JPS5986241A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS5986241A
JPS5986241A JP19637182A JP19637182A JPS5986241A JP S5986241 A JPS5986241 A JP S5986241A JP 19637182 A JP19637182 A JP 19637182A JP 19637182 A JP19637182 A JP 19637182A JP S5986241 A JPS5986241 A JP S5986241A
Authority
JP
Japan
Prior art keywords
film
insulating film
groove
region
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19637182A
Other languages
Japanese (ja)
Inventor
Akira Kurosawa
黒沢 景
Sunao Shibata
直 柴田
Masashi Wada
和田 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19637182A priority Critical patent/JPS5986241A/en
Publication of JPS5986241A publication Critical patent/JPS5986241A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a sufficiently large channel conductance and the capacitance of a capacitor without increasing the area of an element forming region by forming an electrode material through a thin insulating film on the side wall of a groove formed on an element isolating region. CONSTITUTION:With an aluminum layer 3 as a mask a silicon substrate 1 of an element isolating region is etched to form a groove 4, and boron ions are implanted to form a P<+> type layer 5. A CVD-SiO2 film (the first insulating film) 6 is accumulated on the entire surface, etched, and the film 6 on the groove 4 is selectively removed. The film 3 and a thermally oxidized film 2 are removed, and insular element region is formed in a structure that the film 6 remains in the groove 4 is formed. An oxidized film (the second oxidized film) 7 is formed to an MOS capacitor or an MOS transistor are formed. The effective channel width and the effective capacitance area can be increased in the amount corresponding to the side face, thereby microminiaturizing the element and enhancing the density.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置及びその製造方法の改良に関する
・ 〔発明の技術的背景とその問題点〕 従来、半導体としてシリコンを用いた半導体装置、特に
MO8型半導体装置においては、寄生チャネルによる絶
縁不良をなくし、かつ寄生容量を小さくするために素子
間の所謂フィールド領域に厚い絶縁膜を形成することが
行われている。このような厚い絶縁膜を素子分離領域に
形成する方法としては、代表的には次の3つの方法が良
く知られている。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to improvements in a semiconductor device and a method for manufacturing the same. In MO8 type semiconductor devices, a thick insulating film is formed in a so-called field region between elements in order to eliminate insulation defects caused by parasitic channels and to reduce parasitic capacitance. The following three methods are typically well known as methods for forming such a thick insulating film in the element isolation region.

まず、第一の方法はr、ocos法(例えば:文献Ph
111ps Res、Repts、25,118−13
2(1970))として知られ、耐酸化性の膜で素子形
成領域を覆い、素子分離領域のシリコン基板を熱酸化し
て選択的に厚い酸化膜を形成する方法である。
First, the first method is the r, ocos method (for example: literature Ph
111ps Res, Repts, 25, 118-13
2 (1970)), this method covers the element formation region with an oxidation-resistant film and selectively forms a thick oxide film by thermally oxidizing the silicon substrate in the element isolation region.

第二の方法は、代表的にはREOX法(例えば:文献I
EDM Techn、 Dlgest、 177−18
0(1978))として知られ、素子分離領域のシリコ
ン基板中に基板と同導電型の不純物層とシリコン基板上
に素子分bIU用のCVD −5so2膜とを自己整合
的に形成する方法である。
The second method is typically the REOX method (for example: Ref. I
EDM Techn, Dlgest, 177-18
0 (1978)) is a method in which an impurity layer of the same conductivity type as the substrate is formed in a silicon substrate in an element isolation region, and a CVD-5SO2 film for element bIU is formed on the silicon substrate in a self-aligned manner. .

第三の方法は、代表的にはBOX法(例えば:文献IE
DMTechn、 Digest、 384−387(
1981))として知られ、素子分離領域のシリコン基
板を少なくとも一部工、チングとして溝部を形成し、こ
の溝部を絶縁膜で埋め込む方法である。
The third method is typically the BOX method (for example: Reference IE
DMTechn, Digest, 384-387 (
1981)) is a method in which at least a portion of a silicon substrate in an element isolation region is etched to form a trench, and this trench is filled with an insulating film.

