JPS599145A - Multicomponent type titanium-cobalt alloy for hydrogen occlusion - Google Patents

Multicomponent type titanium-cobalt alloy for hydrogen occlusion

Info

Publication number
JPS599145A
JPS599145A JP57117593A JP11759382A JPS599145A JP S599145 A JPS599145 A JP S599145A JP 57117593 A JP57117593 A JP 57117593A JP 11759382 A JP11759382 A JP 11759382A JP S599145 A JPS599145 A JP S599145A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
pressure
activated
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57117593A
Other languages
Japanese (ja)
Other versions
JPS5939493B2 (en
Inventor
Yasuaki Osumi
大角 泰章
Hiroshi Suzuki
博 鈴木
Akihiko Kato
明彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57117593A priority Critical patent/JPS5939493B2/en
Publication of JPS599145A publication Critical patent/JPS599145A/en
Publication of JPS5939493B2 publication Critical patent/JPS5939493B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To provide a multicomponent type Ti-Co alloy for hydrogen occlusion having a specified composition, very easily activated by hydrogen, capable of occluding a large amount of hydrogen in the form of hydride, and releasing hydrogen easily and rapidly by slight heating. CONSTITUTION:An alloy for hydrogen occlusion represented by the formula TiCo1-xAyBz: is obtd. by blending a three-component type alloy consisting of Ti, Co and a metal A with a metal B by substitution or addition. In the formula A is Al, Cr, Cu, Fe, Mn or Ni; B is Nb, Mo, V, Zr or a rare earth element; 0.01<=x<=0.5, 0.01<=y<=0.5, 0<z<=0.2, and 1.0<=(1-x+y+z)<=1.2. The alloy can be activated very easily, and the activated alloy occludes and releases rapidly a large amount of hydrogen at relatively low temp. and pressure. For example, powder of said alloy is filled into a container, degassed at <=200 deg.C under reduced pressure, and activated. After sealing hydrogen in the container at a temp. above room temp., by applying <=40kg/cm<2> pressure of hydrogen, hydrogen can be occluded up to an almost satd. state within several min. The release of hydrogen is carried out in a short time by heating the powder to a temp. above room temp. and/or by slightly reducing the pressure.

Description

【発明の詳細な説明】 本発明はチタン−コバルト多元系水素吸蔵用冶金に関し
、より詳細には水素による活性化が極めて容易で、水素
化物の彩飾で多量の水素を吸蔵でき、しかも水素の吸蔵
圧と放出圧の岸、即ちヒステリシスが極めて小さく、わ
ずかの加熱で容易且つすみやかに水素を放出するチタン
−コバルト多元系水素吸蔵用合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a titanium-cobalt multi-component metallurgy for hydrogen storage, and more specifically, it is extremely easy to activate with hydrogen, can store a large amount of hydrogen by decorating with hydride, and is capable of storing hydrogen. The present invention relates to a titanium-cobalt multi-component hydrogen storage alloy that has extremely small hysteresis between pressure and release pressure, and easily and quickly releases hydrogen with a small amount of heating.

水素←ま資源的な制限がなくクリーンであること、輸送
及び貯蔵が容易であること等の理由から、化石燃料に代
る新しいエイ・ルギーσψとして注目されている。
Hydrogen is attracting attention as a new fuel to replace fossil fuels because it is clean, has no resource limitations, and is easy to transport and store.

しかし水素は常温で気体であり、しかも液化温度が極め
て低いから、その貯絶枝術の開発が重要となる。この貯
蔵法としてCよ、水素を金属に吸蔵させ金鵡水素化物と
して貯蔵する方法が最近注目を集めている。捷た金属に
よる水素の吸蔵・放出反応は可逆的であり、反応に伴っ
て相当楡の反応熱が発生し奴は吸収されること、及び水
素の吸蔵・放出圧力が温度に依存すること、を利用して
、冷暖房装りや熱エネルギー−圧力(機械)エネルギー
変換装置性への応用研4にも進められている。
However, since hydrogen is a gas at room temperature and its liquefaction temperature is extremely low, it is important to develop techniques for storing and cutting off hydrogen. As a storage method, a method of storing hydrogen as a gold parapet hydride by absorbing hydrogen into a metal has recently been attracting attention. It is known that the hydrogen storage and desorption reaction by the shredded metal is reversible, that a considerable amount of reaction heat is generated during the reaction, and that hydrogen is absorbed, and that the hydrogen storage and desorption pressures depend on the temperature. Utilizing this technology, it is also being applied to heating and cooling systems and thermal energy to pressure (mechanical) energy conversion devices.

