JPS5986704A - Capacity compensating device of hydrualic closed circuit - Google Patents

Capacity compensating device of hydrualic closed circuit

Info

Publication number
JPS5986704A
JPS5986704A JP19681382A JP19681382A JPS5986704A JP S5986704 A JPS5986704 A JP S5986704A JP 19681382 A JP19681382 A JP 19681382A JP 19681382 A JP19681382 A JP 19681382A JP S5986704 A JPS5986704 A JP S5986704A
Authority
JP
Japan
Prior art keywords
hydraulic
circuit
rod cylinder
driven
low pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19681382A
Other languages
Japanese (ja)
Inventor
Katsuaki Ishizuka
石塚 克明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP19681382A priority Critical patent/JPS5986704A/en
Publication of JPS5986704A publication Critical patent/JPS5986704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To easily perform compensation for deficiency in the flow quantity by providing two hydraulic closed circuits relative to two single-rod cylinders, and when a deficiency in the flow quantity is introduced in the driving side hydraulic closed circuit, by supplying pressurized oil corresponding to the deficient flow quantity from a hydraulic pump of the other hydraulic closed circuit. CONSTITUTION:In the device in which single rod cylinders 12 and 22 are driven by delivered oil from variable capacity hydraulic pumps 11 and 21 through hydraulic closed circuits 13 and 23, first switching valves 14 and 24 which are switchable to three positions and second switching valves 17 and 27 which are switchable to two positions, are provided in the hydraulic closed circuits 13 and 23. Further, a relief valve 8, an operating oil tank 9 and a low pressure circuit 10 are provided commonly to the closed circuits 13 and 23. Branch circuits 10a1 and 10a2 which are connected to the ports of first switching valves 14 and 24, and branch circuits 10b1 and 10b2 which are connected to the intermediates of second switching values 17 and 27 and check valves 16 and 26, are branched from the low pressure circuit 10. The above switching valves 14, 17, 24 and 27 and the sloping quantities and the like of the swash plates of respective pumps 11 and 21, are controlled by a controlling device 31.

Description

【発明の詳細な説明】 本発明は、油圧dttとこの油圧υr、4 K接続され
た片ロツドシリンダより成る油田閉回路に生じる流jk
不足を補償する油[L閉回路の容量補償装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on the hydraulic pressure dtt, this hydraulic pressure υr, and the flow jk generated in an oil field closed circuit consisting of a single-rod cylinder connected to 4K.
This article relates to a capacity compensator for an L closed circuit that compensates for a shortage of oil.

片ロツドシリンダをアクチュエータとする油圧閉回路に
おいては、片ロツドシリンダのヘッド側とロッド側の受
圧面積の差により片ロツドシリンダを駆動したときその
閉回路に流t(の過不足を生じ、過剰分はリリーフ弁を
介してタンクに排出し、不足分は別に設置したチャージ
ポンプ等から供給−号るようになっ″〔いる。以下、図
によりこれを説明する。
In a hydraulic closed circuit that uses a single-rod cylinder as an actuator, when the single-rod cylinder is driven due to the difference in the pressure-receiving area between the head side and rod side of the single-rod cylinder, an excess or deficiency of flow t (t) occurs in the closed circuit, and the excess flow is handled by the relief valve. The remaining amount is supplied from a separately installed charge pump or the like.This will be explained below with reference to the drawings.

第1図は従来の片ロツドシリンダの油圧閉回路の系統図
である。
FIG. 1 is a system diagram of a conventional hydraulic closed circuit of a single rod cylinder.

図で、1は可変容置油圧ポンプであり、斜板、斜軸等に
よりその吐出方向、吐出量が制御される。
In the figure, 1 is a variable displacement hydraulic pump, and its discharge direction and discharge amount are controlled by a swash plate, a diagonal shaft, etc.

2は前記油圧ポンプ1で駆動される片ロツドシリンダ、
3は油出ポンプ1と片ロツドシリンダ2とを接続する油
圧回路、4は油圧回路3に介在する切換弁、5は油圧回
路3のヘッド側とロッド側の間に接続されたフラッシン
グ弁、6は逆止弁である。7は油出回路3に生じる流量
不足を補fJfするチャージポンプ、8は油圧閉回路3
に生じる過剰流量を排出するリリーフ弁、9は作動油タ
ンク、川はフラッシング弁5により油圧回路3の低圧側
とリリーフ弁8とを接続する低圧回路である。
2 is a single rod cylinder driven by the hydraulic pump 1;
3 is a hydraulic circuit connecting the oil pump 1 and the single rod cylinder 2, 4 is a switching valve interposed in the hydraulic circuit 3, 5 is a flushing valve connected between the head side and the rod side of the hydraulic circuit 3, and 6 is a hydraulic circuit connecting the oil pump 1 and the single rod cylinder 2; It is a check valve. 7 is a charge pump that compensates for the flow shortage occurring in the oil output circuit 3; 8 is a hydraulic closed circuit 3;
9 is a hydraulic oil tank, and 9 is a low pressure circuit that connects the low pressure side of the hydraulic circuit 3 and the relief valve 8 through a flushing valve 5.