しかし、上記いずれの素子分離法を用いても、素子を形
成する領域は素子分離用の酸化膜でとシ囲まれた半導体
基板表面のみに限定されている。また、ダイナミックR
AM等に代表される高密度メモリデバイスは、その集積
密度を上げるため微細化される傾向にあり、従って素子
形成領域の面積は益々小さくなっている。このため、M
OS )ランジスタのチャネル幅が狭くナリ、トランジ
スタの十分な電流駆動力(チャネルコンダクタンス)が
得られなくなる。さらに、MOSキャパシタにおいては
、キャノJ?シタ面積が小さくなるため、十分な、キャ
パシタ容量が得られないという問題が生じてきている。
However, no matter which of the above element isolation methods is used, the region in which elements are formed is limited to only the surface of the semiconductor substrate surrounded by an oxide film for element isolation. Also, dynamic R
High-density memory devices typified by AM and the like tend to be miniaturized to increase their integration density, and therefore the area of the element formation region is becoming smaller and smaller. For this reason, M
OS) The channel width of the transistor is narrow, making it impossible to obtain sufficient current driving power (channel conductance) of the transistor. Furthermore, in MOS capacitors, Cano J? Since the area of the capacitor becomes smaller, a problem has arisen in that sufficient capacitor capacity cannot be obtained.

特に、前記LOCO8法においては、素子分離用酸化膜
が周辺から1.0〔μm〕程度素子形成領域に侵入する
ため、素子形成領域の面積の減少は著しく、上記チャネ
ルコンダクタンスの低下とキャパシタ容量の低下は深刻
な問題となっている。逆にいえば、十分なチャネルコン
ダクタンス及びキャノやシタ容1′を得るには素子形成
領域の面積を広くする必要があり、これが素子の微細化
及び高密度化を妨げる大きな要因となる。
In particular, in the LOCO8 method, the element isolation oxide film invades the element formation region by about 1.0 [μm] from the periphery, so the area of the element formation region is significantly reduced, resulting in the decrease in channel conductance and capacitance. The decline has become a serious problem. Conversely, in order to obtain sufficient channel conductance and capacitance 1', it is necessary to widen the area of the element formation region, and this becomes a major factor hindering miniaturization and higher density of elements.

一方、相補型MO8(C−MOS)インノ々−夕等にお
いては、Pチャネルトランジスタのソースの耐圧及びに
チャネルト°ランジスタのソースとN型基板との耐圧を
保つために、これらの間隔をある基準以上必要とする。
On the other hand, in the complementary MO8 (C-MOS) industry, in order to maintain the breakdown voltage of the source of the P-channel transistor and the breakdown voltage between the source of the channel transistor and the N-type substrate, the distance between them is set at a certain level. Requires more than the standard.

また、Nチャンネルトランジスタのチャネル幅とPチャ
ネルトランジスタのチャネル幅もトランジスタに流れる
電流値を大きくするためにある基準以上必要とする。し
たがって、こ、−場合も素子形成領域の面積を広くする
必要かあシ、これが微細化及び高集積化をはかる上で大
きな障害となっている。
Further, the channel width of the N-channel transistor and the channel width of the P-channel transistor are also required to exceed a certain standard in order to increase the value of current flowing through the transistor. Therefore, in this case as well, it is necessary to widen the area of the element formation region, which is a major obstacle in achieving miniaturization and high integration.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、素子形成領域の面積を大きくすること
なく、十分大きなチャネルコンダクタンス及びキャパシ
タ容量等を得ることができ、素子の微細化及び高密度化
をはかシ得る半導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device that can obtain sufficiently large channel conductance, capacitor capacity, etc. without increasing the area of the element formation region, and can facilitate miniaturization and high density of elements. It is in.

また、本発明の他の目的は、上記微細化及び高密度化に
を与し得る半導体装置の製造方法を提供することにある
Another object of the present invention is to provide a method for manufacturing a semiconductor device that can achieve the above-mentioned miniaturization and high density.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、素子分離領域に設けた溝部の側壁にも
薄い絶縁膜を介して電極材料を形成することにある。
The gist of the present invention is to form electrode material also on the side walls of the groove provided in the element isolation region via a thin insulating film.