このような水素吸蔵特性に要求される性りとしては、(
り安価で資許的に褌富であること、(2)活性化が容部
で水素@献匍が大きいこと、(3)室幅付近で手当な水
素吸蔵・放出平泗圧を山し、+14i 4i・放出のヒ
ステリシスが小さいこと、(4)水素吸緘・放出反応、
が可逆的でありその神度が大へいこと、等がノ1−けら
れる。
The properties required for such hydrogen storage properties are (
(2) the activation is large and the hydrogen supply is large; (3) the hydrogen storage and release pressure is moderately high near the chamber width; +14i 4i・release hysteresis is small; (4) hydrogen absorption/release reaction;
It is noted that it is reversible and its divine degree is great.

ところで、この抑の水素吸蔵特性月料とし、又は例えば
LaNi、 、 Mg、NiやFeTi等が知られテオ
リ、これらの合金は水素の吸蔵・放出ノ又応がi’iJ
迎的であり水素吸蔵鋼も太きいが、氷点吸蔵・放出反応
の速度が遅く珪つ活性化が容易とはぎえず、しかもヒス
プリシスが大きく実用上大きな問題があった。
By the way, the hydrogen storage properties of these alloys are known, such as LaNi, Mg, Ni, and FeTi, and these alloys have excellent hydrogen storage and release properties.
Although hydrogen storage steel is relatively thick, the freezing point storage and desorption reaction is slow, activation of silica is not easy, and hysteresis is large, which poses a major problem in practical use.

本弁明名は上記のような事情に漸目し、従来の木素吸賦
用@金の有する特長を保留しつつ111)71Sのよう
な欠点を解消すべく佃究を雌めてきた。
The title of this defense has been developed in light of the above-mentioned circumstances, and has focused on research to eliminate the drawbacks of 111) 71S while retaining the features of conventional wood adsorption @gold.

その結果、T1及びco1ベース合金としこれに特定の
金属元素を適量配合すれば、上記の目的Kかなう優れた
水素吸蔵特性の合金が得られることを知り、舷に本発明
を完成した。すなわち本本発明のチタン−コバルト多元
系水素吸蔵用合金は一般式T1Co、、AyBzで示さ
れることを特徴とするものである。ただし式中Aはアル
ミニウム。
As a result, it was discovered that an alloy with excellent hydrogen storage properties that satisfies the above-mentioned objective K can be obtained by creating a T1 and CO1 base alloy and blending an appropriate amount of a specific metal element therewith, thereby completing the present invention. That is, the titanium-cobalt multi-component hydrogen storage alloy of the present invention is characterized by being represented by the general formula T1Co, AyBz. However, A in the formula is aluminum.

クロム、銅、鉄、マンガン、またはニッケルであり、B
はニオブ、モリブデン、バナジウム、ジルコニウムまた
は希土類元素であり、x=o、01〜0.5 、 Y 
= 0.01〜0.5 、 z≦0.2で、かつ1.O
≦1− x + y + z≦1.2である。ただし、
z=Oi除く。
Chromium, copper, iron, manganese, or nickel; B
is niobium, molybdenum, vanadium, zirconium or a rare earth element, x=o, 01-0.5, Y
= 0.01 to 0.5, z≦0.2, and 1. O
≦1−x+y+z≦1.2. however,
z=Oi excluded.

一般にTIとCOはcscz型の立方晶を形成して’l
’i (:’oとなり、またCoの一部を金栖A即ちA
I!。
Generally, TI and CO form a cscz-type cubic crystal.
'i (: 'o, and part of Co is Kanasu A, that is A
I! .

