JPS5989752A - Welded structure of 12cr steel - Google Patents

Welded structure of 12cr steel

Info

Publication number
JPS5989752A
JPS5989752A JP19892282A JP19892282A JPS5989752A JP S5989752 A JPS5989752 A JP S5989752A JP 19892282 A JP19892282 A JP 19892282A JP 19892282 A JP19892282 A JP 19892282A JP S5989752 A JPS5989752 A JP S5989752A
Authority
JP
Japan
Prior art keywords
steel
welded structure
welding
strength
creep rupture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19892282A
Other languages
Japanese (ja)
Inventor
Takatoshi Yoshioka
吉岡 孝利
Seishin Kirihara
桐原 誠信
Masao Shiga
志賀 正男
Teruaki Hanai
花井 照明
Takehiko Yoshida
武彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19892282A priority Critical patent/JPS5989752A/en
Publication of JPS5989752A publication Critical patent/JPS5989752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain a welded structure having high creep rupture strength at about 550-600 deg.C, low weld crack sensitivity and superior welding work efficiency by specifying the composition of 12Cr steel as the base metal of a welded structure. CONSTITUTION:The composition of heat resistant 12Cr cast steel or forged steel as the base metal of a welded structure is composed of, by weight, 0.05-0.2% C, 0.05-1% Si, 0.1-1% Mn, <=1.5% Ni, 9.0-13% Cr, 0.5-2% Mo, 0.05-0.4% Nb, 0.05-0.8% W and the balance Fe, 0.02-0.1% N may be contained in the composition, and the Cr equiv. of the composition is made <=10. A welded structure of 12Cr steel having increased strength at high temp. and improved weld crack sensitivity in joint welding and repair welding is obtd. The welded structure includes the casing of a steam turbine for high temp. use.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は120r系鋼溶接構造物に係シ、特に12Cr
系高温用蒸気タービンケーシングの継手溶接及び補修溶
接における高温強度及び耐溶接割れ感受性を高めた溶接
構造物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to welded structures of 120R series steel, particularly 12Cr welded structures.
The present invention relates to a welded structure with improved high-temperature strength and weld cracking susceptibility in joint welding and repair welding of high-temperature steam turbine casings.

〔従来技術〕[Prior art]

従来の蒸気タービンは蒸気温度最大566C。 Conventional steam turbines have a maximum steam temperature of 566C.

蒸気圧力最大246atgであり、第1図に示すケーシ
ング不休1及び加減弁ケーシング2、及び第2図に示す
主蒸気弁ケーシング材3としてはCr−MO−v−鋼が
用いられ、これらの部材の継手溶接及び補修溶接(iW
接位置を第2図中、4で示す)にはCr−MO系溶接棒
が用いられている。
The maximum steam pressure is 246 atg. Joint welding and repair welding (iW
A Cr-MO type welding rod is used at the contact position (indicated by 4 in FIG. 2).

最近、石油、石炭などの化石燃料のコストが上昇を続け
ておシ、これら化石燃料を用いている火力プラントの発
電効率が重要になっている。発電効率を上げるためには
蒸気タービンの蒸気温度又は圧力な上げる必要がある。
Recently, as the cost of fossil fuels such as oil and coal continues to rise, the power generation efficiency of thermal power plants that use these fossil fuels has become important. In order to increase power generation efficiency, it is necessary to increase the steam temperature or pressure of the steam turbine.

このよう字高効率タービン用材料としては上記した現用
タービン材料では強度不足である。更にそれに不随して
、それらの構造溶接及び補修溶接用として使用されてい
る溶着金属も強度不足で、高強度溶接材料が必要である
The above-mentioned current turbine materials lack strength as materials for such high-efficiency turbines. Further, the weld metal used for structural welding and repair welding is insufficient in strength, and high-strength welding materials are required.

そのため、高効率タービンケーシング用としての強度を
有し、かつこのケーシング用溶着金属も高いクリープ破
断強度を有するとともに、溶接作業性の良好のものが要
望されていた。
Therefore, there has been a demand for a weld metal for use in high-efficiency turbine casings, which also has high creep rupture strength and has good welding workability.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、550〜600Cにおいて高いクリー
プ破断強度を有し、又溶接工程における耐溶接割れ感受
性が低く、溶接作業性も極めて良好な12Cr系鋼溶接
構造物を提供するものである。
An object of the present invention is to provide a 12Cr steel welded structure that has high creep rupture strength at 550 to 600C, low susceptibility to weld cracking during the welding process, and extremely good welding workability.

