JPS59977A - Bidirectional wavelength conversion element - Google Patents

Bidirectional wavelength conversion element

Info

Publication number
JPS59977A
JPS59977A JP57109549A JP10954982A JPS59977A JP S59977 A JPS59977 A JP S59977A JP 57109549 A JP57109549 A JP 57109549A JP 10954982 A JP10954982 A JP 10954982A JP S59977 A JPS59977 A JP S59977A
Authority
JP
Japan
Prior art keywords
layer
wavelength conversion
conversion element
type
bidirectional wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57109549A
Other languages
Japanese (ja)
Inventor
Hiroshi Okuda
奥田 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57109549A priority Critical patent/JPS59977A/en
Publication of JPS59977A publication Critical patent/JPS59977A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/02Frequency-changing of light, e.g. by quantum counters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/147Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/153Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To enable to efficiently convert wavelengths between two difference wavelengths by a bidirectional wavelength conversion element by composing of p-n-p (or n-p-n) type transistor structure of direct transient semiconductor material. CONSTITUTION:A bidirectional wavelength conversion element is composed in a p-n-p type transistor of a p type Ga1-xAlxAs layer 1, an n type Ga1-yAlyAs layer 2 and a p type Ga1-zAlzAs layer 3. An external bias voltage V is applied between the electrodes 4 and 5 so that a reverse bias is applied between the layers 1 and 2 and a forward bias is applied between the layers 2 and 3. The incident light of wavelength lambda1 is introduced to the layer 1 of a band gap Eg1, thereby generating photons. The generated photons are flowed to the layer 2 by a reverse bias electric field applied between the layes 1 and 2. The flowed electrons are injected to the layer 3, and light is emitted to be recombined in this region.

Description

【発明の詳細な説明】 本発明は双方向に波長を変換できるモノリシック双方向
波長変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a monolithic bidirectional wavelength conversion element capable of bidirectional wavelength conversion.

第1図は従来の波長変換器を示す図である。FIG. 1 is a diagram showing a conventional wavelength converter.

従来は1例えばIず波長λ、の入射光をその入射波長λ
、に合りたバンドギャップを有する光検出器で受光し電
気信号に変換し、この電気信号を変換器により電流信号
に変換し、この電流信号によって発光波長λ、に合った
バンドギヤリプを有する発光素子を発光させて波長會λ
Conventionally, for example, the incident light of wavelength λ is
A photodetector with a bandgap matching the wavelength λ receives the light and converts it into an electrical signal, a converter converts the electrical signal into a current signal, and the current signal generates a light-emitting element with a bandgap matching the emission wavelength λ. to emit light and the wavelength λ
.

からλ、に変換していた。このため、従来の波長変換器
はそのま\では双方向には波長を変換できずまたその発
光効率も悪いという欠へがあつたO 本発明の目的は、2つの異なった波長間で双方向に効率
よく波長を変換することが可能なキノリシック双方向波
長変換素子を提供することである。
was converted from λ to λ. For this reason, conventional wavelength converters cannot convert wavelengths in both directions as they are, and their luminous efficiency is also poor. An object of the present invention is to provide a quinolithic bidirectional wavelength conversion element capable of efficiently converting wavelengths.

以下に図面を参照して本発明について詳細に説明する。The present invention will be described in detail below with reference to the drawings.

@2図は本発明のモノリシック双方向波長変換素子の実
施例を示す図である。■2図(a)は本発明の双方向波
長変換素子の構造を示す図である。Ga1−xklxA
s系の直接遷移型の半導体により構成されているn p
−Ga 1−x7fflxAs層1゜n−Ga1−yA
/yAs層2及びp −Ga 1− zAl? zAs
[5によりp’n p トランジスタ構造を構成し。
@2 Figure is a diagram showing an embodiment of the monolithic bidirectional wavelength conversion element of the present invention. (2) FIG. 2(a) is a diagram showing the structure of the bidirectional wavelength conversion element of the present invention. Ga1-xklxA
np composed of s-based direct transition type semiconductors
-Ga 1-x7fflxAs layer 1゜n-Ga1-yA
/yAs layer 2 and p-Ga1-zAl? zAs
[5 constitutes a p'n p transistor structure.

電極4−5間に外部バイアス電圧Vを1−1−2間が逆
バイアスに#2−6間が順バイアスになるように印加・
する。
Apply an external bias voltage V between electrodes 4 and 5 so that between electrodes 1 and 1 and 2 becomes a reverse bias and between #2 and 6 becomes a forward bias.
do.