Cr l Cu l Fe 、 Mn及びNiなどとt
ft[して一般式TiC0+−aAaの金属間化合物と
なり、水素吸蔵能を発揮することが確認されている。
Cr l Cu l Fe, Mn and Ni etc.
ft[ to form an intermetallic compound with the general formula TiC0+-aAa, and it has been confirmed that it exhibits hydrogen storage ability.

しかしながら、これらの@?tは、(”Jれも活性化の
ために高温、高庄を要すると共に水累紳晟の影智を受は
易く、しかも水素吸蔵圧と水素b(高圧の差、即ちヒス
テリシスが大きい、例えは、TiCoo、s Mno、
sの合金では、水素吸蔵圧が150°Cで約10気圧で
あるの°に対し水素放出圧は約3気圧であり、ヒステリ
シスは約7気圧もある。そのため水素吸蔵、放出を行う
に当っては、水素吸蔵合金又りその金属水素化物を大き
な温度差でθ11熱又は冷却するか、或いは大きな圧力
差で水素加圧又は減圧を行なわなければならず、せっか
くの水素貯蔵能力や水素化反応熱も有効に活用すること
ができない。
However, these @? t requires high temperature and high pressure for activation, and is easily affected by the influence of Mizuki Shinsei, and the difference between hydrogen storage pressure and hydrogen b (high pressure, that is, hysteresis is large, e.g. , TiCoo, s Mno,
In the alloy No. s, the hydrogen storage pressure is about 10 atm at 150°C, whereas the hydrogen release pressure is about 3 atm, and the hysteresis is about 7 atm. Therefore, in order to absorb and release hydrogen, it is necessary to heat or cool the hydrogen storage alloy or its metal hydride with a large temperature difference, or to pressurize or depressurize hydrogen with a large pressure difference. The precious hydrogen storage capacity and hydrogenation reaction heat cannot be used effectively.

ところが上記T1Co+−,+Aaの一部を前記金属B
1即ちNb + Mo 、 V + Zr及び希土類元
素で1〜.押したり、或いは金mBを追加すると、ヒス
テリシスを大幅に減少させることができることが分った
However, part of the above T1Co+-, +Aa is replaced with the metal B.
1, that is, 1 to .1 for Nb + Mo, V + Zr and rare earth elements. It has been found that pressing or adding mB gold can significantly reduce the hysteresis.

即ち、本発明の水素吸蔵特性@はTf + Co及び金
−Aよりなる三元糸合金罠前記Bを置換的若しくは追加
的に配合したものでT1Co+−xAyBzの一般式で
表わすことができる。
That is, the hydrogen storage properties of the present invention can be expressed by the general formula T1Co+-xAyBz, which is a ternary thread alloy trap consisting of Tf + Co and gold-A, with the above-mentioned B being substituted or additionally blended.

たたし、i(7中Xは0.01〜0.5.yは0.01
 ’−0,5。
Tatami, i (X in 7 is 0.01 to 0.5, y is 0.01
'-0,5.

2は0.2以ト(θヶ除く)であり、これらは1.06
(1−x+3/+z)51.2の関係を満足するものと
する。
2 is 0.2 or more (excluding θ), and these are 1.06
It is assumed that the relationship (1-x+3/+z)51.2 is satisfied.

ここでX、又けyが0.5を越えると吸蔵水素の放出が
困雌になり、高温加M或いは真空加熱(又は若干の減圧
加熱)の条件下でなければスムーズな放出が行われなく
なる。また、2が0.2を越えると合金の水素吸蔵鋼・
が減少したり、水素吸蔵、放出圧曲線のプラトー城が2
段状になる傾向が現われる。また2はyより小さいこと
が好ましく、x=yであるときの2の好ましい範囲ho
〜0.1(但し0は除く)のゆ1」、囲である。
Here, if X and y exceed 0.5, it becomes difficult to release the stored hydrogen, and smooth release will not occur unless under high temperature M or vacuum heating (or slightly reduced pressure heating) conditions. . In addition, if 2 exceeds 0.2, the hydrogen storage steel of the alloy
decreases, and the plateau castle of the hydrogen absorption and release pressure curves increases.
A step-like tendency appears. Also, 2 is preferably smaller than y, and the preferable range of 2 when x=y is ho
~0.1 (excluding 0).