すなわち本発明は、半導体基板上の素子分離領域をエツ
チングして形成された溝部に、第1の絶縁膜を埋め込ん
で素子分離をはかった半導体装置において、上記第1の
絶縁膜の一部を除去し上記溝部の側壁を露出し、この露
出した側部及び基板の素子形成領域上に第2の絶縁膜を
形成し、この第2の絶縁膜上に電極月利を被着するよう
にしたものでおる。
That is, the present invention provides a semiconductor device in which element isolation is achieved by burying a first insulating film in a trench formed by etching an element isolation region on a semiconductor substrate, in which part of the first insulating film is removed. The side wall of the groove is exposed, a second insulating film is formed on the exposed side and the element forming area of the substrate, and an electrode is deposited on the second insulating film. I'll go.

また、本発明は上記半導体装1dヲ製造するに際し、半
導体基板の素子形成領域上にマスク材vi−被着したの
ち、このマスク材を用い′上記基板の素子分離領域を選
択エツチングして溝部を形成し、次いで全面に上記溝部
の深さと略同じ膜厚の第1の絶縁膜を堆積し、次いで段
差部に堆積した絶縁膜のエツチング速度が平坦部に堆積
した絶縁膜のエツチング速度よシ速くなるエツチング条
件で上記第1の絶縁膜全工、チングして前記溝部の側壁
を露出せしめ、次いで前記マスク材を除去することによ
シ該マスク材上の第1の絶縁膜を除去して素子形成領域
を露出せしめ、次いで上記露出した素子形成領域及び前
記溝部の側壁に第2の絶縁膜を形成し、しかるのち上記
第2の絶縁膜上に電極材料を被着するようにした方法で
ある。
Further, in manufacturing the semiconductor device 1d, the present invention deposits a mask material vi on the element formation region of the semiconductor substrate, and then selectively etches the element isolation region of the substrate using this mask material to form a groove. Then, a first insulating film having a thickness substantially the same as the depth of the groove is deposited on the entire surface, and the etching rate of the insulating film deposited on the stepped portion is faster than the etching rate of the insulating film deposited on the flat portion. The entire first insulating film is etched under etching conditions to expose the side walls of the trench, and then the mask material is removed, thereby removing the first insulating film on the mask material and forming the device. In this method, a formation region is exposed, a second insulating film is formed on the exposed element formation region and the side wall of the groove, and then an electrode material is deposited on the second insulating film. .

〔発明の効果〕〔Effect of the invention〕

トランジスタを形成すると、実効的なチャネル幅が島状
素子領域の上面の部分と側面の部分との和になる。この
ため、実効的なチャネル幅は従来の場合に比べて側面の
部分だけ大きくなシ、これによりチャネルコンダクタン
スを大きくすることができる。また、MO8キャノ臂シ
タを形成すれば、実効的なキャパシタンス面積が島状素
子領域の上面の部分と側面の部分との和になる。
When a transistor is formed, the effective channel width becomes the sum of the top surface portion and side surface portion of the island-shaped element region. Therefore, the effective channel width is larger only at the side surfaces than in the conventional case, and thereby the channel conductance can be increased. Furthermore, if an MO8 canopy is formed, the effective capacitance area will be the sum of the top surface and side surface portions of the island-like element region.

このため、やはり実効的なキャパシタンス面積は従来の
場合に比べて側面の部分だけ大きくなシ、キャパシタン
ス面積を大きくすることができる。したがって、従来と
同じチャネルコンダクタンス及びキャノ臂シタ容景にお
hては孝子形成領域の面積全大幅に狭くすることができ
、素子の微細化及び高密度化をはがシ得る。
Therefore, the effective capacitance area is only larger at the side surface area compared to the conventional case, and the capacitance area can be increased. Therefore, while maintaining the same channel conductance and canopy shape as in the prior art, the total area of the diaphragm formation region can be significantly reduced, making it possible to miniaturize and increase the density of the device.

〔発明の実施例〕[Embodiments of the invention]