このような片ロッドシリンダ20油工回路3においては
、前述の如く片ロツドシリンダ2の受圧面積の差による
駆動時の容積変化やリークにより流量に過不足を生じる
。この場合、もし、油圧回路3のいずれ11111かに
流量不足を生じたときは、チャージポンプ7からの圧油
が逆止弁6を介して、又、フラッシング弁5、低圧回路
10.逆止弁6を介して、流蓋不足側の油圧回路3に供
給されて流量不足を袖fAする。逆に、油圧回路3のい
ずれ側かに流星過剰を生じたときは、フラッシング弁5
.1氏出回路10を介して過剰流量が流れ、このとき低
圧回路10σ)圧力がリリーフ弁8のリリーフ設定圧す
る。
In such a single rod cylinder 20 hydraulic circuit 3, excess or deficiency in flow rate occurs due to volume changes and leaks during driving due to the difference in pressure receiving areas of the single rod cylinders 2, as described above. In this case, if a flow shortage occurs in any one of the hydraulic circuits 3 11111, the pressure oil from the charge pump 7 will flow through the check valve 6, the flushing valve 5, the low pressure circuit 10. It is supplied via the check valve 6 to the hydraulic circuit 3 on the side where there is insufficient flow cover to prevent insufficient flow fA. Conversely, if an excess of meteor occurs on either side of the hydraulic circuit 3, the flushing valve 5
.. Excess flow flows through the 1°C output circuit 10, and at this time, the pressure in the low pressure circuit 10σ) becomes the relief setting pressure of the relief valve 8.

このように、従来、油圧ポンプ1と片ロツドシリンダ2
とで油11−閏回路を構成する場合、片ロツドシリンダ
2の駆動による流量不足の発生に備え、その不足を補償
するチャージポンプ7の設置が不可欠となっていた。し
かしながら、チャージポンプ7には通常、定警犀型の油
圧ポンプが用(・られているため、油圧回路3で流量不
足が生じな℃・ときは、チャージポンプ7の圧油はリリ
ーフ弁8を介してタンクに放出されてしまい、極めて不
紗済であった。このため、チャージポンプ7に代えてチ
ャージ専用のi+J変容振ポンプを用(・ることカー提
案されているが、このよ5な勇変宕証ポンプは非常に高
価であり、実用に適さないという欠点があった0 本発明σ)目的目1、−に記従来の問題を解決し、チャ
ージポンプ、riJ変容祉ポンプ等を別途設置すること
なく不足流量を補償することができる油圧閉回路の容量
袖償佐匝を提供するにある。
In this way, conventionally, the hydraulic pump 1 and the single rod cylinder 2
When constructing an oil 11-leap circuit, it is essential to install a charge pump 7 to compensate for the insufficient flow rate due to the drive of the single rod cylinder 2. However, since the charge pump 7 is usually a constant-warning type hydraulic pump, when there is insufficient flow in the hydraulic circuit 3, the pressure oil in the charge pump 7 is supplied to the relief valve 8. Therefore, it was proposed that an i+J transducer pump exclusively for charging should be used in place of the charge pump 7. The Yuhengosho pump had the disadvantage of being extremely expensive and unsuitable for practical use.The present invention σ) Objective 1. - Solve the conventional problems stated in -, and separately install charge pumps, RIJ transformation pumps, etc. The purpose is to provide a hydraulic closed circuit capacity compensation system that can compensate for insufficient flow without installation.

この目的を達成するため、本発明は、複数の油圧源と、
これら油圧源にそれぞれ接続されたアクチュエータとを
備え、これらアクチュエータの少なくとも1つは油圧源
とともに閉回路を構成する片ロツドシリンダであり、片
ロツドシリンダが駆![il+されるときに、駆動され
ていない他の油圧d9を、駆動されている片ロツドシリ
ンダの閉回路に接続して、この接続された油圧源により
閉回路の不足流量を補償するようにしたことを特徴とす
る。
To achieve this objective, the present invention comprises a plurality of hydraulic sources;
and actuators connected to each of these hydraulic power sources, at least one of these actuators is a single-rod cylinder that forms a closed circuit with the hydraulic power source, and the single-rod cylinder is driven! [When il + is applied, the other hydraulic pressure d9 which is not driven is connected to the closed circuit of the driven single rod cylinder, and the insufficient flow rate of the closed circuit is compensated by this connected hydraulic pressure source. It is characterized by

以下、本発明を第2図に示す実施例に基づいて説明する
The present invention will be explained below based on the embodiment shown in FIG.