上記xl)’lzの好適範囲から、T1Co+−aAa
合金の一部を金jJmBで置換する場合番コ、T1Co
+−xAyBzにおいてx=(y+z)、y≧2の関係
が成立し、(1−x + Y + z ) = 1とな
る。また’1”iCo+−*Aa合金に金属Bを添加す
る場合をよ、Ti Co+−xAyBzにおいてX=)
’l )’≧2の関係が成立し、2はO〜0.1(Oを
除く)であるから、これらの関係は1.0<(1−x十
y+z)≦1,1となる。
From the preferred range of xl)'lz above, T1Co+-aAa
When part of the alloy is replaced with gold jJmB, T1Co
In +-xAyBz, the relationship x=(y+z) and y≧2 holds true, and (1-x + Y + z) = 1. Also, when adding metal B to '1'' iCo+-*Aa alloy, X=) in TiCo+-xAyBz
Since the relationship 'l)'≧2 is established, and 2 is O to 0.1 (excluding O), these relationships are 1.0<(1-xy+z)≦1,1.

同、上記では金属Bを置換的に加える場合と追加的に加
える場合の典型的な例を示したが、これらの両名にまた
がる範1t、f+で金mBを加えることも勿論可hヒで
ある。
Similarly, the above shows typical examples of adding metal B substitutively and adding it additionally, but of course it is also possible to add gold mB in the range 1t, f+ that spans both of these. be.

このように、T1Co+−aAa合金に適蟻の金帆Bを
カロえることによって、例えばTiCoo、s Mno
、s合金のヒステリシスが前述の如<150°Cで約7
気圧であるものが、TjCoo、s Mno、s Zr
o、os金合金約2気圧、Tieoo、sMno4sV
o、os金合金約3気圧となり、ヒステリシスはベース
合金の捧以下に低減する。
In this way, by adding a suitable ant, Kinho B, to the T1Co+-aAa alloy, for example, TiCoo, s Mno
, the hysteresis of the s-alloy is about 7 at <150°C as mentioned above.
The atmospheric pressure is TjCoo, s Mno, s Zr
o, os gold alloy approximately 2 atm, Tieoo, sMno4sV
The o, os gold alloy has a pressure of about 3 atmospheres, and the hysteresis is reduced to less than that of the base alloy.

本発明合金の製造法は何ら制御Ni場されず公知の方法
をすべて適用できるが、最も好ましいのは一アーク溶融
法である。即ち、Ti、Co+金川A用び金属Bの各元
素を朽゛J↓yして混合した後、任慧の作k ¥K I
tC7レス成形し、次いでこれトアーク溶融炉VL段大
して不活性雰囲気で力11熱溶障駿することにより容易
に夷造することができる。
The method for producing the alloy of the present invention is not controlled in any way and all known methods can be applied, but the most preferred method is the one-arc melting method. That is, after mixing each element of Ti, Co + Kanagawa A and metal B, Renhui's production k ¥K I
It can be easily fabricated by forming a tC7 resin and then melting it in a high-temperature arc melting furnace VL stage in an inert atmosphere.

このようにしてMたチタン−コノ<ノしト多元系水素吸
it用住金11表面積を拡大し7水素1教蔵自ヒ力を’
hyめる為に粉末状にして使用するC)力(よい。
In this way, we expanded the surface area of the multi-component hydrogen absorbing metal 11 and increased the hydrogen absorption capacity of the multi-component titanium alloy.
C) Force (good) used in powder form for hydration.