第1図(a)〜(f)は本発明の一実施例を説明するた
めの工程断面図である。まず、第1図(a)に示す如く
、半導体基板、例えば面方位(100)比抵抗5〜50
(Ωm〕のP型シリコン基板1を用意し、この基板1の
素子形成領域上に厚さ500 (X)程度の熱酸化膜2
を介して、シリコン基板1のエツチングのマスクとな多
、かつ後の工程です7トオフ加工全可能にするマスク材
、例えばAt膜3を被着する。次いで、第1図(b)に
示す如<At@、9をマスクとして素子分離領域(フィ
ールド領域)のシリコン基板1を深さ、例えば1.0C
μm)程麿工、チングして溝部4を形成する。その後、
同じAt膜3をマスクに用いて、フィード領域の溝部4
にフィールド反転防止のためのゼロンのイオン注入を行
ないP+層5をつくる。
FIGS. 1(a) to 1(f) are process cross-sectional views for explaining one embodiment of the present invention. First, as shown in FIG.
(Ωm) P-type silicon substrate 1 is prepared, and a thermal oxide film 2 with a thickness of about 500 (X) is provided on the element formation region of this substrate 1.
A mask material, for example, an At film 3, which serves as a mask for etching the silicon substrate 1 and also enables the subsequent process 7, is deposited through the etching process. Next, as shown in FIG. 1(b), using <At@, 9 as a mask, the silicon substrate 1 in the element isolation region (field region) is heated to a depth of, for example, 1.0C.
μm) The groove portion 4 is formed by cutting and cutting. after that,
Using the same At film 3 as a mask, the groove 4 in the feed area is
Then, a P+ layer 5 is formed by implanting zero ions to prevent field reversal.

次に、第1図(c) JC示す如く段差部に堆積した膜
のエツチング速度が平坦部に堆積した膜のエツチング速
度より速くなる性質を持つ膜、代表的にはプラズマ雰囲
気中で形成したCVD −5ly2膜(第1の絶縁膜)
6を例えば1.1〔μm〕程度全面に堆積する。次いで
、第1図(d)に示す如く緩衝弗酸液で上記プラズマC
VD −8302& 6を例えば1分程エツチングする
と、Plasma CVD −8i02膜りの上記性質
により溝部4の側壁部に堆積したプラズマCVD −8
102膜6は選択的忙除去され、溝部側壁のシリコン基
板1と少なくともAt膜3の側壁の一部が露出される。
Next, as shown in FIG. 1(c) JC, a film that has the property that the etching rate of a film deposited on a stepped portion is faster than that of a film deposited on a flat portion, typically a CVD film formed in a plasma atmosphere. -5ly2 film (first insulating film)
6 is deposited, for example, on the entire surface to a thickness of about 1.1 [μm]. Next, as shown in FIG. 1(d), the plasma C was removed using a buffered hydrofluoric acid solution.
When VD-8302&6 is etched for about 1 minute, the plasma CVD-8 deposited on the side wall of the groove 4 due to the above-mentioned properties of the Plasma CVD-8i02 film is etched.
The 102 film 6 is selectively removed to expose the silicon substrate 1 on the side wall of the trench and at least a part of the side wall of the At film 3.

このとき、平坦邪に堆積したプラズマCVD −810
2膜6は約1000(芙〕程度工、チングされ膜厚は1
.0〔μm〕程度になる。次に、例えば硫酸と過酸化水
素水との混液で処理するとAt膜3は工、チンチされ同
時にAt膜膜上上堆積していたプラズマCVD −5I
O2膜も除去される。その後、第1図(e)に示す如く
熱酸化膜2を除去すると、溝部4内に素子分離用の酸化
膜(CVD −5to2膜)6が残置した構造で島状の
素子領域が形成される。このとき、素子形成領域の表面
と素子分離用酸化膜6の表面の高さが略等しくなるよう
にすることがてきる。その後、第1図α)に示す如く素
子形成領域の上面及び側面に薄い酸化膜(第2の酸化膜
)7を形成し、続いて通常の製造工程によ、りMOSM
OSキャパシタS )ランジスタ等が作成されることに
なる。
At this time, plasma CVD-810 deposited on a flat surface
The second film 6 is etched and etched to a thickness of about 1,000.
.. It becomes about 0 [μm]. Next, when treated with a mixture of sulfuric acid and hydrogen peroxide, for example, the At film 3 is chipped and chipped, and at the same time the plasma CVD-5I deposited on the At film is
The O2 film is also removed. Thereafter, as shown in FIG. 1(e), when the thermal oxide film 2 is removed, an island-shaped element region is formed with a structure in which an oxide film (CVD-5to2 film) 6 for element isolation remains in the trench 4. . At this time, the heights of the surface of the element formation region and the surface of the element isolation oxide film 6 can be made approximately equal. Thereafter, as shown in FIG. 1 α), a thin oxide film (second oxide film) 7 is formed on the top and side surfaces of the element forming area, and then a MOSM is formed by a normal manufacturing process.
OS capacitor S) transistor, etc. will be created.