〔発明の概要〕[Summary of the invention]

本発明者らは、高効率タービンケーシング材として高温
強度、クリープ破断特性及び溶接割れ感受特性等の面か
ら、120r系耐熱鋼が適用可能であることを見い出し
た。しかしこの12Cr系耐熱鋼に対する溶接材料とし
て既存の溶接棒ではクリープ破断強度が不足で適用でき
ないことが明・らかとなシ、12Cr系耐熱鋼に対し溶
接性を損わずクリープ破断強度に優れた溶接材料に到達
した。
The present inventors have discovered that 120R heat-resistant steel is applicable as a high-efficiency turbine casing material in terms of high-temperature strength, creep rupture properties, weld crack sensitivity properties, and the like. However, it is clear that existing welding rods cannot be used as welding materials for this 12Cr heat-resistant steel due to insufficient creep rupture strength. Reached the welding material.

本発明は、このような知見に基づいてなされたものであ
って、第1の発明は12Cr系耐熱駒または鍛鋼の溶接
構造物において、重量比でC:0.05〜0.2%、8
i:0.05〜1%# Mn :0.1〜1. Ni:
1.5%以下、Cr:9〜13%。
The present invention has been made based on such knowledge, and the first invention is a welded structure of a 12Cr heat-resistant piece or forged steel, in which C: 0.05 to 0.2% by weight, 8
i: 0.05-1% #Mn: 0.1-1. Ni:
1.5% or less, Cr: 9-13%.

MO:0.5〜2%、Nb:0.05〜0.4%、W:
0.05〜0.8%を含み、残部を鉄及び不可避不純物
からなり、Cr当量が10以下である12Cr系鋼溶接
構造物であり、第2の発明は12Cr系鋳鋼または鍛鋼
を被溶接材とする溶接構造物において1.*i比でC:
0.05〜0.2%、si:o、os〜1. Mn :
 o、x−x、 Ni : 1.5%以下、Cr:9〜
13%、MO:0.5〜2%、Nb:0.05〜0.4
%、N:0.02〜0.1%、およびW:0.05〜0
.8%を含み、残部鉄及び不6工避不純物元素からなシ
、Cr当量がlθ以下である120r系鋼溶接構造物で
ある。
MO: 0.5-2%, Nb: 0.05-0.4%, W:
0.05 to 0.8%, the remainder is iron and unavoidable impurities, and the Cr equivalent is 10 or less. In a welded structure with 1. *C in i ratio:
0.05-0.2%, si:o, os-1. Mn:
o, x-x, Ni: 1.5% or less, Cr: 9~
13%, MO: 0.5-2%, Nb: 0.05-0.4
%, N: 0.02-0.1%, and W: 0.05-0
.. This is a welded structure of 120r steel having a Cr equivalent of lθ or less.

本発明において、上記の必須元素の池に脱酸及び結晶粒
微細化元素を単独又は複合で0.1%を含み、更に強度
増加元素■を0.5%以下含むこともできる。ここで脱
酸及び結晶粒微細化元素としては% Zr、Mg及びT
iが望ましい。更に溶着金属中の元素のき有量の調整は
溶接心線またはフラックスから行なってもよい。
In the present invention, the above-mentioned essential elements include 0.1% of deoxidizing and grain refining elements singly or in combination, and 0.5% or less of strength-increasing element (2) may also be included. Here, the deoxidizing and grain refining elements are % Zr, Mg and T.
i is preferable. Furthermore, the amount of elements in the weld metal may be adjusted from the weld core or flux.

本発明の溶接構造における溶着金属は主にマルテンサイ
ト組織を有するものでなければならない。
The deposited metal in the welded structure of the present invention must primarily have a martensitic structure.