このようにして旬た粉末状の水素1& #、 7月合金
後は大量の水素を比較的低い温度及び圧力で負速に吸蔵
し且つ放出する。例えば上記合金粉末を適当な容器に充
填し、桔圧下200°C以下の温度で脱ガス処理して活
性化を行なった後、室温以上の温場二で水素を封入し、
例えば40”/d以下の水素圧を印加することにより、
数分以内でほぼ飽和状態まで水素を吸蔵させることがで
きる。
In this way, after the powdered hydrogen is mixed, a large amount of hydrogen is absorbed and released at a negative speed at a relatively low temperature and pressure. For example, the above-mentioned alloy powder is filled into a suitable container, degassed and activated at a temperature of 200° C. or less under pressure in a container, and then hydrogen is enclosed in a temperature field above room temperature.
For example, by applying a hydrogen pressure of 40"/d or less,
Hydrogen can be absorbed to almost saturation within a few minutes.

また、この金属水素化物からの水素の放出は、該水素化
物を室温以上に加熱するか、わずかに減圧し或いは双方
を組み合わせ゛C実施することにより、短時間で効率良
く行なうことができる。
Further, hydrogen can be released efficiently from the metal hydride in a short time by heating the hydride to a temperature above room temperature, slightly reducing the pressure, or a combination of both.

本発明のチタン−コバルト多元糸水素吸賦用合金は概略
以上のように構成されており、後述する実施例でも明ら
かにする如く水素吸an料として襞求される諸性能を全
て具備するものであり、特に水素吸蔵・放出圧のヒステ
リシスは佐来の水素吸蔵用合金に比べて大幅に改善され
ている。
The titanium-cobalt multi-fiber hydrogen absorbing alloy of the present invention is roughly constructed as described above, and as will be clear from the examples described below, it has all the performances required as a hydrogen absorber. In particular, the hysteresis of hydrogen storage and release pressure is significantly improved compared to Sarai's hydrogen storage alloy.

しかもこの合金は活性化が極めて容易であり、太細の水
素を密j8−高く吸蔵し得ると共に水素の吸相・放出反
応が完全に可逆的に行なわれ、吸藤、と放出を(”I 
l!!I紗り返1−ても合金自体の劣化は実T(的に認
められず、史には酸素、窒素、アルゴン、炭晒カスのよ
うな小細ぜカスによる影響が殆んどない等の諸物件を有
しており、理想的な水素吸蔵用合金と河うことができる
。従って本来の水素貯蔵H料としての用途はもとより、
水素吸蔵・放出反応に伴う反1b熱を利用する他の用途
に71しても卓越した引]嚇を発弾−する。
In addition, this alloy is extremely easy to activate and can absorb hydrogen in thick and thin particles with a high degree of density, and the hydrogen phase absorption and release reactions are completely reversible.
l! ! Even if the alloy itself is recycled, no deterioration of the alloy itself is observed in reality. It has various properties and can be used as an ideal hydrogen storage alloy.Therefore, it can be used not only as a hydrogen storage material, but also as a hydrogen storage material.
It also provides an outstanding threat to other applications that utilize the anti-1b heat associated with hydrogen absorption and desorption reactions.

次に本発明の実IQ例を示す。Next, an actual IQ example of the present invention will be shown.

夾かIj例1 市販のi’i 、 Co 、金JRA (A/ l C
r + Cu l Fe +Mn又はNi)及びQIQ
B CNb、Mo、V、Zr又はMm(ミツシュメタル
)〕をノω、予圧でTi:Co:A:B=1:O15:
 0.5 : 0.05となるように分取し、これを高
真空アーク溶解炉の銅製るつは内に装入(〜、炉内を畠
糾(匿アルゴン雰囲気とした後、斧’J 2000 ”
Cで加熱溶解し放冷してTi COo、8 Ao、5 
Bo、05(世し、A及びBは上記金属を夫々1 +1
1ずつ含翁するもの)よりなる組成の合金を製造した。
Ij Example 1 Commercially available i'i, Co, gold JRA (A/l C
r + Cu l Fe + Mn or Ni) and QIQ
B CNb, Mo, V, Zr or Mm (Mitshu Metal)] with preload Ti:Co:A:B=1:O15:
0.5: 0.05, and charged it into a copper crucible of a high vacuum arc melting furnace. 2000”
Ti COo, 8 Ao, 5 was dissolved by heating with C and allowed to cool.
Bo, 05 (Serial, A and B are each of the above metals 1 + 1
An alloy having a composition consisting of (containing 1 manganese) was produced.

r^J、 Mmとけ希土類元素混合物にFe r Mg
 + A’及び$1等の不純物の少量含有する混合金属
である。
r^J, Fe r Mg in Mm melt rare earth element mixture
+ It is a mixed metal containing small amounts of impurities such as A' and $1.

