JPS5985808A - Production of ultrafine metallic particle - Google Patents

Production of ultrafine metallic particle

Info

Publication number
JPS5985808A
JPS5985808A JP19452782A JP19452782A JPS5985808A JP S5985808 A JPS5985808 A JP S5985808A JP 19452782 A JP19452782 A JP 19452782A JP 19452782 A JP19452782 A JP 19452782A JP S5985808 A JPS5985808 A JP S5985808A
Authority
JP
Japan
Prior art keywords
ultrafine
metal
vessel
metal particles
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19452782A
Other languages
Japanese (ja)
Inventor
Takamasa Yoshikawa
高正 吉川
Yasuhiro Unosawa
保弘 宇野沢
Satoru Takasugi
知 高杉
Kiyohide Ogasawara
清秀 小笠原
Hiroshi Ito
寛 伊藤
Nobuhiro Tsukagoshi
塚越 庸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp, Pioneer Electronic Corp filed Critical Pioneer Corp
Priority to JP19452782A priority Critical patent/JPS5985808A/en
Publication of JPS5985808A publication Critical patent/JPS5985808A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge

Abstract

PURPOSE:To produce an ultrafine particulate metal having a uniform size in a device for making use of arc discharge in producing an ultrafine ferromagnetic metal by providing an adhering means for the ultrafine particulate metal above the arc part of a device vessel. CONSTITUTION:A tungsten cathode 3 is mounted at the top end of a supporting bar 2 and is disposed in a refractory vessel. A ferromagnetic metal 5 such as Fe, Ni or the like to be ground is placed on the copper hearth, as an anode, in the bottom of the vessel. Pure gaseous hydrogen or a gaseous mixture of pure hydrogen and inert gas such as Ar, He or the like is introduced through an inlet 1A into the vessel and is discharged from the outlet in the upper part. An arc 6 is discharged between the cathode 3 and the metal 5 as an anode. The metal 5 is heated and melted by the arc 6 and ascends together with the inert gas introduced therein in the form of ultrafine particles. A water-cooled adhering means 8 made of copper or stainless steel is placed in the upper part in the vessel to pick up and capture the ascending ultrafine particulate metal. The ultrafine particulate metal having a uniform grain size is produced with good efficiency.

Description

【発明の詳細な説明】 この発明は、アーク放電を利用してその微粒子径が良く
揃った金属超微粒子を製造できる金属超微粒子の製造装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing ultrafine metal particles that can produce ultrafine metal particles with well-uniformed particle diameters using arc discharge.

従来、金属超微粒子を製造する装置としてアーク放電を
利用するものには第1図に示すものがある。すなわちガ
ス導入口IAとガス排出口IBとを設けた密閉された容
器1内に支持棒2の先端に固定された陰極用のタングス
テンなどの電極3を挿入し、そして前記容器1の底部を
構成する陽極用の銅ハース4の上面に陰極用の前記電極
3に対向して金属超微粒子を製造すべき陽極用の電極と
同極になり得る金属材料5を載置している。そしてガス
導入口IAから純水素ガスまたは水素ガスと不活性ガス
、例えばアルゴンガス、ヘリウムガス等の混合ガスを容
器1内に導入するとともに前記ガス排出口IAから排出
して容器1内をそのガス圧力60〜760 Torr程
度の前記ガス雰囲気とした後に、陰極用の電極3と、陽
極用の電極になり得る強磁性体等の金属材料5との間の
電極間電圧を10〜100Vとして電°極間にアーク放
電を行ってアーク柱6を形成させると、このアーク柱6
付近から金属材料5の金属超微粒子が多く発生する。こ
のようにして生成される金属超微粒子の一部は陰極用の
支持棒2に付着し、またガス導入口IAから容器1内に
導入されてガス排出口IBから排出される純水素ガス等
のガス流に運ばれて急上昇され前記金属超微粒子の一部
が前記ガス排出口IB内に設けられた紙やガラス繊維よ
り成るフィルター7に捕集される。しかし、ガスを容器
1内に上記のように流す場合にも流さない場合にも金属
超微粒子の大部分は容器lの内壁に付着されるが、これ
等を掻き落して金属超微粒子を回収する。この場合に金
属超微粒子の粒子径が揃っているのは前記支持棒2に付
着されたものである。
Conventionally, there is an apparatus shown in FIG. 1 that utilizes arc discharge as an apparatus for producing ultrafine metal particles. That is, an electrode 3 such as tungsten for a cathode fixed to the tip of a support rod 2 is inserted into a sealed container 1 provided with a gas inlet IA and a gas outlet IB, and the bottom of the container 1 is formed. On the upper surface of the copper hearth 4 for the anode, facing the electrode 3 for the cathode, is placed a metal material 5 which can be the same electrode as the electrode for the anode from which ultrafine metal particles are to be produced. Then, pure hydrogen gas or a mixed gas of hydrogen gas and an inert gas, such as argon gas or helium gas, is introduced into the container 1 from the gas inlet IA, and the gas is discharged from the gas outlet IA to fill the container 1 with the gas. After creating the gas atmosphere at a pressure of approximately 60 to 760 Torr, the voltage between the electrodes 3 and the metal material 5 such as a ferromagnetic material that can be used as the anode electrode is set to 10 to 100 V. When arc discharge is performed between the poles to form an arc column 6, this arc column 6
Many ultrafine metal particles of the metal material 5 are generated from the vicinity. Some of the ultrafine metal particles generated in this way adhere to the cathode support rod 2, and some of the ultrafine metal particles are introduced into the container 1 from the gas inlet IA and discharged from the gas outlet IB, such as pure hydrogen gas. A part of the ultrafine metal particles, which are carried by the gas flow and rise rapidly, are collected by a filter 7 made of paper or glass fiber provided in the gas outlet IB. However, most of the ultrafine metal particles are attached to the inner wall of the container l regardless of whether or not the gas is flowed into the container 1 as described above, and these are scraped off to recover the ultrafine metal particles. . In this case, the metal ultrafine particles with uniform particle diameters are those attached to the support rod 2.

