台
と基板との距離を、導入した気体の圧力下における該気
体の平均自由行程以下にする機構を設けたことを特徴と
する基板温度制御装置。 2、支持台と基板とで形成される空間を、基板温度制御
装置の処理室から封止する機構を有する特許請求の範囲
第1項記載の基板温度制御装置。 3、封止する機構が、支持台と基板との間に設けられる
Q IJソングある特許請求の範囲第2項記載の基板温
度制御装置。 4、 支持台表面を凸面とし、該凸面と基板間に機械的
接触を生じさせる機構を設けた特許請求の範囲 5、 凸面が、基板が導入した気体から受ける圧力によ
り生じる変形と同形状である特許請求の範囲第4項記載
の基板温度制御装置。 6、支持台又は支持台表面が軟質の有機材料で構成され
ている特許請求の範囲第1項記載の基板温度制御装置。 7、十分短時間に導入側と等圧まで、支持台と基板とで
形成される空間に気体を導入しうるコンダクタンス値で
あり、かつ、基板が載置されていない場合に処理室に流
出する気体の流出量が処理室の圧力に影響を及ぼさない
コンダクタンス値をもつオリフィスが気体導入手段の気
体導入口となっている特許請求の範囲第1項記載の基板
温度制御装置。 8、空間に導入する気体が、液体または固体の気化ガス
である特許請求の範囲第1項記載の基板温度制御装置。 9、空間に導入する気体が、処理室内の気体と同じ気体
である特許請求の範囲第1項記載の基板3了τ 温度制御装置。 10、保持手段が、静電気力を利用した手段である特許
請求の範囲第1項記載の基板温度制御装置。
[Claims] 1. A substrate support stand that can freely control its own temperature, a holding means for holding a substrate placed on the support stand, and a substrate placed on the support stand. 5. In a substrate temperature control device having a gas introducing means for introducing gas into the space formed by the support stand and the substrate when the substrate is placed, the distance between the support stand and the substrate is determined under the pressure of the introduced gas. A substrate temperature control device comprising a mechanism for controlling the mean free path of the gas to below the mean free path of the gas. 2. The substrate temperature control device according to claim 1, further comprising a mechanism for sealing the space formed by the support stand and the substrate from the processing chamber of the substrate temperature control device. 3. The substrate temperature control device according to claim 2, wherein the sealing mechanism is a QIJ song provided between the support stand and the substrate. 4. The surface of the support is a convex surface, and a mechanism is provided for creating mechanical contact between the convex surface and the substrate. 5. The convex surface has the same shape as the deformation caused by the pressure that the substrate receives from the introduced gas. A substrate temperature control device according to claim 4. 6. The substrate temperature control device according to claim 1, wherein the support or the surface of the support is made of a soft organic material. 7. The conductance value is such that gas can be introduced into the space formed by the support stand and the substrate to the same pressure as the introduction side in a sufficiently short time, and the gas will flow into the processing chamber when no substrate is placed. 2. The substrate temperature control device according to claim 1, wherein the gas introduction port of the gas introduction means is an orifice having a conductance value such that the amount of gas flowing out does not affect the pressure in the processing chamber. 8. The substrate temperature control device according to claim 1, wherein the gas introduced into the space is a liquid or solid vaporized gas. 9. The substrate temperature control device according to claim 1, wherein the gas introduced into the space is the same gas as the gas inside the processing chamber. 10. The substrate temperature control device according to claim 1, wherein the holding means is a means using electrostatic force.
JP58208957A 1983-11-09 1983-11-09 Processor Expired - Lifetime JPH0693446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58208957A JPH0693446B2 (en) 1983-11-09 1983-11-09 Processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208957A JPH0693446B2 (en) 1983-11-09 1983-11-09 Processor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP7292897A Division JP2951876B2 (en) 1995-11-10 1995-11-10 Substrate processing method and substrate processing apparatus
JP29289895A Division JP2728381B2 (en) 1995-11-10 1995-11-10 Substrate processing method and substrate processing apparatus

Publications (2)