得られた各合金を120メツシュ全通に粉砕し、その5
.02をステンレス製水素吸幇・放出反応器に採取し、
反応器を排気装置に接続して減圧下の室温にて脱ガスを
行なった。次いで器内に純度99.999チの水素を導
入し水素圧を40Kg7′cd以Fに保持し、100〜
200℃に加熱すると直ちに水素の吸蔵が起こった。
Each of the obtained alloys was ground into 120 mesh pieces, and 5
.. 02 was collected in a stainless steel hydrogen absorption/release reactor,
The reactor was connected to an exhaust system and degassed at room temperature under reduced pressure. Next, hydrogen with a purity of 99.999% was introduced into the vessel, and the hydrogen pressure was maintained at less than 40 kg 7' cd.
Upon heating to 200°C, hydrogen storage occurred immediately.

水素の吸蔵が完了した後、掬び排気して水素の放出を行
ない、活性化処理を完了した。その後膣反応器に純度9
9.999%の水素を字部以上の瀞m、40Kg/cd
以下の圧力で導入し、水素の吸蔵を行なった。次いで行
なわれる水素の放出は、反応器の加熱或いは減圧又はこ
れらを組み合わせることによって行なう。
After hydrogen storage was completed, it was scooped out and evacuated to release hydrogen, completing the activation process. Then into the vaginal reactor purity 9
9.999% hydrogen above the character part, 40Kg/cd
Hydrogen was absorbed by introducing the gas at the following pressure. The subsequent release of hydrogen is carried out by heating or depressurizing the reactor, or a combination thereof.

上記の方法で夫々のチタン−コバルト多元系水素吸蔵合
金の水素吸蔵・放出に及はす圧力一温度の関係を求めた
Using the method described above, the pressure-temperature relationship affecting hydrogen storage and release of each titanium-cobalt multi-component hydrogen storage alloy was determined.

その−例としてTICoo、sMno5Zro、o5−
 )(系について圧力の9jJ数−絶対温域の逆数で表
わしたのが第1図であり、直線Aが水素吸紙Fモ、1i
pνBが水素放出圧である。
Examples include TICoo, sMno5Zro, o5-
) (Figure 1 shows the system expressed as the 9jJ number of pressure - the reciprocal of the absolute temperature range, and the straight line A is the hydrogen absorption paper Fmo, 1i
pνB is the hydrogen release pressure.

また点線で不し1ζ比較例は、Ti COo、5 Mn
o5の組成を廟する三元系水素吸紙合金を用いた場合の
圧カー滉度髪図であり、点倒へ′が水*吸厭庄、点卿B
′が水素放出圧である8 與1図からも明らかなように本発明の合金は、比較例に
示した従来の水素吸蔵用合金に比べてヒステリシスが大
幅に改着されている。
Comparative examples with 1ζ indicated by the dotted line are Ti COo, 5 Mn
This is a pressure curve diagram when using a ternary hydrogen-absorbing paper alloy with the composition of
8 where ' is the hydrogen release pressure.As is clear from Figure 1, the hysteresis of the alloy of the present invention is significantly improved compared to the conventional hydrogen storage alloy shown in the comparative example.

−また下配第1六目上記で掛た代表的な各合金の水素1
内蔵、―を示したもので、セJ1来の合金(試料、46
16〜〕ぢ21)と比べて水素吸#、州もほとんど1d
I等であった。
- Also, the hydrogen 1 of each representative alloy multiplied above in the lower 1st 6th
Built-in, - is shown, alloy from SE J1 (sample, 46
16~] Compared to J21), the hydrogen absorption # is almost 1d.
It was I etc.