マルテンサイト組織は焼もどしマルテンサイト組織が好
ましく、高温において高強度を有する。化学組成及び熱
処理によってはフェライト組織が生じるので実質的にフ
ェライトが析出しないように全マルテンサイト組織とす
ることが最も有効である。フェライト組織の生成を防止
し、主としてマルテンサイト組織とするための化学組成
上Cr当量を10以下とすることが必要である。
The martensitic structure is preferably a tempered martensitic structure, which has high strength at high temperatures. Since a ferrite structure may occur depending on the chemical composition and heat treatment, it is most effective to form a completely martensitic structure so that substantially no ferrite precipitates. It is necessary to set the Cr equivalent to 10 or less in terms of chemical composition in order to prevent the formation of a ferrite structure and create a mainly martensitic structure.

Cr当量は以下の式で示される。The Cr equivalent is expressed by the following formula.

Cr当量ニー40×C%−30XN%−2XMn%−4
XNi%十Cr%+6xSi%+4XMO%+1.5w
%+IIXV%+5XNb% 次に本発明における添加元素量の限定理由について説明
する。なお%はすべで重量%を示す。
Cr equivalent knee 40×C%-30XN%-2XMn%-4
XNi%10Cr%+6xSi%+4XMO%+1.5w
%+IIXV%+5XNb% Next, the reason for limiting the amount of added elements in the present invention will be explained. Note that all percentages indicate weight percent.

Cは0.05%以上において、クリープ破断強度を得る
ために必要な元素であるが、その量が0.20%を越え
ると、高温に長時間さらされた場合、組織が不安定とな
υ長時間クリープ破断強度を低下させ、更に溶接工程に
おける溶接部の割れ感受性を高めるので0.05〜08
2%にしなければならない。特に0.07〜0.15%
が好ましい。
C is an element necessary to obtain creep rupture strength at 0.05% or more, but if the amount exceeds 0.20%, the structure becomes unstable when exposed to high temperatures for a long time. 0.05 to 08 because it reduces the long-term creep rupture strength and further increases the cracking susceptibility of the welded part during the welding process.
It has to be 2%. Especially 0.07-0.15%
is preferred.

Si及びMnは脱酸剤として添加するものであり、少量
の添加で十分効果は達成される。多量の添加は焼もどし
脆化感受性を高める。そのためには5it−0,05〜
1%及びMn0.1〜1%にしなければならない。特に
Siは0.2〜0.5%及びMnは0.3〜0.7%が
好ましい。
Si and Mn are added as deoxidizing agents, and a sufficient effect can be achieved by adding a small amount. Addition of a large amount increases susceptibility to tempering embrittlement. For that purpose, 5it-0,05~
1% and Mn 0.1-1%. In particular, Si is preferably 0.2 to 0.5% and Mn is preferably 0.3 to 0.7%.

Crは高温強度及び高温耐食性を高めるものであシ、高
温材料としては欠くことができない元素で9%以上必要
である。しかし、13%を超えるとδフェライトが析出
し、クリープ破断強度、靭性及び疲労強度を著しく低下
させる。特に10〜11%の範囲が好しい。
Cr increases high-temperature strength and high-temperature corrosion resistance, and is an indispensable element for high-temperature materials, and is required in an amount of 9% or more. However, if it exceeds 13%, δ ferrite will precipitate, significantly reducing creep rupture strength, toughness and fatigue strength. Particularly preferred is a range of 10 to 11%.

Niは高温強度及び靭性を高める元素であるが、15%
を超えると、組織の変能点を下げ、組織が不安定となり
、クリープ破断強度を低下させるので、1.5%以下で
なければならない。特にO93〜0.7%が好ましい。
Ni is an element that increases high temperature strength and toughness, but at 15%
If it exceeds 1.5%, the inflection point of the structure will be lowered, the structure will become unstable, and the creep rupture strength will be lowered, so it must be 1.5% or less. Particularly preferred is O93 to 0.7%.

MOは同浴強化及び析出硬化作用によってクリープ強度
を改善し、更に焼もどし脆化を防止する元素であるが、
0,5%未満ではその効果は不十分であシ、2%を超え
てもそれ以上の効果がなく飽和する。したがってMOは
0.5〜2%の範囲が有効である。特に0.9〜1.3
%の範囲が最も有効である。
MO is an element that improves creep strength through bath strengthening and precipitation hardening effects, and also prevents tempering embrittlement.
If it is less than 0.5%, the effect is insufficient, and if it exceeds 2%, there is no further effect and the effect is saturated. Therefore, MO is effective in a range of 0.5 to 2%. Especially 0.9-1.3
A range of % is most useful.