Publication Number Publication Date
JPS60102742A true JPS60102742A (en) 1985-06-06
JPH0693446B2 JPH0693446B2 (en) 1994-11-16

Family

ID=16564945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208957A Expired - Lifetime JPH0693446B2 (en) 1983-11-09 1983-11-09 Processor

Country Status (1)

Country Link
JP (1) JPH0693446B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252943A (en) * 1986-04-25 1987-11-04 Fujitsu Ltd Hight frequency plasma etching apparatus
JPH01189124A (en) * 1988-01-25 1989-07-28 Tokyo Electron Ltd Etching apparatus
JPH0215623A (en) * 1988-04-25 1990-01-19 Applied Materials Inc Magnetic field enhancing plasma etching reactor
JPH04130627A (en) * 1990-09-20 1992-05-01 Fuji Electric Co Ltd Plasma etching device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131931A (en) * 1980-03-19 1981-10-15 Hitachi Ltd Controlling device of wafer temperature
JPS5832410A (en) * 1981-08-06 1983-02-25 ザ・パ−キン−エルマ−・コ−ポレイシヨン Method and device for treating structure under gas reduced pressure environment
JPS58213434A (en) * 1982-05-25 1983-12-12 バリアン・アソシエイツ・インコ−ポレイテツド Device and method of transferring heat from gas auxiliary solid to solid relating to semiconductor wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131931A (en) * 1980-03-19 1981-10-15 Hitachi Ltd Controlling device of wafer temperature
JPS5832410A (en) * 1981-08-06 1983-02-25 ザ・パ−キン−エルマ−・コ−ポレイシヨン Method and device for treating structure under gas reduced pressure environment
JPS58213434A (en) * 1982-05-25 1983-12-12 バリアン・アソシエイツ・インコ−ポレイテツド Device and method of transferring heat from gas auxiliary solid to solid relating to semiconductor wafer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252943A (en) * 1986-04-25 1987-11-04 Fujitsu Ltd Hight frequency plasma etching apparatus
JPH0476495B2 (en) * 1986-04-25 1992-12-03 Fujitsu Ltd
JPH01189124A (en) * 1988-01-25 1989-07-28 Tokyo Electron Ltd Etching apparatus
JPH0215623A (en) * 1988-04-25 1990-01-19 Applied Materials Inc Magnetic field enhancing plasma etching reactor
JPH04130627A (en) * 1990-09-20 1992-05-01 Fuji Electric Co Ltd Plasma etching device

Also Published As

Publication number Publication date
JPH0693446B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4771730A (en) Vacuum processing apparatus wherein temperature can be controlled
JP4079992B2 (en) Apparatus and electrostatic clamping method for fastening conductive object to mounting member
JP3176305B2 (en) Substrate cooling device, chemical vapor reaction device, and substrate temperature control control method
JP2005051200A (en) Anodized substrate support
JPH06158361A (en) Plasma treating device
JPH1041378A (en) Wafer support having pressure zone where temperature feedback and contact area are small
JPH05166757A (en) Temperature regulator for material to be pr0cessed
JP3817414B2 (en) Sample stage unit and plasma processing apparatus
JPH09510582A (en) Vacuum heat transfer station without clamps
JPS60136314A (en) Treating equipment in low pressure atmosphere
JP2951903B2 (en) Processing equipment
US5856906A (en) Backside gas quick dump apparatus for a semiconductor wafer processing system
JP2000124299A (en) Manufacture of semiconductor device and semiconductor manufacturing apparatus
JPH0622213B2 (en) Sample temperature control method and apparatus
JPH09320799A (en) Plasma processor and plasma processing method
JPS60102742A (en) Controller for substrate temperature
JPS62193141A (en) Wafer holding mechanism
JP2951876B2 (en) Substrate processing method and substrate processing apparatus
JP2002305188A (en) Apparatus and method for processing
JP4602528B2 (en) Plasma processing equipment
JP2728381B2 (en) Substrate processing method and substrate processing apparatus
JP2647061B2 (en) Semiconductor substrate heating holder
JPS6136931A (en) Control method of temperature of wafer
JPH0560256B2 (en)
JPS63131519A (en) Dry etching apparatus