第2図で、11は可変容量油圧ポンプ(以下単に油出ポ
ンプという。)であり、その吐出量および吐出方向は斜
板、斜軸等(以下斜板で代表する。)により制御される
。12は油圧ポンプ11で駆動される片ロツドシリンダ
、13は油圧ポンプ11と片ロツドシリンダj2とを接
続して閉回路を構成する油圧回路である。14は油圧回
路13に介在する第1の切換弁であり、中立位置C2左
1jll1位(候り、右側位置口・に切換えられ、中立
位置、Cで油圧ポンプ11と片ロツドシリンダ12を遮
断し、左側位1g蔓りで両者を導通状態とする。右側位
置J−1については後述する。
In FIG. 2, reference numeral 11 denotes a variable displacement hydraulic pump (hereinafter simply referred to as oil pump), the discharge amount and discharge direction of which are controlled by a swash plate, a slant shaft, etc. (hereinafter referred to as swash plate). 12 is a single rod cylinder driven by the hydraulic pump 11, and 13 is a hydraulic circuit that connects the hydraulic pump 11 and the single rod cylinder j2 to form a closed circuit. Reference numeral 14 designates a first switching valve interposed in the hydraulic circuit 13, which is switched from a neutral position C2 to a left position (C2) and a right position (opening), and shuts off the hydraulic pump 11 and the single-rod cylinder 12 at the neutral position C. Both are brought into conduction state by the left position 1g.The right position J-1 will be described later.

15は油圧回路I3のヘッド側とロッド側の間に接続さ
れたフラッシング弁、]6は逆止弁、17は上側位置U
と下側位置、1〕に切換えられる第2の切換弁である。
15 is a flushing valve connected between the head side and rod side of the hydraulic circuit I3,] 6 is a check valve, and 17 is an upper position U.
and the lower position, 1].

18は油圧ポンプ11の斜板の傾転量、傾転方向を検出
する傾転量検出装置、19は油圧ポンプ11の斜板を駆
動する斜板駆動装置である。
Reference numeral 18 denotes a tilting amount detection device that detects the amount and direction of tilting of the swash plate of the hydraulic pump 11, and 19 a swash plate drive device that drives the swash plate of the hydraulic pump 11.

以上述べた油LE閉回路と同じ油圧閉回路が第2図で右
側に示されている。即ち、21は油圧ポンプ、22は片
ロツドシリンダ、詔は油圧回路、囚は第1の切換弁、5
はフラッシング弁、26は逆止弁、27は第2の切換弁
、甜は傾転量検出装置、29は斜板駆動装置である。
A hydraulic closed circuit similar to the oil LE closed circuit described above is shown on the right side of FIG. That is, 21 is a hydraulic pump, 22 is a single rod cylinder, 1 is a hydraulic circuit, 2 is a first switching valve, 5
26 is a flushing valve, 26 is a check valve, 27 is a second switching valve, 甜 is a tilting amount detecting device, and 29 is a swash plate driving device.

第1図に示すIJ IJ−フ弁8、作動油タンク9゜低
圧回路用は、本実施例においては左右の油田回路に対し
て共通に設けられている。低圧回路10からは、各第1
の切換弁14、冴のボートに接続する分岐回路10a、
 、 IUaIおよび各第2の切換弁17.27と一方
の逆止弁16、あの中間に接続する分岐回路10b、 
、 Job、が分岐している。
In this embodiment, the IJ valve 8 and the hydraulic oil tank 9 for the low pressure circuit shown in FIG. 1 are provided in common for the left and right oil field circuits. From the low voltage circuit 10, each first
a switching valve 14, a branch circuit 10a connected to Sae's boat,
, IUaI and each second switching valve 17, 27 and one check valve 16, a branch circuit 10b connected to that intermediate,
, Job, are branching.

加は片ロツドシリンダ12を操作する操作レバー、ぷ)
は片ロツドシリンダ22を操作する操作レバーである。
In addition, there is an operation lever for operating the single rod cylinder 12.
is an operating lever for operating the single rod cylinder 22.

31は左右の油圧閉回路の作動を制御する制御装置であ
り、操作レバー加、(ト)、傾転量検出装置俯618、
あの信号を入力し、この信号に基づいて油圧ポンプ11
.21の斜板の傾転方向、傾転量、および第1の切換弁
14、別、第2の切換弁17.27の切換えを制御する
。制御装置31は演算回路又はマイクロコンビ二一夕を
用いて構成されている。
31 is a control device that controls the operation of the left and right hydraulic closed circuits;
Input that signal, and based on this signal, the hydraulic pump 11
.. It controls the direction and amount of tilting of the swash plate 21, and the switching of the first switching valve 14, another switching valve 17, and the second switching valve 17.27. The control device 31 is constructed using an arithmetic circuit or a microcombiner.