第2図(b)は本発明のモノリシック双方向波長変換素
子のバンド構造を示す図である。波長λ1の入射光はバ
ンドギャップE gl(= 乎[e Vl)(但し、λ
、の単位はμm)のp−GalxMxAs1−1に入射
し光電子を宅生させる。発生した電子はP −G’ 1
−xAj?xAs層1とn−Ga 1−yMyAsl−
2との間に印加された逆バイアス電界によりn −G’
 1−3’AjfyAa ti2に流れ込む。電荷中性
条件よりn−Ga 1−yAlyAs層2の正孔濃度が
電子濃度に等しくなるよう正孔注入が必要となりn−G
a1−yAA!yAs  層2とp −Go 1− z
MzAsl−6との間は順バイアス状態になる。そのた
め。
FIG. 2(b) is a diagram showing the band structure of the monolithic bidirectional wavelength conversion element of the present invention. The incident light of wavelength λ1 has a bandgap E gl (=乎[e Vl) (However, λ
, whose unit is μm), enters p-GalxMxAs1-1 and generates photoelectrons. The generated electron is P −G' 1
-xAj? xAs layer 1 and n-Ga 1-yMyAsl-
2 due to the reverse bias electric field applied between n - G'
Flows into 1-3'AjfyAa ti2. Due to the charge neutrality condition, hole injection is required so that the hole concentration in the n-Ga 1-yAlyAs layer 2 is equal to the electron concentration, so the n-G
a1-yAA! yAs layer 2 and p-Go1-z
A forward bias state is established between MzAsl-6 and MzAsl-6. Therefore.

n−Ga 1−yAj?yAa層2に流れ込ンタ電子U
p −Ga 1− zAlzAs層3に注入され、この
領域で電光再結合する。この場合にp−GI21− z
A7zAsII#3として所望の発光波長λ2 に対応
する1、24 バンドギーyツブEgs (= −1Ce V 〕) 
(但し。
n-Ga 1-yAj? The electrons U flowing into the yAa layer 2
It is implanted into the p-Ga 1-zAlzAs layer 3 and undergoes electrophotonic recombination in this region. In this case p-GI21-z
A7zAsII#3 corresponds to the desired emission wavelength λ2, 1, 24 bands Egs (= -1Ce V ])
(however.

λ2の単位はμm)になるような組成を選べば波長λ2
の光が得られる。μ上の過程により波長λ1 の入射光
は波長λ、の光に変函される。
If you choose a composition such that the unit of λ2 is μm), the wavelength λ2
of light can be obtained. By the process on μ, the incident light of wavelength λ1 is transformed into light of wavelength λ.

@2図において外部バイアス電圧Vを図示とは逆方向に
印加し、 p −Ga 1−zAlzAs  I脅6の
側から波長λ2 の光を入射すれば前述の説明と全く同
様にp−Ga1−xAfflxAs I!if 1の側
から波長λ、の光が得られる。即ち、波長λ2 から波
長λ、への変換もできこれによって双方向波長変換が可
能となる。
@2 In Figure 2, if the external bias voltage V is applied in the opposite direction to that shown in the figure, and light of wavelength λ2 is incident from the side of p -Ga 1-zAlzAs 6, p-Ga 1-xAfflxAs is obtained in exactly the same way as described above. I! Light of wavelength λ is obtained from the if 1 side. That is, the wavelength λ2 can also be converted to the wavelength λ, thereby making bidirectional wavelength conversion possible.

n −Ga 1−yA7yAs層2への正札ノ注入効率
を少なくし発光層への電子の注入効率を増加させる必要
があるため・n−G111−)’MyAsl(i2のバ
ンドギャップEg2はバンドギャップEgt 。
n-Ga1-yA7yAs it is necessary to reduce the efficiency of injection into the As layer 2 and increase the efficiency of injection of electrons into the light-emitting layer. .

Egaよりも大きくした方がよく、その大きさはEgt
 、Egsの大をい方のバンドギャップより5UmeV
以上大きければよい。
It is better to make it larger than Ega, and its size is Egt.
, 5 UmeV from the larger bandgap of Egs.
It should be larger than that.