夷師例2 実77i5 $11と同様の方法でTi COo、3 
Ao、45 BO05(金臓A及び金)u、 Rは実施
fll 1と同様の金属を用し)た)を幻】′へして粘
性化し、水素の吸紙・放出実1刊をイエない、名合金に
ついて水素吸紙・放出に及F9す圧力一温度の関係に求
めた。
Yishi Example 2 Ti COo, 3 using the same method as Mi77i5 $11
Ao, 45 BO05 (metal A and gold u, R used metals similar to those used in 1) were made into phantom]' to make them viscous, and hydrogen absorption and release were not possible. The relationship between pressure and temperature at F9 for hydrogen absorption and release was determined for a famous alloy.

その−例としてTICoo、sMno45Vo、o5H
系について圧力の対数−絶対温度の逆数で表わしたのが
第2図であり、直#Cが水素吸蔵圧、li!を紳りが水
素放出圧である。
Examples include TICoo, sMno45Vo, o5H.
Figure 2 shows the system expressed as the logarithm of pressure - the reciprocal of absolute temperature, where direct #C is the hydrogen storage pressure, li! is the hydrogen release pressure.

また点線で示した比較例は、TiCoo5Mno、sの
組成を有する三ツし系水素吸蔵合金を用いた場合の圧カ
一温度線図であり、点線C′が水素吸献圧、点纏D′が
水素放出圧である。
In addition, the comparative example shown by the dotted line is a pressure-temperature diagram when using a Mitsushi hydrogen storage alloy having the composition of TiCoo5Mno,s, where the dotted line C' is the hydrogen adsorption pressure, and the dotted line D' is the hydrogen release pressure.

第2図からも明らかなように本発明の合金は、比較例の
従来合金に比べてヒスプリシスが大幅に改善されている
As is clear from FIG. 2, the alloy of the present invention has significantly improved hysteresis compared to the conventional alloy of the comparative example.

斗た下配第2表は上記で(4だ代表的な各合金の水素吸
#、州を示したもので、従来の合金(試料/5638〜
A43)に比べて水素吸#、量もほとんど同等であった
。     (本I′!以Y余白)第    1   
 表 第    2    表 4し1而の簡、4Lな四明 第1図及び第2図は本発明に係るチタン−コバルト多元
糸水素吸蔵用合金と従来の合金の水素収蔵・放出に及は
すF(−力一温度の関係を示す1!−4+である、 %打出、!i人   二1−螢技休「院J〉     
イ1  サえ  れ成 −和定代理人  工業技術院大
阪上業枝山試−所長内バか−υJ
Table 2 shows the hydrogen absorption number and state of each representative alloy as shown above (4).
Compared to A43), the number and amount of hydrogen absorption were almost the same. (Book I'! After Y margin) Part 1
Table 2 Table 4 shows the results of hydrogen storage and release in the titanium-cobalt multi-fiber hydrogen storage alloy according to the present invention and the conventional alloy. (1!-4+, which shows the relationship between -force and temperature, % Uchide,!i people 21-Hotaku Gikyu ``In J〉
I1 Sae Renari - Wasada representative Agency of Industrial Science and Technology Osaka Kamigyo Edayama exam - Director Naibaka - υJ

Claims (1)