Nbは高温強度を高めるのに非常に効果的な元素である
。また、結晶粒径の微細化にも顕著に作用するが、この
ためには0.05%以上必要とする。
Nb is a very effective element for increasing high temperature strength. It also has a significant effect on making the crystal grain size finer, and for this purpose 0.05% or more is required.

一方、0.4%以上を超えるとフェライトの析出を促進
し、高温強度及び靭性を低下させる。したがって0.0
5〜0.4%の範囲でなければならない。
On the other hand, when it exceeds 0.4%, precipitation of ferrite is promoted and high temperature strength and toughness are reduced. Therefore 0.0
Must be in the range 5-0.4%.

特に0.08〜0.2%が最も有効である。In particular, 0.08 to 0.2% is most effective.

Nはクリープ破断強度の改善及びフェライトの析出防止
に効果があるが、0.02%未満ではその効果が十分で
な(,0,10%を超えるとクリープ破断強度を低下さ
せてしまうので好ましくない。
N is effective in improving creep rupture strength and preventing the precipitation of ferrite, but if it is less than 0.02%, the effect is insufficient (if it exceeds 0.10%, the creep rupture strength will decrease, so it is not preferable. .

特に0.04〜0.06%が好ましい。Particularly preferred is 0.04 to 0.06%.

Wは微量で顕著に高温強度を高める。0.05%未満で
は効果が少なく、また0、8%を超えると急激に強度を
低下させる。Wflo、1〜0,8%以下とすべきであ
る。一方、Wは0.5%を超えると著しく、靭性を低め
るので、高靭性が必要な部材では0.5%未満とするの
が好ましい。特に0.2〜0.4%が好ましい。
Even a small amount of W significantly increases high temperature strength. If it is less than 0.05%, the effect will be small, and if it exceeds 0.8%, the strength will decrease rapidly. Wflo should be less than 1-0.8%. On the other hand, when W exceeds 0.5%, the toughness is significantly lowered, so it is preferably less than 0.5% for members requiring high toughness. Particularly preferred is 0.2 to 0.4%.

上記の必須元素の他に焼入性強化元素としてv1脱酸及
び結晶粒径微細化元素としてZr、Mg及びTIをそれ
ぞれ添加してもよい。
In addition to the above-mentioned essential elements, Zr, Mg, and TI may be added as v1 deoxidizing elements to strengthen hardenability and as elements to refine grain size.

■は焼入性強化元素で、元素と結合して炭化物を形成し
、クリープ破断強度を高める。その効果は0.50%以
下で十分である。逆に0.5%を越えると溶接割れ感受
性を著しく高めるので0.5%以下で十分である。特に
0.1〜0.3の範囲が有効である。
(2) is a hardenability-strengthening element that combines with other elements to form carbides and increases creep rupture strength. The effect is sufficient at 0.50% or less. On the other hand, if it exceeds 0.5%, the weld cracking susceptibility increases significantly, so 0.5% or less is sufficient. A range of 0.1 to 0.3 is particularly effective.

7、 r、 III i及びMgは溶接金属中の脱酸及
び結晶粒径の微細化を促進する元素であり、単独で0.
1%以下又は複合でも0.1%以下でその効果は十分達
成される。それ以上の添加は高温強度及び靭性を低下さ
せる。特に単独又は複合でも0.03〜0,06%が好
ましい。
7.r, IIIi and Mg are elements that promote deoxidation in the weld metal and refinement of crystal grain size, and 0.
The effect can be fully achieved at 1% or less, or even at 0.1% or less in combination. Addition of more than that will reduce high temperature strength and toughness. In particular, 0.03 to 0.06% is preferable, either alone or in combination.

このような溶着金属は、120r系鋳鋼または第1表に
示す被溶接材の熱処理例を第2光に示す。
Examples of heat treatment of such weld metals, such as 120r cast steel or materials to be welded shown in Table 1, are shown in the second light.

第    2    表 ※2回くシ返しが望しい。Table 2 *It is recommended to repeat the process twice.