耶6図は本元明のモノリシック双方向波長変換素子の別
の実施例を示す図である。第5図(a)は波長変換の際
に変換効率をより向上させる双方向波長変換素子の構造
を示し、第6図(b)はそのバンド構造を示す。この構
造の特徴は変換効率を悪くする主原因である表面再結合
過程をなくした薇にある。即ち、p−Ga1−xAff
lxAs 層1の外側にこれよりバンドギヤリプの大き
いP −(y a’ −p MP A s m 51(
E gl3 > Eg + ) k形成し、同様に1)
−Ga1−zMzAs I@6の外側にこれよりバンド
ギャップの大きいP−Ga 1−qA/qAs層32 
(Egg□>Ega)を形成することにより表面へのキ
ャリアの拡散を防止している。
FIG. 6 is a diagram showing another embodiment of Akira Hongen's monolithic bidirectional wavelength conversion element. FIG. 5(a) shows the structure of a bidirectional wavelength conversion element that further improves conversion efficiency during wavelength conversion, and FIG. 6(b) shows its band structure. The feature of this structure is that it eliminates the surface recombination process, which is the main cause of poor conversion efficiency. That is, p-Ga1-xAff
lxAs Outside of layer 1, there is a band gear lip larger than this P - (ya' -p MP A s m 51 (
E gl3 > Eg + ) k is formed, and similarly 1)
-Ga1-zMzAs I@6 has a P-Ga 1-qA/qAs layer 32 with a larger band gap outside of I@6.
By forming (Egg□>Ega), diffusion of carriers to the surface is prevented.

μ上述べた構造においてp型t−n型に反転しn型をp
型に反転した場合も全く同様に波長変換が可能である。
μIn the structure described above, the p-type is inverted to the t-n type, and the n-type is inverted to the p-type.
Wavelength conversion is possible in exactly the same way when the structure is inverted.

Go 1−xAAixAs系を列にとり説明したが、I
n1−xGaxAsl−yPy系。
Go 1-xAAixAs series was explained as a sequence, but I
n1-xGaxAsl-yPy system.

In 17xGaxSb 1−、’JP’i系、Ga、
i−xMxAs1−ySby  系−In1−xGa、
xAsl−ysby系等に適用できることは容易にわか
る。
In 17xGaxSb 1-, 'JP'i series, Ga,
i-xMxAs1-ySby system-In1-xGa,
It is easy to see that it can be applied to xAsl-ysby systems and the like.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は従来の波長変換器を示す図、傭2図は本発明の
モノリシック双方向波長変換素子の実施例を示す図、第
3図は本発明のモノリシック双方向波長変換素子の別の
実施列を示す図である。 1:p(又はn ) −Ga 1−xAJlxAs層(
バンドギャップEg+  ) 2:n(又はp )−Ga1−yMyAs層(バンドギ
ャップElh 、Egg>Egt )5 : p(5[
n )−’Ga 1−z7v!zAsli(バンドギャ
ップ)5gs  、Egs <Eg2)4.5:電極 3 1  :P(1まN )−Ga  1−pMpAS
l−(バンドギャップEg3+ 、Eg3+>Eg+ 
 )’32:P(又はN)−Ga1−qMqAs 1m
(バンドギャップEg321痩。□>Egs )特許出
願人住友電気工業株式会社 1)Zる) 無1図 本2 図 ((2) <b)
Figure 1 shows a conventional wavelength converter, Figure 2 shows an embodiment of the monolithic bidirectional wavelength conversion element of the present invention, and Figure 3 shows another implementation of the monolithic bidirectional wavelength conversion element of the invention. It is a diagram showing columns. 1:p(or n)-Ga1-xAJlxAs layer (
Bandgap Eg+ ) 2:n (or p)-Ga1-yMyAs layer (bandgap Elh, Egg>Egt) 5: p(5[
n)-'Ga1-z7v! zAsli (bandgap) 5gs, Egs <Eg2) 4.5: Electrode 3 1 : P (1 N)-Ga 1-pMpAS
l-(band gap Eg3+, Eg3+>Eg+
)'32:P (or N)-Ga1-qMqAs 1m
(Band gap Eg321 slimming. □>Egs) Patent applicant Sumitomo Electric Industries, Ltd. 1) Zru) No 1 Figure Book 2 Figure ((2) <b)

Claims (1)