第2図(a)は標準的なダイナミックRAMのセル構造
を示す平面図で、図中8はMOSキャパシタの電極を示
し、9はMOS )ランジスタのダート電極ケ示してい
る。
FIG. 2(a) is a plan view showing the cell structure of a standard dynamic RAM, in which reference numeral 8 indicates an electrode of a MOS capacitor, and reference numeral 9 indicates a dirt electrode of a MOS transistor.

第2図(b)は同図(、)の矢視A−A断面図で、上記
実施例方法ケ用いて作成したMO8キャノ(シタを示し
ている。映厚lo o (:l)のシリコン酸化膜7を
用いた一辺が3.4〔μm〕の方形のMOSキャパシタ
を考えると、従来の素子分離構造、例えばBOX法やR
EOX法を用いた場合にはキャノヤシタンス容曾は40
[fF)KLかならなかった。さらに、従来法のLOC
O8法を用いた場合は実効的なMOSキャパシタ面積は
バーズビークによシ減少するため、さらにキセノ4シタ
ンス容量は28.8[fF]に減少してしまう。しかし
ながら、本実施例方法を用いれば第2図(b) K示し
たように島状素子領域の表面のみならず側面にもキャパ
シタが形Byされるため、実効的なキャパシタ面積が増
大して、キャ/IPシタ答量は2倍以上の87.1〔f
F〕にもなった。
FIG. 2(b) is a cross-sectional view taken along arrow A-A in FIG. Considering a rectangular MOS capacitor with a side of 3.4 μm using the oxide film 7, conventional element isolation structures such as BOX method and R
When using the EOX method, the canopy palm diameter is 40
[fF) KL didn't happen. Furthermore, the LOC of the conventional method
When the O8 method is used, the effective MOS capacitor area is reduced due to the bird's beak, so the xeno4 capacitance is further reduced to 28.8 [fF]. However, if the method of this embodiment is used, the capacitor is formed not only on the surface but also on the side surface of the island-like element region as shown in FIG. 2(b), so the effective capacitor area increases. The answer amount for IP address is more than double 87.1 [f
It also became F.

第2図(c)は同図(a)の矢視B−B断面図で、上記
実施例方法を用いて作成したMOS )ランジスタのチ
ャネル幅方向を示している。例えば従来のBOX法やR
EOX法を用いて素子分離を1−[ないチャネル幅1.
0〔μm〕、チャネル長さ1.0〔μm〕のMOS )
ランジスタを形成した場合を仮定すると、同じトランジ
スタを従来のLOCO8法で製造すればバーズビークの
ため実効的なチャネル幅は消滅し、チャネルコンダクタ
ンスgmは零になる。
FIG. 2(c) is a sectional view taken along the line B--B in FIG. 2(a), showing the channel width direction of the MOS transistor fabricated using the method of the above embodiment. For example, the conventional BOX method and R
Element isolation is performed using the EOX method with a channel width of 1-[no channel width.
0 [μm], channel length 1.0 [μm])
Assuming that a transistor is formed, if the same transistor is manufactured using the conventional LOCO8 method, the effective channel width will disappear due to the bird's beak, and the channel conductance gm will become zero.

これに対して本実施例方法を用いれば、第2図(clに
示したように島状素子領域の表面のみならず側面にもチ
ャネルが形成されるため実効的なチャネル幅が増大して
、チャネルコンダクタンス1mは従来BOX法又はRE
OX法の場合の約3倍にもなる。
On the other hand, if the method of this embodiment is used, channels are formed not only on the surface but also on the side surfaces of the island-shaped element region, as shown in FIG. Channel conductance of 1m is conventional BOX method or RE
It is about three times as much as in the case of the OX method.

かくして本実施例によれば、島状に分離された素子領域
の島表面のみならず島側面にも例えハMO8キャノ臂シ
タやMOS )ランジスタを形成する牢が可能になシ、
上述のようにキャパシタ面積の増大やトランジスタ特性
の改讐をはかることができる。
Thus, according to this embodiment, it is possible to form a cell, for example, a MO8 canopy or a MOS transistor, not only on the island surface of the element region separated into islands, but also on the island side surface.
As described above, it is possible to increase the capacitor area and improve transistor characteristics.