次に、本実施例の動作を、第3図に示すフローチャート
を参照しながら説明する。
Next, the operation of this embodiment will be explained with reference to the flowchart shown in FIG.

制御装[,31に堀源が投入されると、制御装置3Iに
おいては、まず、操作レバー加からの操作信号が入力さ
れているか否かを判断する(第1のステップS1゜以下
各ステップを符号8.、S、・・・・・・・・・で表ず
。)。操作レバー加からの操作信号がなければ、今度は
操作レバー加からの操作信号が入力されているか否かを
判断する(S、)。操作レバー(資)からの信号もない
場合、即ち、操作レバー別、(資)のいずれも操作され
ていない場合、制御装置31がらは第1の切換弁14、
冴を中立位置Cとする信号および第2の切換弁17.2
7を下側位1tffi Dとする信号が出力される(S
3)。これにより、油圧ポンプ11と片ロヅドシリンダ
12との間は遮断され、低圧回路10の分岐回路101
1. 、 lOb、は逆止弁16、がを介して油圧回路
13、田に接続される。この状態では当然ながら左右の
両油L[閉回路は全く作動しない。
When the control device 31 is turned on, the control device 3I first determines whether an operation signal from the operation lever is input (first step S1 and subsequent steps are performed). It is not represented by the code 8., S, ......). If there is no operation signal from the operation lever, it is then determined whether or not an operation signal from the operation lever is input (S,). When there is no signal from the operating lever (equipment), that is, when none of the operating levers (equipment) is operated, the control device 31 switches the first switching valve 14,
Signal to set Sae to neutral position C and second switching valve 17.2
A signal with 7 as the lower position 1tffiD is output (S
3). As a result, the hydraulic pump 11 and the single-rod cylinder 12 are cut off, and the branch circuit 101 of the low pressure circuit 10 is disconnected.
1. , lOb, are connected to the hydraulic circuit 13 through the check valve 16, respectively. Naturally, in this state, both the left and right oil L [closed circuits] do not operate at all.

これとは逆に、操作レバー加、30の両者が同時に操作
された場合、まず、操作レバー加が操作されていると判
断され(S、)、次いで、操作レバーよ)も操作されて
いると判断される(S4)。そうすると、前述の操作レ
バー加、刃とも操作されていない場合と同じく8α3の
ステップS3に移行し、さきに述べたと同())tVC
l、−、右の両油圧閉回路を不作動状態とし、流量不足
による事故発生を防止するようになっている。
On the contrary, if both the operating levers 30 are operated at the same time, it is determined that the operating lever 30 is operated first, and then it is determined that the operating lever 30 is also operated. A determination is made (S4). Then, the process moves to step S3 of 8α3, which is the same as when neither the operation lever nor the blade is operated, and the same ())tVC as mentioned earlier is reached.
Both the l, - and right hydraulic closed circuits are rendered inactive to prevent accidents due to insufficient flow.

次に、いずれかのIV:作レバー、例えば操作レバー2
0が操作されて片ロツドシリンダ12が駆動されている
場合を考える。この場合、制御装置31では、第1のス
テップSIで操作レバー九の操作信号が入力されている
と判断し、第4のステップS4で操作レバー(資)の信
号は入力されていないと判断スる。
Next, press any IV: operation lever, for example operation lever 2.
Let us consider the case where the single rod cylinder 12 is driven by the operation of the cylinder 0. In this case, the control device 31 determines in the first step SI that the operation signal of the control lever 9 has been input, and in the fourth step S4 it determines that the signal of the control lever (9) has not been input. Ru.