〔発明の実施例〕[Embodiments of the invention]

心線は真空溶解で溶製し、熱処理及び鍛造後、伸線加工
によシ直径4ws、長さ400mmに加工しプはライム
系である。第3表の心線は用いて低水素型被懐アーク溶
接棒とした。
The core wire is made by vacuum melting, and after heat treatment and forging, it is drawn to a diameter of 4 ws and a length of 400 mm.The wire is made of lime. The core wires shown in Table 3 were used to make low-hydrogen arc covered welding rods.

第    5    表 第6表は本発明の溶接棒と比較のために用いた市販の1
2Cr系高温用被覆アーク溶接棒(直径4、0 m )
の溶着金属の化学組成を示す。
Table 5 Table 6 shows the welding rod of the present invention and the commercially available one used for comparison.
2Cr-based high-temperature coated arc welding rod (diameter 4.0 m)
The chemical composition of the weld metal is shown below.

第    6    表 ド1 匣1 使用した供試母材は第7表に示す化学組成からなる12
C「系高温用耐熱鋳鋼を用いた。
Table 6 Box 1 The test base material used had the chemical composition shown in Table 7.
C: Uses high-temperature heat-resistant cast steel.

第    7    表 実施例の溶接施工条件を第3図に示す。予熱温度200
〜250Cで十分母材を加熱後、パス間温度及び後熱開
始温度20(l後、400Cで30分間の後熱保持後8
0Cまで冷却し、その後700Cで4時間保持のSR処
理を施した。
Table 7 The welding conditions for the examples are shown in Figure 3. Preheating temperature 200
After sufficiently heating the base material at ~250C, the inter-pass temperature and after-heating start temperature of 20 (l), and after holding the after-heating at 400C for 30 minutes, 8
It was cooled to 0C, and then subjected to SR treatment at 700C for 4 hours.

溶接棒の溶接割れ感受性を検討するために溶接拘束割れ
試験を実施した。試験片の形状はJISZ3157のU
型溶接われ試験片に準じた。板厚はaO,、である。
Weld restraint cracking tests were conducted to examine the welding cracking susceptibility of welding rods. The shape of the test piece is JIS Z3157 U.
Same as type welded test piece. The plate thickness is aO,.

第8表及び第9表は、それぞれ第3表及び第4表の比較
溶接棒溶着金属及び本発明の引張強さ、衝撃値及び60
0C,10’時間クリープ破断強度及び溶接部断面割れ
率を示す。
Tables 8 and 9 show the tensile strength, impact value and 60
0C, 10' hour creep rupture strength and weld section cross-sectional crack rate are shown.

第    8    表 第    9    表 次の通シである。N添加の有無にかかわらず、高Nb(
第8表及び第9表のAI)及び高Nb(第8表及び第9
表の42)の衝撃値は、両者共比較材よシも低い値を示
す。Nb含有量がAX〜とA2の中間(第8表のAll
および第9表のA7)では衝撃値は比較材よシもI K
r/c&高い値を示している。一方、クリープ破断強度
は高Nb、低Nbの場合とも比較材と同程度であるが、
第8表の墓11及び第9表のJI67は比較材よシも約
3Kf/1m”高い値を示す。
Tables 8 and 9 are as follows. High Nb (
AI in Tables 8 and 9) and high Nb (AI in Tables 8 and 9)
The impact value of item 42) in the table is lower than that of the comparative material. The Nb content is between AX~ and A2 (All in Table 8)
And in A7) of Table 9, the impact value is lower than that of the comparative material.
It shows a high value of r/c&. On the other hand, the creep rupture strength is similar to that of the comparative material in both high Nb and low Nb cases;
Grave 11 in Table 8 and JI67 in Table 9 show values that are approximately 3 Kf/1m" higher than the comparative materials.