第3図(、)〜(f)は他の実施例全説明するための工
程断面図でめる。まず、第3図(a)に示す如くN型シ
リコン基板11中にPウェル12r形成したのち、基板
11の表面を酸化し酸化膜13を形成し、さらにこの酸
化膜13上にAt膜(マスク材)f4’に蒸着する。続
いて、周知の方法により素子形成領域上の部分を残し、
At膜14及び酸化膜13を選択的に除去する。次いで
、第3図(b)に示す如く上記At膜14をマスクとし
て基板ノーを選択エツチングしてチー/’P断面金有す
る溝部15を形成する。その後、第3図(e)に示す如
(先の実施例と同様に5IO2膜16を全面に堆積する
。次いで、希釈した弗酸を用い810膜16を全面エツ
チングすることによシ、第3図(d)に示す如く溝部1
5の側壁の5i02膜16’jk除去する。その後、A
t膜14を除去することによりAA膜14上の5tO2
膜を除去する。次いて酸化膜13を除去したのち、第3
図(、)に示す如くダート酸化膜(第2の絶縁膜)17
を形成する。続いて、第3図(f)に示す如く全面に多
結晶シリコン膜18を堆積する。その後、多結晶シリコ
ン膜18のノ臂ターニングヲ行い、Nチャネルトランジ
スタ、Pチャネルトランジスタのソース・ドレイン領域
への不純物拡散、保睦膜形成、電榊取シ出しを行うこと
によってC−MOSインバータが作成されることになる
FIGS. 3(a) to 3(f) are process sectional views for explaining all other embodiments. First, as shown in FIG. 3(a), a P well 12r is formed in an N-type silicon substrate 11, the surface of the substrate 11 is oxidized to form an oxide film 13, and an At film (mask) is formed on this oxide film 13. Material) Deposit on f4'. Next, a part above the element formation area is left by a well-known method,
The At film 14 and the oxide film 13 are selectively removed. Next, as shown in FIG. 3(b), the substrate layer is selectively etched using the At film 14 as a mask to form a groove portion 15 having a chi/'P cross section. Thereafter, as shown in FIG. 3(e), a 5IO2 film 16 is deposited over the entire surface (as in the previous embodiment).Then, the 810 film 16 is etched over the entire surface using diluted hydrofluoric acid. Groove 1 as shown in figure (d)
The 5i02 film 16'jk on the side wall of 5 is removed. After that, A
By removing the t film 14, 5tO2 on the AA film 14 is removed.
Remove membrane. Next, after removing the oxide film 13, the third
As shown in the figure (,), a dirt oxide film (second insulating film) 17
form. Subsequently, as shown in FIG. 3(f), a polycrystalline silicon film 18 is deposited over the entire surface. Thereafter, the polycrystalline silicon film 18 is turned, the impurity is diffused into the source/drain regions of the N-channel transistor and the P-channel transistor, a protective film is formed, and the electric current is removed, thereby converting the C-MOS inverter. will be created.

かくして本実施例によれば、Pウェル12とPウェル1
2外に形成場れる各トランジスタのソース若しくはドレ
インとの距離を短くすることができる。さらに、各トラ
ンジスタのチャネル幅も素子形成領域に比して十分大き
くすることができる。したがって、先の実施例と同様に
素子の微細化及び高密度化をはかり得る。
Thus, according to this embodiment, P well 12 and P well 1
The distance from the source or drain of each transistor formed outside the transistor can be shortened. Furthermore, the channel width of each transistor can also be made sufficiently larger than the element formation region. Therefore, as in the previous embodiment, it is possible to miniaturize and increase the density of the element.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、前記マスク材tまAtに限るものではな
く、シリコン基板エツチングのマスクとして作用し、か
つその後の1ノフトオフ加工を可能とする衣のであれば
よい。また、溝部に埋め込む絶縁膜はプラズマCVD 
−8102膜に限るものでなく、スノ(ツタ蒸着による
5102膜、プラズマCVD −S 1s /’/ 4
膜、或いはPSG膜であってもよい。また、MOSトラ
ンジスタ、5tosキャノ’11シタ或いハC−MOS
インノぐ一夕に限ら−J′″、各種の半導体装置に適用
することが可能である。
Note that the present invention is not limited to the embodiments described above. For example, the mask material is not limited to the above-mentioned mask material T or At, but any material may be used as long as it acts as a mask for silicon substrate etching and enables subsequent one-noft-off processing. In addition, the insulating film buried in the trench is made by plasma CVD.
-8102 film, but also 5102 film by Suno (ivy deposition), plasma CVD -S 1s/'/4
It may be a film or a PSG film. Also, MOS transistor, 5tos cano'11shita or ha C-MOS
It is possible to apply it to various semiconductor devices only by innovating -J'''.