そうすると、制御装置i!731からは、第1の切換弁
14を左側位1tl’f Lに切換える信号、第1の切
換弁別を右側位置几に切換える信号、第2の切換弁17
を下側位置DK切換える信号、第2の切換弁27を上側
位朧、Uに切換える信号が出力される(Ss)。これに
より、各切換弁は第2図に示す状態となり、油IEポン
プ11と片ロツドシリンダ12.および分岐回路10 
b 、と油圧回路13がそれぞれ接続される。一方、油
田ポンプ21と片ロツドシリンダ22、および分岐回路
1(l b 、と油圧回路おがそれぞれ遮断状態になる
とともに、第1の切換弁24により油圧ポンプ11の一
方側は作Hil+油タンク9に接続され、他方側は分岐
回路1(layに接続される。次に、制御装置31は傾
転M検出装置k1Bの信号を取入れて油圧ポンプ11の
斜板の傾転量、傾転方向を検出する(S@)。そして、
斜板の傾転方向から、油圧ポンプ11が片ロツドシリン
ダ12を、油圧回路13に流量不足を生じる方向に駆動
してぃイ)が否かを判断する(s7)。負荷により異な
るものの、一般的に番オ1、片ロツドシリンダのロッド
が伸長する方向の駆動の場合に油圧回路13に流量不足
を生じる。なお、流用、過剰の場合は、その過刺分かリ
リーフ弁8がら作動油タンク9に排出されるので問題は
生じない。さて、ステップS、で油圧回路13に流量不
足が生じないと判断された場合、制御装置31がらは斜
板駆動装置〆1゜29に対して油圧ボンダ21の斜板な
中立位置とするような指令信号が出力される(s8)。
Then, the control device i! From 731, a signal to switch the first switching valve 14 to the left position 1tl'f L, a signal to switch the first switching valve to the right position, and a signal to switch the first switching valve 14 to the right position 1tl'f L, the second switching valve 17
A signal for switching the second switching valve 27 to the lower position DK and a signal for switching the second switching valve 27 to the upper position, U, are output (Ss). As a result, each switching valve becomes the state shown in FIG. 2, and the oil IE pump 11, single rod cylinder 12. and branch circuit 10
b and the hydraulic circuit 13 are connected to each other. On the other hand, the oil field pump 21, the single-rod cylinder 22, the branch circuit 1 (lb), and the hydraulic circuit are each cut off, and the first switching valve 24 switches one side of the hydraulic pump 11 to the active Hil+oil tank 9. The other side is connected to the branch circuit 1 (lay).Next, the control device 31 receives the signal from the tilt M detection device k1B and detects the tilt amount and tilt direction of the swash plate of the hydraulic pump 11. (S@).And,
Based on the tilting direction of the swash plate, it is determined whether the hydraulic pump 11 is driving the single rod cylinder 12 in a direction that causes a flow shortage in the hydraulic circuit 13 (s7). Although it varies depending on the load, in general, a flow shortage occurs in the hydraulic circuit 13 when the rod of the No. 1 single-rod cylinder is driven in the direction of extension. In addition, in the case of diversion or excess, the overfill is discharged from the relief valve 8 into the hydraulic oil tank 9, so no problem occurs. Now, if it is determined in step S that there is no shortage of flow in the hydraulic circuit 13, the control device 31 moves the hydraulic bonder 21 to the neutral position of the swash plate with respect to the swash plate drive device 〆1゜29. A command signal is output (s8).

これにより、油田ポンプ21は不作動状態となり、圧油
は吐出されない。ステップS、で油If回路13りし流
量不足が生じると判断された場合、制御装Jj、i 3
1がらは斜板駆動装置29に対し“〔油L1−ポンプ2
1の斜板の傾転itを油圧ポンプ11の斜板の傾転量と
等しくする指令信号が出力される(So)。これにより
、油圧ポンプ21の斜板は油圧ポンプ110余l板と等
h1だけ傾転し、油圧ポンプ21からはこれに応じた圧
油(流it不足に見合った童の圧油)が吐出される。即
ち、作動油タンク9の油は第2の切換弁24、油圧回路
るを経て油圧ポンプ21の一方側に吸入され、他方側か
ら吐出される。吐出された油は第1の切換弁別、分岐回
路10a7、低圧回路10、分岐回路10b’、、逆止
弁16又は第2の切換弁17と逆止弁16を経て流量不
足側の油圧回路13に供給される。このため、油圧回路
13の流量不足は完全に補償される。この圧油の[Jt
、給回路において、第2の切換弁27は、分岐回路Jo
b、を介する低圧回路10と作動油タンク9との連通を
遮断するものであり、前記連通により圧油がポンプ21
を循環して圧油回路13のvtt 址不足側へ供給され
な(なるのを防止している。
As a result, the oilfield pump 21 becomes inactive, and no pressure oil is discharged. If it is determined in step S that insufficient flow occurs in the oil If circuit 13, the control device Jj, i3
1 to the swash plate drive device 29.
A command signal that makes the tilting amount of the swash plate of the hydraulic pump 11 equal to the amount of tilting of the swash plate of the hydraulic pump 11 is output (So). As a result, the swash plate of the hydraulic pump 21 is tilted by an amount h1 equal to the plate of the hydraulic pump 110, and the hydraulic pump 21 discharges a corresponding amount of pressure oil (pressure oil commensurate with the lack of flow). Ru. That is, the oil in the hydraulic oil tank 9 is sucked into one side of the hydraulic pump 21 via the second switching valve 24 and the hydraulic circuit, and is discharged from the other side. The discharged oil passes through the first switching valve, the branch circuit 10a7, the low pressure circuit 10, the branch circuit 10b', the check valve 16, or the second switching valve 17 and the check valve 16, and then enters the hydraulic circuit 13 on the side where the flow rate is insufficient. supplied to Therefore, the insufficient flow rate of the hydraulic circuit 13 is completely compensated for. This pressure oil [Jt
, in the supply circuit, the second switching valve 27 is connected to the branch circuit Jo.
The communication between the low pressure circuit 10 and the hydraulic oil tank 9 via the
This prevents the VTT from being circulated and supplied to the VTT insufficient side of the pressure oil circuit 13.