これらの試験結果は、Cr当量が10を超えると、フェ
ライトが生成するため靭性及び高温強度が低下する。し
かしNbが少すぎる場合、Nb特有の組織の微細化及び
高温で安定なNb炭化物の生成がないためNbの効果が
発揮されない。第8表(7)All及び第9表(7)A
7tj:Cr当量が10以下であり、しかもNbの適正
な添加量による組織の微細化効果によシ高温強度及び靭
性が改善され次ものである。
These test results show that when the Cr equivalent exceeds 10, toughness and high-temperature strength decrease due to the formation of ferrite. However, if the amount of Nb is too small, the effect of Nb will not be exhibited because there will be no refinement of the structure peculiar to Nb and no formation of Nb carbide which is stable at high temperatures. Table 8 (7) All and Table 9 (7) A
7tj: The Cr equivalent is 10 or less, and the high-temperature strength and toughness are improved due to the refinement of the structure due to the appropriate addition amount of Nb.

第8表のA3及びA 4 、第9表のA3はいずれもM
Oの添加による効果をみたものであシ、いずれもMOの
適正添加量範囲外であるため、靭性及びクリープ破断強
度は比較材よりも低い。第8表及び第9表のA3は、い
ずれもCr当量が高すぎるため、フェライトが生成しク
リープ破断強度及び靭性が著しく低い。
A3 and A 4 in Table 8 and A3 in Table 9 are both M
This study examined the effect of adding O, and since both amounts were outside the appropriate addition amount range of MO, the toughness and creep rupture strength were lower than the comparative materials. In both A3 in Tables 8 and 9, the Cr equivalent was too high, so ferrite was formed and the creep rupture strength and toughness were extremely low.

第8表のA5及び第9表のA4は、いずれも本発明の組
成であって、特に■を微°量とし、■含有。
A5 in Table 8 and A4 in Table 9 both have the compositions of the present invention, especially containing a very small amount of ■.

量の減少分をCによって補なっておシ、比較材よシも高
い靭性及びクリープ破断強度が高い。
The decrease in the amount of carbon was compensated for by C, and the material had higher toughness and creep rupture strength than the comparative material.

第8表の46及び第9表のA5は、Cの含有量が多いた
めに焼入性を増し、溶着金属の硬さが高いためクリープ
破断強度は比較材よりも高いが、靭性は著しく低い。
46 in Table 8 and A5 in Table 9 have a high C content, which increases hardenability, and the hardness of the weld metal is high, so the creep rupture strength is higher than the comparative materials, but the toughness is significantly lower. .

第8表の47では、Cr当量が高く7エ2イトの生成が
あるため、比較材よシも靭性及びクリープ破断強度が低
い。第8表のA8および第9表のA6は、W含有量が低
いため靭性は比較材よシも高いが、炭化物の凝集、粗大
化現象低減の効果がなくなシ、炭化物の粗大化が起り、
クリープ破断強度が低くなっている。
Sample 47 in Table 8 has a high Cr equivalent and the formation of 7E2ite, so its toughness and creep rupture strength are low compared to the comparative materials. A8 in Table 8 and A6 in Table 9 have higher toughness than the comparative materials due to their low W content, but the effect of reducing carbide agglomeration and coarsening phenomenon is lost, and carbide coarsening occurs. ,
Creep rupture strength is low.

第8表のA9は低C1高Wの場合であるがCr当量が1
0以上であり、フェライトが生成し、特にクリープ破断
強度が低い。
A9 in Table 8 is a case of low C1 high W, but the Cr equivalent is 1
0 or more, ferrite is generated, and the creep rupture strength is particularly low.

第8表のA10およびAll、第9表のA7の本発明の
組成範囲内であシ、いずれも比較材よシも靭性及びクリ
ープ破断強度が高い。
Both A10 and All in Table 8 and A7 in Table 9 are within the composition range of the present invention, and both have higher toughness and creep rupture strength than the comparative materials.