その他、本発明の要旨を逸脱しない範囲で、植種変形し
て実施することができる。
Other modifications may be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の一実施例を説明するた
めの工程断面図、第2図(a)〜(c)は上記実施例を
用いて作成したダイナミ、りRAMセルを示すもので第
2図(a)は平面図、第2図(b)は同図(a)の矢視
A−A断面図、第2図(e)は同図(a)の矢視B−B
断面図、第3図(a)〜(f)は他の実施例を説明する
ための工程断面図である。 1.11・・・シリコン基板、2.13・・・熱酸化B
n、3114・・・アルミニウム膜(マスク材)、4.
15°“°溝部、5・・・イオン注入j℃、6.16・
・・5i02膜(第1の絶縁膜)、7.17・・・ダー
ト酸化膜(第2の絶縁膜)、8・・・キャノヤシタ電極
、9.18・・・ダート電極、12・・・〆ウエル。 第3図 第3図
FIGS. 1(a) to (f) are process cross-sectional views for explaining one embodiment of the present invention, and FIGS. 2(a) to (c) are dynamic RAM cells produced using the above embodiment. Fig. 2(a) is a plan view, Fig. 2(b) is a sectional view taken along the arrow A-A in Fig. 2(a), and Fig. 2(e) is a sectional view taken in the direction of the arrow in Fig. 2(a). B-B
The sectional views and FIGS. 3(a) to 3(f) are process sectional views for explaining another embodiment. 1.11...Silicon substrate, 2.13...Thermal oxidation B
n, 3114...aluminum film (mask material), 4.
15°"°groove, 5...Ion implantation j℃, 6.16.
...5i02 film (first insulating film), 7.17... dirt oxide film (second insulating film), 8... Canoyashita electrode, 9.18... dirt electrode, 12...〆 Well. Figure 3Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上の素子分離領域をエツチングして形
成された溝部と、仁の溝部に該溝部の側壁が露出するよ
う埋め込まれた第1の絶縁膜と、前記半導体基板の素子
形成領域上及び上記側壁上に形成された第2の絶縁膜と
、この第2の絶縁膜上に被着された電極材料とを具備し
てなることを特徴とする半導体装置。
(1) A groove formed by etching an element isolation region on a semiconductor substrate, a first insulating film buried in the groove so that the sidewall of the groove is exposed, and a groove formed on the element formation region of the semiconductor substrate. A semiconductor device comprising: a second insulating film formed on the side wall; and an electrode material deposited on the second insulating film.
(2)半導体基板の素子形成領域上にマスク材を被着す
る工程と、上記マスク材を用いて上記基板の素子分離領
域を選択エツチングして溝部を形成する工程と、次いで
全面に上記溝部の深さと略同じ膜厚の第1の絶縁膜を堆
積する工程と、段差部に堆積した絶縁膜のエツチング速
度が平坦部に堆積した絶縁膜のエツチング速度より速く
なるエツチング条件て上記第1の絶縁膜をエツチングし
て前記溝部の側壁を露出せしめる工程と、次いで前記マ
スク材を除去することによシ該マスク材上の第1の絶縁
膜を除去して素子形成領域を露出せしめる工程と、上記
臨出した素子形成領域及び前記溝部の側壁に第2の絶縁
膜を形成する工程と、上記第2の絶縁膜上に電極材料を
被着する工程とを具備したことを特徴とする半導体装置
の製造方法。
(2) A step of depositing a mask material on the element formation region of the semiconductor substrate, a step of selectively etching the element isolation region of the substrate using the mask material to form a groove, and then a step of forming a groove on the entire surface. The step of depositing a first insulating film having a thickness that is approximately the same as the depth, and the etching conditions such that the etching rate of the insulating film deposited on the stepped portion is faster than the etching rate of the insulating film deposited on the flat portion, are used to form the first insulating film. a step of etching the film to expose the sidewalls of the trench, and then removing the first insulating film on the mask material by removing the mask material to expose the element forming region; A semiconductor device comprising the steps of: forming a second insulating film on the sidewalls of the exposed element formation region and the groove; and depositing an electrode material on the second insulating film. Production method.
(3)前記第1の絶縁膜としてプラズマ雰囲気中で形成
したCVD −5to2膜、ス)4ツタ蒸着した510
2膜、減圧雰囲気中で形成したPSG膜、或いはプラズ
マ雰囲気中で形成したCVD −St、、N4膜を用い
、そのエツチング法として化学エツチング法を用いたこ
とを特徴とする特許請求の範囲第2項記載の半導体装置
の製造方法。
(3) CVD-5to2 film formed in a plasma atmosphere as the first insulating film;
Claim 2, characterized in that a PSG film formed in a reduced pressure atmosphere, or a CVD-St, N4 film formed in a plasma atmosphere is used, and a chemical etching method is used as the etching method. A method for manufacturing a semiconductor device according to section 1.
JP19637182A 1982-11-09 1982-11-09 Semiconductor device and manufacture thereof Pending JPS5986241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19637182A JPS5986241A (en) 1982-11-09 1982-11-09 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19637182A JPS5986241A (en) 1982-11-09 1982-11-09 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5986241A true JPS5986241A (en) 1984-05-18