操作レバー30が操作され、操作レバー四が操作されて
いない場合も、左右の油圧閉回路の各要素の動作が入れ
換わるのみで他はステップS、〜ステップS9と同じ動
作を行って油圧回路乙の流量不足を油圧ポンプ11で補
償する。この動作がステップ8)6〜ステツプ814に
示されている。この場合、油圧ポンプ2Iで片ロツドシ
リンダ22が駆動され、第1の17J換弁14は右側位
置)LK、第1の切換弁24は左側位置りに、第2の切
換弁17は上側位置Uに、れ、油圧ポンプ11がらの圧
油は分岐回路10a、、低圧回路10、分岐回路10b
、を経て油EE回路乙の流J「4゜不足側に供給される
。ステップS、。〜ステップ814の動作の詳細な説明
は省略する。
Even when the operating lever 30 is operated and the operating lever 4 is not operated, the operations of the respective elements of the left and right hydraulic closed circuits are simply switched, and the other operations are the same as steps S to S9, and the hydraulic circuit B is closed. The hydraulic pump 11 compensates for the insufficient flow rate. This operation is shown in steps 8)6 to 814. In this case, the single rod cylinder 22 is driven by the hydraulic pump 2I, the first 17J switching valve 14 is in the right position (LK), the first switching valve 24 is in the left position, and the second switching valve 17 is in the upper position U. The pressure oil from the hydraulic pump 11 is transferred to a branch circuit 10a, a low pressure circuit 10, and a branch circuit 10b.
, and is supplied to the 4° deficient side of the oil EE circuit B.A detailed explanation of the operations from step S to step 814 will be omitted.

このように、本実施例では、2つの同じ片ロツドシリン
ダの油圧閉回路を備え、部層1されている油圧閉回路に
流1不足が生じたとき、駆動されていない油圧閉回路の
油oニポンプから不足流量に見合った圧油が供給2≦れ
るので、チャージポンプ、可変容置ポンプ等を別途設置
することなく流量不足を補償することができ、このため
全体の構成がff1i易になり、安価と1.イ)。又、
不足流量に見合った圧油を供給するので、リリーフ弁か
らのエネルギ損失も少なり7.Xる。
In this way, this embodiment has two hydraulic closed circuits of the same single-rod cylinder, and when a shortage of flow 1 occurs in the hydraulic closed circuit in which the hydraulic closed circuit is connected to Since pressure oil commensurate with the insufficient flow rate is supplied from 2≦, it is possible to compensate for the insufficient flow rate without separately installing a charge pump, variable displacement pump, etc. This makes the entire configuration easier and cheaper. and 1. stomach). or,
Since pressure oil is supplied in proportion to the insufficient flow rate, energy loss from the relief valve is also reduced.7. X Ru.