次に割れ試験結果についてみると、溶接施工条件は第3
図に示すととくであシ、1パス溶接によって行った。割
れ発生の有無は試験ビードを6断面に分割し、光学顕微
鏡により観察し調査した、第8表および第9表の断面割
れ率は6断面の溶接割れ率の平均値を示す。その結果、
割れは第8表のA6および第9表のA5の高C1及び高
Vに発生したが、本発明材の第8表のA5,10及び1
1および第9表のA4.A7には割れは認められなかっ
た。
Next, looking at the cracking test results, welding construction conditions were
As shown in the figure, one-pass welding was performed. The presence or absence of cracking was investigated by dividing the test bead into 6 cross sections and observing them using an optical microscope. The cross-sectional crack rates in Tables 8 and 9 indicate the average value of the weld crack rates of the 6 cross sections. the result,
Cracking occurred in high C1 and high V of A6 in Table 8 and A5 in Table 9, but cracks occurred in A5, 10 and 1 of Table 8 of the invention material.
1 and A4 in Table 9. No cracks were observed in A7.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の溶接構造物は、高温強度及び靭性
が高く、更に耐溶接割れ感受性も良好であシ、特に60
0?、tでの高温クリープ破断強度は著しく高く、高効
率蒸気タービンケーシング用溶接材として要求される強
度を十分満足していることが明らかであり、550〜6
00Cでの高効率磁気タービンケーシング用溶接構造と
して好適である。
As described above, the welded structure of the present invention has high high-temperature strength and toughness, and also has good weld cracking resistance.
0? It is clear that the high-temperature creep rupture strength at , t is extremely high and satisfies the strength required as a welding material for high-efficiency steam turbine casings;
It is suitable as a welded structure for high efficiency magnetic turbine casing at 00C.

【図面の簡単な説明】 第1図は蒸気タービンケーシング本体、蒸気加減弁ケー
シングの断面構成図、第2図は主蒸気ケーシング及びそ
の溶接部の断面構成図、第3図は実施例で用いた溶接施
工の説明図である。 1・・・ケーシング本体、2・・・加減弁ケーシング、
3・・・主蒸気弁ケーシング、4・・・溶接部。
[Brief explanation of the drawings] Figure 1 is a cross-sectional diagram of the steam turbine casing body and steam control valve casing, Figure 2 is a cross-sectional diagram of the main steam casing and its welded parts, and Figure 3 is the cross-sectional diagram of the main steam casing and its welded parts. It is an explanatory view of welding construction. 1...Casing body, 2...Adjustment valve casing,
3... Main steam valve casing, 4... Welded part.

Claims (2)

【特許請求の範囲】[Claims] 1.12Cr系鋳鋼または鍛鋼を被溶接材とする溶接構
造において、重量比でC:0.05〜0.2%。 SI  二 0.05 〜i  %、Mn:0.1 〜
l  %、  N j:1.5%以下、Cr:9.0〜
13%、Mo:o、5〜2%、 N b : 0.05
〜0.4%、 W : 0.05〜0.8%を含み、残
部鉄及び不可避不純物元素がらなシ、C「当量が10以
下であることを特徴とする120r系鋼溶接構造物。
1. In a welded structure in which the material to be welded is 12Cr cast steel or forged steel, C: 0.05 to 0.2% by weight. SI2 0.05~i%, Mn:0.1~
l%, Nj: 1.5% or less, Cr: 9.0~
13%, Mo:o, 5-2%, Nb: 0.05
~0.4%, W: 0.05~0.8%, and the balance is iron and unavoidable impurity elements.
2.12Cr系鋳鋼または鍛鋼を被溶接材とする溶接構
造物において、重量比でC:0.05〜0.2%、Si
:0.05〜1%、Mn:0.1〜1%。 Nt:x、s%以下、Cr:9゜0〜13%、MO:0
、5〜2%、 Nb : 0.05〜0.4%と、N:
0.02〜0.1%およびw:o、os〜0.8%を含
み残部鉄−及び不可避不純物元素からなシ、Cr当量が
10以下であることを特徴とする120r系鋼溶接構造
物。
2.12Cr-based cast steel or forged steel is used as the welding material for welded structures, with a weight ratio of C: 0.05 to 0.2%, Si
:0.05-1%, Mn:0.1-1%. Nt: x, s% or less, Cr: 9° 0-13%, MO: 0
, 5-2%, Nb: 0.05-0.4%, N:
A 120R series steel welded structure characterized by containing 0.02 to 0.1% and w:o, os to 0.8%, the balance being iron and inevitable impurity elements, and having a Cr equivalent of 10 or less .
JP19892282A 1982-11-15 1982-11-15 Welded structure of 12cr steel Pending JPS5989752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19892282A JPS5989752A (en) 1982-11-15 1982-11-15 Welded structure of 12cr steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19892282A JPS5989752A (en) 1982-11-15 1982-11-15 Welded structure of 12cr steel

Publications (1)