Family

ID=16356742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19637182A Pending JPS5986241A (en) 1982-11-09 1982-11-09 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5986241A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182458A (en) * 1984-09-29 1986-04-26 Toshiba Corp Semiconductor memory device
US4679299A (en) * 1986-08-11 1987-07-14 Ncr Corporation Formation of self-aligned stacked CMOS structures by lift-off
JPH01241868A (en) * 1988-03-23 1989-09-26 Nec Corp Semiconductor device
US4979014A (en) * 1987-08-10 1990-12-18 Kabushiki Kaisha Toshiba MOS transistor
JP2001035913A (en) * 1999-07-16 2001-02-09 Mitsubishi Electric Corp Semiconductor device and fabrication thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182458A (en) * 1984-09-29 1986-04-26 Toshiba Corp Semiconductor memory device
US4679299A (en) * 1986-08-11 1987-07-14 Ncr Corporation Formation of self-aligned stacked CMOS structures by lift-off
US4979014A (en) * 1987-08-10 1990-12-18 Kabushiki Kaisha Toshiba MOS transistor
JPH01241868A (en) * 1988-03-23 1989-09-26 Nec Corp Semiconductor device
JP2001035913A (en) * 1999-07-16 2001-02-09 Mitsubishi Electric Corp Semiconductor device and fabrication thereof
JP4649006B2 (en) * 1999-07-16 2011-03-09 ルネサスエレクトロニクス株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US4742018A (en) Process for producing memory cell having stacked capacitor
KR900007606B1 (en) Semiconductor memory
JP2582794B2 (en) Semiconductor device and manufacturing method thereof
US4803176A (en) Integrated circuit structure with active device in merged slot and method of making same
US5026658A (en) Method of making a trench capacitor dram cell
JPS63120462A (en) Dynamic random access memory cell
JP3249183B2 (en) Method for manufacturing DMOS transistor
US4250519A (en) Semiconductor devices having VMOS transistors and VMOS dynamic memory cells
JPH0574806A (en) Semiconductor device and manufacture thereof
JPH0365905B2 (en)
US4505026A (en) CMOS Process for fabricating integrated circuits, particularly dynamic memory cells
US4329704A (en) MOS Random access memory with buried storage capacitor
JPH0793368B2 (en) Method of manufacturing semiconductor memory device
JPS5986241A (en) Semiconductor device and manufacture thereof
JPS6223150A (en) Manufacture of semiconductor integrated circuit device
JPH0793366B2 (en) Semiconductor memory and manufacturing method thereof
JP2739965B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0336309B2 (en)
US4794091A (en) Method of making high-performance dram arrays including trench capacitors
JPH0298939A (en) Manufacture of semiconductor device
US6969666B2 (en) Method for fabricating isolation layer in semiconductor device
JPH0370381B2 (en)
JPS62249473A (en) Semiconductor memory
JPH0310235B2 (en)
KR970011138B1 (en) Method for manucafacturing metal oxide semiconductor