なお、前記実施例においては、片ロツドシリンダの2つ
の油圧閉囲ll′11の相互の芥量補イハについて示し
たが、3つ以上の油圧閉回路相互の容箪袖償も可能であ
るのは明らかであり、又、開回路の油−1源を用いるこ
とができるのも明らかである。さらに、前記実施例では
、駆動されていない油圧源を駆動されている片ロンドシ
リンダの油圧閉回路に接続するため通常の切換弁にポー
トを増設しているが、前記接続のための切換弁を通常の
切換弁とは別に設置するとともできる。さらに又、前記
実施例では、2つの油圧ポンプと2つの片ロツドシリン
ダが同じであることから、駆動されていない油圧ポンプ
の傾転量を駆動されている油圧ポンプの傾転量と等しく
なるような制御としたが、これらが同じでない場合には
、駆動されている片ロツドシリンダの圧力を検出し、こ
の検出された値とその片ロツドシリンダのロッド測とヘ
ッド側の受圧面積比から補償すべき流量は直ちに演算で
きるので、この演算結果に応じて駆動されていない油圧
ポンプの傾転量を制御すればよい。この場合、駆動され
ていない油圧ポンプが複数あれば、補償すべぎ流量tに
応じてそれらすべての油圧ポンプの傾転量を制御しても
よいし、又は、任意のものを選択して制御しても差支え
ない。
In the above embodiment, mutual compensation of the capacity of the two hydraulic closed circuits 11'11 of a single rod cylinder was shown, but it is also possible to compensate the capacity of three or more closed hydraulic circuits. It is clear that it is also possible to use an open circuit oil-1 source. Furthermore, in the above embodiment, a port is added to the normal switching valve in order to connect the hydraulic pressure source that is not being driven to the hydraulic closed circuit of the driven single cylinder. It can also be installed separately from a normal switching valve. Furthermore, in the above embodiment, since the two hydraulic pumps and the two single-rod cylinders are the same, the amount of tilting of the hydraulic pump that is not driven is made equal to the amount of tilting of the hydraulic pump that is being driven. However, if these are not the same, the pressure of the single-rod cylinder being driven is detected, and the flow rate to be compensated for is determined from this detected value, the rod measurement of the single-rod cylinder, and the pressure-receiving area ratio on the head side. Since the calculation can be performed immediately, the amount of tilting of the hydraulic pump that is not being driven can be controlled in accordance with the calculation result. In this case, if there are multiple hydraulic pumps that are not driven, the tilting amount of all the hydraulic pumps may be controlled according to the compensation flow rate t, or an arbitrary one may be selected and controlled. There is no problem.

以上述べたように、本発明では、油圧閉回路を構成する
片ロツドシリンダが駆動され、その油圧閉回路に流量不
足を生じたとき、駆動されていない他の油圧源から圧油
を供給するようにしたので、チャージポンプ、0■変容
伍ポンプ等を別途設置することなく流4.不足を補供す
ることができ、このtこめ全体の構成が簡易になり、安
価となる。
As described above, in the present invention, when a single rod cylinder forming a hydraulic closed circuit is driven and a flow shortage occurs in the hydraulic closed circuit, pressure oil is supplied from another hydraulic source that is not driven. Therefore, flow 4. without separately installing a charge pump, 0■ conversion pump, etc. The shortage can be compensated for, and the overall structure of this T-filler becomes simple and inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の片ロツドシリンダの油圧閉回路の系統図
、第21ネ1は本発明の実施例に係る片ロツドシリンダ
の油上閉回路の容量補償装置の油圧回路および′電気回
路の系統図、第3図は第2図に示す容量補償装置a−の
動作を説明するフローチャートである。 11.21・・・・・・n」変容社油圧ボンノ、12.
22・・・・・・片ロツドシリンダ、[4,24・・・
・・第1の切換弁、17.27・・・・・・第2の切換
弁、18、昂・・・・・・傾転量検出装置、19.29
・・・・・・斜板駆動装置、2U、30・・・・・・操
作レバー、31・・・・・・制御装置。
Fig. 1 is a system diagram of a conventional hydraulic closed circuit of a single rod cylinder, and 21st page 1 is a system diagram of a hydraulic circuit and an electric circuit of a capacity compensator for an oil closed circuit of a single rod cylinder according to an embodiment of the present invention. FIG. 3 is a flowchart illustrating the operation of the capacitance compensator a- shown in FIG. 11.21...n'' Henshinsha Hydraulic Bonno, 12.
22... Single rod cylinder, [4, 24...
...First switching valve, 17.27...Second switching valve, 18, Length...Tilt amount detection device, 19.29
... Swash plate drive device, 2U, 30 ... Operation lever, 31 ... Control device.

Claims (1)

【特許請求の範囲】 1、複数の油圧源と、これら油圧源にそれぞれ接続され
るとともに少なくとも1つが閉回路で接続された片ロツ
ドシリンダである複数のアクチュエータと、前記片ロツ
ドシリンダが駆動されるとき駆動されていない前記油圧
源を前記駆動されている片ロツドシリンダの駆動回路に
接続する接続手段とで構成されることを特徴とする油圧
閉回路の容量補償装置。 2、特rr i+/i求の範囲第1項において、前記接
続手段は、jsIJ ffd片ロ片ロッドシリンダッド
側回路およびロッド側回路に接続された低圧回路と、こ
の低圧回路に駆動されていない前記油圧劇を接続する1
4)1の切換弁と、前記片ロツドシリンダを駆動する油
圧酋が前記第1の切換弁により前記低圧回路に接続され
たときこの低圧回路と作動油タンクを遮断する第2の切
換弁とより成ることを特徴とする油圧閉回路の容量補償
装置。
[Claims] 1. A plurality of hydraulic power sources, a plurality of actuators each connected to these hydraulic power sources and at least one of which is a single rod cylinder connected in a closed circuit, and driven when the single rod cylinder is driven. and connecting means for connecting the hydraulic power source that is not being driven to the drive circuit of the single-rod cylinder that is being driven. 2. Particular range of rr i+/i In Item 1, the connecting means is connected to a low pressure circuit connected to the jsIJ ffd single rod single rod cylinder pad side circuit and the rod side circuit, and to a low pressure circuit that is not driven by this low pressure circuit. Connecting the hydraulic drama 1
4) comprising a switching valve 1 and a second switching valve that cuts off the low pressure circuit and the hydraulic oil tank when the hydraulic machine that drives the single rod cylinder is connected to the low pressure circuit by the first switching valve. A hydraulic closed circuit capacity compensation device characterized by:
JP19681382A 1982-11-11 1982-11-11 Capacity compensating device of hydrualic closed circuit Pending JPS5986704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19681382A JPS5986704A (en) 1982-11-11 1982-11-11 Capacity compensating device of hydrualic closed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19681382A JPS5986704A (en) 1982-11-11 1982-11-11 Capacity compensating device of hydrualic closed circuit