【特許請求の範囲】 1、一般式がT1Co、□AVBzで示されることを特
色とするチタン−コバルト多元系水素lPJ、M用合金
。たたし、式中Aはアルミニウム、クロム。 銅、鉄、マンガンまたはニッケル、Bはニオブ。 モリブデン、バナジウム、ジルコニウムまたけ希土類元
素であり、x=0.01〜0.5 、 y= 0.01
〜(1,5、z 50.2で、かつ1.0−?−、l−
x+y+zト、12である。たたし、z=0を除く。 2、  x=y+zのとへ、y > zであるifl 
Me %fF ah求のφ1゛シ曲第1墳記載のチタン
−コバルト多元系水素吸蔵用合金。 3、x=yのとへy≧2で、かつZ S 0.1である
+jiJRα!)ケW+R1′I求の甲り間第1項H己
載のチタン−コバルト多元系水素吸蔵用合金。ただし、
2二〇を除く。
[Claims] 1. A titanium-cobalt multi-component hydrogen lPJ, M alloy characterized by having the general formula T1Co, □AVBz. However, A in the formula is aluminum and chromium. Copper, iron, manganese or nickel, B is niobium. It is a rare earth element that spans molybdenum, vanadium, and zirconium, x = 0.01 to 0.5, y = 0.01
~(1,5, z 50.2 and 1.0-?-, l-
x+y+zt, 12. t, excluding z=0. 2. If x = y + z, if y > z
Me%fF ah The titanium-cobalt multi-component alloy for hydrogen storage described in the φ1゛ curve No. 1. 3. Since x=y, y≧2 and Z S 0.1 +jiJRα! ) A titanium-cobalt multi-component hydrogen storage alloy containing W + R1'I. however,
220 is excluded.
JP57117593A 1982-07-05 1982-07-05 Titanium-cobalt multi-component hydrogen storage alloy Expired JPS5939493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57117593A JPS5939493B2 (en) 1982-07-05 1982-07-05 Titanium-cobalt multi-component hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57117593A JPS5939493B2 (en) 1982-07-05 1982-07-05 Titanium-cobalt multi-component hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPS599145A true JPS599145A (en) 1984-01-18
JPS5939493B2 JPS5939493B2 (en) 1984-09-25

Family

ID=14715650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57117593A Expired JPS5939493B2 (en) 1982-07-05 1982-07-05 Titanium-cobalt multi-component hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPS5939493B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141741A (en) * 1984-08-02 1986-02-28 Daido Steel Co Ltd Hydrogen occluding alloy
JP2007056313A (en) * 2005-08-24 2007-03-08 Japan Steel Works Ltd:The Hydrogen permeable alloy
CN105296802A (en) * 2015-11-03 2016-02-03 华南理工大学 High-tenacity dual-scale structural titanium alloy and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141741A (en) * 1984-08-02 1986-02-28 Daido Steel Co Ltd Hydrogen occluding alloy
JPH0577732B2 (en) * 1984-08-02 1993-10-27 Daido Steel Co Ltd
JP2007056313A (en) * 2005-08-24 2007-03-08 Japan Steel Works Ltd:The Hydrogen permeable alloy
CN105296802A (en) * 2015-11-03 2016-02-03 华南理工大学 High-tenacity dual-scale structural titanium alloy and preparation method and application thereof
CN105296802B (en) * 2015-11-03 2017-03-22 华南理工大学 High-tenacity dual-scale structural titanium alloy and preparation method and application thereof
US11072841B2 (en) 2015-11-03 2021-07-27 South China University Of Technology High-strength dual-scale structure titanium alloy, preparation method therefor, and application thereof

Also Published As

Publication number Publication date
JPS5939493B2 (en) 1984-09-25

Similar Documents

Publication Publication Date Title
JPH07252560A (en) Hydrogen storage material
JPS599145A (en) Multicomponent type titanium-cobalt alloy for hydrogen occlusion
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
JPS59143036A (en) Ternary alloy of rare earth element for occluding hydrogen
JPS5947022B2 (en) Alloy for hydrogen storage
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
JP3953138B2 (en) Hydrogen storage alloy
JPS6141741A (en) Hydrogen occluding alloy
JPS62284033A (en) Reversible hydrogen occluding and releasing material
JPS5848481B2 (en) Hydrogen storage materials
JPS619544A (en) Titanium alloy for occluding hydrogen
JPH0397827A (en) Titanium-chromium-copper series hydrogen storage alloy
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPS5950742B2 (en) Titanium quaternary hydrogen storage alloy
JPH0693366A (en) Hydrogen storage alloy
JPS6372851A (en) Zirconium-type alloy for hydrogen occlusion
JPS5837373B2 (en) Titanium-based hydrogen storage alloy
JPS6024336A (en) Alloy for storing hydrogen
JPS6141975B2 (en)
JPS5824498B2 (en) Vanadium-containing hydrogen storage alloy
JP2004277829A (en) Hydrogen storage alloy
JPS597774B2 (en) Titanium-chromium-manganese hydrogen storage alloy
JPS58167741A (en) Hydrogen occluding alloy
JPS61276945A (en) Hydrogen occluding zirconium alloy