Publication Number Publication Date
JPS5989752A true JPS5989752A (en) 1984-05-24

Family

ID=16399186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19892282A Pending JPS5989752A (en) 1982-11-15 1982-11-15 Welded structure of 12cr steel

Country Status (1)

Country Link
JP (1) JPS5989752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231092A (en) * 1995-02-28 1996-09-10 Negishi Seisakusho:Kk Fixing device for rolling end part of long-sized sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116858A (en) * 1980-02-20 1981-09-12 Toshiba Corp Steam turbine rotor
JPS57120654A (en) * 1981-01-16 1982-07-27 Toshiba Corp Heat resistant 12% cr steel
JPS57120655A (en) * 1981-01-16 1982-07-27 Toshiba Corp Moving vane of steam turbine
JPS5837159A (en) * 1981-08-26 1983-03-04 Hitachi Ltd Heat resistant martensite steel
JPS58110662A (en) * 1981-12-25 1983-07-01 Hitachi Ltd Heat resistant steel
JPS58110661A (en) * 1981-12-25 1983-07-01 Hitachi Ltd Heat resistant steel
JPS58120764A (en) * 1982-01-08 1983-07-18 Toshiba Corp Moving vane of steam turbine with superior strength at high temperature and low creep crack propagating speed

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116858A (en) * 1980-02-20 1981-09-12 Toshiba Corp Steam turbine rotor
JPS57120654A (en) * 1981-01-16 1982-07-27 Toshiba Corp Heat resistant 12% cr steel
JPS57120655A (en) * 1981-01-16 1982-07-27 Toshiba Corp Moving vane of steam turbine
JPS5837159A (en) * 1981-08-26 1983-03-04 Hitachi Ltd Heat resistant martensite steel
JPS58110662A (en) * 1981-12-25 1983-07-01 Hitachi Ltd Heat resistant steel
JPS58110661A (en) * 1981-12-25 1983-07-01 Hitachi Ltd Heat resistant steel
JPS58120764A (en) * 1982-01-08 1983-07-18 Toshiba Corp Moving vane of steam turbine with superior strength at high temperature and low creep crack propagating speed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231092A (en) * 1995-02-28 1996-09-10 Negishi Seisakusho:Kk Fixing device for rolling end part of long-sized sheet

Similar Documents

Publication Publication Date Title
JP4697357B1 (en) Austenitic heat-resistant alloy
JP4780189B2 (en) Austenitic heat-resistant alloy
US8444778B2 (en) Low-thermal-expansion Ni-based super-heat-resistant alloy for boiler and having excellent high-temperature strength, and boiler component and boiler component production method using the same
JP4631986B1 (en) Ni-based alloy product and manufacturing method thereof
JP6519007B2 (en) Method of manufacturing Ni-based heat resistant alloy welded joint
WO2018151222A1 (en) Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME
WO2010038826A1 (en) Ni‑BASED HEAT-RESISTANT ALLOY
JP2013104109A (en) Seamless austenite heat-resistant alloy tube
WO2016129666A1 (en) Method for manufacturing austenitic heat-resistant alloy welded joint, and welded joint obtained using same
JPH02290950A (en) Ferritic heat resisting steel excellent in strength at high temperature
JPH0565762B2 (en)
JP2020084314A (en) Reheat cracking resistant w-containing high strength low alloy heat resistant steel
JP5899806B2 (en) Austenitic heat-resistant alloy with excellent liquefaction resistance in HAZ
JPH04147948A (en) Rotary shaft for high temperature steam turbine
JPS63309392A (en) Filler material for tig welding for austenitic heat resistant alloy
JPH0454737B2 (en)
JPS58502B2 (en) Alloy with excellent heat resistance
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JP3424314B2 (en) Heat resistant steel
JPS5989752A (en) Welded structure of 12cr steel
JPH01215490A (en) Welding wire for cr-mo low alloy steel
JP2594265B2 (en) TIG welding wire for 9Cr-Mo steel
JP4002389B2 (en) Rotating welded joint of mild steel or 490 MPa class steel excellent in fatigue strength and method for producing the same
JP2019130591A (en) Weld joint
JPH11106860A (en) Ferritic heat resistant steel excellent in creep characteristic in heat-affected zone