Publications (1)

Publication Number Publication Date
JPS5986704A true JPS5986704A (en) 1984-05-19

Family

ID=16364079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19681382A Pending JPS5986704A (en) 1982-11-11 1982-11-11 Capacity compensating device of hydrualic closed circuit

Country Status (1)

Country Link
JP (1) JPS5986704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007031A1 (en) * 1988-12-19 1990-06-28 Kabushiki Kaisha Komatsu Seisakusho Service valve circuit in a hydraulic excavator
CN105074230A (en) * 2013-09-02 2015-11-18 日立建机株式会社 Drive device for work machine
KR20220014888A (en) * 2019-08-14 2022-02-07 파커-한니핀 코포레이션 An electro-hydraulic drive system for a machine, a machine equipped with an electro-hydraulic drive system, and a control method of the electro-hydraulic drive system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007031A1 (en) * 1988-12-19 1990-06-28 Kabushiki Kaisha Komatsu Seisakusho Service valve circuit in a hydraulic excavator
US5148676A (en) * 1988-12-19 1992-09-22 Kabushiki Kaisha Komatsu Seisakusho Confluence valve circuit of a hydraulic excavator
CN105074230A (en) * 2013-09-02 2015-11-18 日立建机株式会社 Drive device for work machine
KR20220014888A (en) * 2019-08-14 2022-02-07 파커-한니핀 코포레이션 An electro-hydraulic drive system for a machine, a machine equipped with an electro-hydraulic drive system, and a control method of the electro-hydraulic drive system
JP2022539184A (en) * 2019-08-14 2022-09-07 パーカー-ハネフィン コーポレーション Electrohydraulic drive system for machines, machines with electrohydraulic drive systems, and methods for controlling electrohydraulic drive systems
US11781289B2 (en) 2019-08-14 2023-10-10 Parker-Hannifin Corporation Electro-hydraulic drive system for a machine

Similar Documents

Publication Publication Date Title
US7594396B2 (en) Hydraulic controller for working machine
US5974796A (en) Hydraulic circuit system for hydraulic working machine
US5209063A (en) Hydraulic circuit utilizing a compensator pressure selecting value
US6209322B1 (en) Pressurized fluid supply system
JPH109204A (en) Hydraulic driving device
JPS6337216B2 (en)
US5279122A (en) Hydraulic circuit apparatus for supplying fluid under pressure into hydraulic cylinders for work implement
EP1045992A1 (en) Control arrangement for a hydraulic motor
JPS5986704A (en) Capacity compensating device of hydrualic closed circuit
US5878363A (en) Control to improve dump while lifting
JPS58204234A (en) Oil-pressure circuit for oil-pressure type excavator
JP2548204Y2 (en) Hydraulic drive
JP2914740B2 (en) Hydraulic circuit for operation system of construction machinery
JPH07190006A (en) Pressure compensation type oil pressure control circuit
JP2568926B2 (en) Attachment flow switching device
JP3097041B2 (en) Return flow sharing circuit for pressure oil supply device
JP2900839B2 (en) Hydraulic circuits for injection molding machines, etc.
JP2002310102A (en) Hydraulic circuit
JP3681852B2 (en) Pressure control circuit
JPH05106563A (en) Hydraulic control device for variable displacement type oil hydraulic pump
GB2085971A (en) Composite control valve means for operating working machines
JP2560956Y2 (en) Control device for variable displacement swash plate type hydraulic pump
JPH0791403A (en) Pressure oil supply device
JPH04203502A (en) Automatic engine speed regulator in load sensing system
JP3250772B2 (en) Crane hydraulic circuit