【特許請求の範囲】 (1)直接遷移型半導体材料を用いたpnp(又1jn
pn)型トランジスタ構造から成ることを特徴とする双
方向波長変換素子。 +2)  illにおいて6両側のp(又はn)型半導
体がそれぞれ異なるバンドギャップを・目し・中央のn
(又はp)型半導体が前記両側の半導体のバンドギャッ
プよりも大きいバンドギヤリプを有するヘテロ構造から
成ることを特徴とする双方向波長変換素子。 (3)(Iにおいて、更に、前記両側のp(又はn)型
半導体の外側にこれらの・ミントギャップよりも大きい
バンドギャップを有する直接遷移型又は間接遷移型のP
(又はN)型半導体を有するPpnpP(又はNnpn
N)構造から成ることを特徴とする双方向波長変換素子
。 (4)  (11において、前記半導体材料がGa1−
xAA!xAs’i−In1−xGaxAsl−yPy
系・I n 1−x(y+ xsb 1−ypy系−”
Ga1−xM’xAs1−ySby  系及びI n 
1−xGa xAs 1−YSby系の各半導体材料か
ら成ることを特徴とする双方向波長変換素子。
[Claims] (1) PNP (also 1JN) using direct transition type semiconductor material
A bidirectional wavelength conversion element comprising a pn) type transistor structure. +2) In ill, the p (or n) type semiconductors on both sides have different band gaps.
A bidirectional wavelength conversion element, characterized in that the (or p) type semiconductor is comprised of a heterostructure having a band gap larger than the band gap of the semiconductors on both sides. (3) (In I, furthermore, a direct transition type or indirect transition type P having a band gap larger than these Mint gaps on the outside of the p (or n) type semiconductor on both sides of the
PpnpP (or Nnpn) having (or N) type semiconductor
N) A bidirectional wavelength conversion element characterized by comprising a structure. (4) In (11), the semiconductor material is Ga1-
xAA! xAs'i-In1-xGaxAsl-yPy
System・I n 1-x(y+ xsb 1-ypy system-"
Ga1-xM'xAs1-ySby system and In
A bidirectional wavelength conversion element characterized in that it is made of a 1-xGa xAs 1-YSby semiconductor material.
JP57109549A 1982-06-25 1982-06-25 Bidirectional wavelength conversion element Pending JPS59977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57109549A JPS59977A (en) 1982-06-25 1982-06-25 Bidirectional wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57109549A JPS59977A (en) 1982-06-25 1982-06-25 Bidirectional wavelength conversion element

Publications (1)

Publication Number Publication Date
JPS59977A true JPS59977A (en) 1984-01-06

Family

ID=14513054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57109549A Pending JPS59977A (en) 1982-06-25 1982-06-25 Bidirectional wavelength conversion element

Country Status (1)

Country Link
JP (1) JPS59977A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150285A (en) * 1984-12-24 1986-07-08 Nec Corp Wavelength conversion element
JPS62281381A (en) * 1986-05-29 1987-12-07 Mitsubishi Cable Ind Ltd Photo-semiconductor element
WO1999052015A1 (en) * 1998-04-02 1999-10-14 Michael Scalora Photonic signal frequency conversion using a photonic band gap structure
US5998822A (en) * 1996-11-28 1999-12-07 Nippon Steel Semiconductor Corp. Semiconductor integrated circuit and a method of manufacturing the same
US6198151B1 (en) 1997-10-24 2001-03-06 Nippon Steel Semiconductor Corp. Semiconductor device, semiconductor integrated circuit device, and method of manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150285A (en) * 1984-12-24 1986-07-08 Nec Corp Wavelength conversion element
JPS62281381A (en) * 1986-05-29 1987-12-07 Mitsubishi Cable Ind Ltd Photo-semiconductor element
US5998822A (en) * 1996-11-28 1999-12-07 Nippon Steel Semiconductor Corp. Semiconductor integrated circuit and a method of manufacturing the same
US6198151B1 (en) 1997-10-24 2001-03-06 Nippon Steel Semiconductor Corp. Semiconductor device, semiconductor integrated circuit device, and method of manufacturing same
WO1999052015A1 (en) * 1998-04-02 1999-10-14 Michael Scalora Photonic signal frequency conversion using a photonic band gap structure

Similar Documents

Publication Publication Date Title
US4527179A (en) Non-single-crystal light emitting semiconductor device
JPS6417484A (en) Semiconductor light emitting element
JPS59977A (en) Bidirectional wavelength conversion element
JPH11298041A (en) Group iii nitride semiconductor light-emitting element and light source device
US5296718A (en) Light emitting semiconductor device having multilayer structure
GB1218451A (en) Improvements in or relating to light/electric translating arrangements
JPH0554279B2 (en)
JPS58197784A (en) Light emitting diode
TWI614911B (en) Photocoupler
JP2755940B2 (en) Light emitting element
US3163562A (en) Semiconductor device including differing energy band gap materials
US5216538A (en) Electric-signal amplifying device using light transmission
JPS6034088A (en) Optical semiconductor element
JPH04348084A (en) Light functional element
KR102666632B1 (en) Micro led having sidewall passivation layer for efficiency improvement, menufacturing method thereof, and display having the same
KR102666630B1 (en) Highly efficient micro led at low current range and fabrication method thereof, and display comprising the same
JPH0371797B2 (en)
JPH01225178A (en) Light emitting diode
US5258628A (en) Linearizing emitted light intensity from a light-emitting device
JPS6257259A (en) Light emitting semiconductor element
US3371285A (en) Circuit arrangement for amplifying electric signals
TW202339297A (en) Optoelectronic device
JPS59111376A (en) Photoelectric conversion element and manufacture thereof
JPS61179617A (en) Optical logical element
JPH01297860A (en) Optoelectronic integrated circuit