しかしながら従来は粒子径が不揃いの金属超微粒子を一
緒に回収するものであるため、粒子径が揃った超微粒子
を効率良く回収することができなかった。このため金属
超微粒子が強磁性体である場合には保磁力が低くなり、
磁気記録媒体用の材料に使用するのには不適当であった
However, in the past, since ultrafine metal particles with irregular particle sizes were collected together, it was not possible to efficiently recover ultrafine particles with uniform particle sizes. For this reason, if the metal ultrafine particles are ferromagnetic, the coercive force will be low,
It was unsuitable for use as a material for magnetic recording media.

本発明は上述の如き点に鑑みてなされたものでありその
目的とするところは、従来の装置に大幅の変更を加える
ことなく粒径の揃った金属超微粒子を製造でき、また製
品としての信頼性が高い金属超微粒子の製造装置を提供
するのにある。
The present invention has been made in view of the above points, and its purpose is to be able to produce ultrafine metal particles of uniform particle size without making major changes to conventional equipment, and to improve reliability as a product. The purpose of the present invention is to provide an apparatus for producing ultrafine metal particles with high properties.

以下本発明の第1実施例を第2図に従って説明する。A first embodiment of the present invention will be described below with reference to FIG.

なお第1図に示す従来の装置と同一部分については同一
符号で示しているので説明は省略する。
Note that the same parts as those in the conventional device shown in FIG. 1 are designated by the same reference numerals, and therefore their explanation will be omitted.

8は銅、ステンレス等の材料で形成され底面を上方にし
た中空の逆円錐形の付着手段で、この付着手段8はアー
ク柱6が形成された際に前記金属材料5から発生する金
属超微粒子を捕集するためのものである。
Reference numeral 8 denotes a hollow inverted conical adhesion means made of a material such as copper or stainless steel with the bottom facing upward. It is for collecting.

しかもこの付着手段8は陰極用の前記電極3と陽極用の
電極としての銅ハース4に接続すべき金属材料5との上
方で且つアーク柱が立ちのぼる高速のガス流によっ運ば
れる金属超微粒子の流れの領域内に配置される。
Moreover, this adhesion means 8 is located above the metal material 5 to be connected to the electrode 3 for the cathode and the copper hearth 4 as the electrode for the anode, and the ultrafine metal particles carried by the high-speed gas flow rising from the arc column. Placed within the region of flow.

9.10は付着手段8の一例に設けられた導入管と排出
管であり、水などの冷却用の液体がこの導入管9から中
空の前記付着手段8内に導入されて排出管10から排出
されることにより前記付着手段8は冷却されるようにな
っている。
Reference numeral 9.10 denotes an introduction pipe and a discharge pipe provided in an example of the attachment means 8, and a cooling liquid such as water is introduced into the hollow attachment means 8 from this introduction pipe 9 and is discharged from the discharge pipe 10. By doing so, the adhesion means 8 is cooled.

本発明の一実施例は上述のような構成からなり、ガス導
入口IAから純水素、または純水素とアルゴンガス、ヘ
リウムガス等の1種または2種の不活性ガスとの混合ガ
スを容器1内に導入した後にガス排出口IBから排出し
て容器1内のガス圧力を60〜70 Torr程度のガ
ス雰囲気にする。そして陰極用の電極3と、陽極用の電
極としての銅ハース4に載置されて同極になり得る金属
材料5との間に10〜100■の電極間電圧を印加して
アーク放電を行いアーク柱6を形成すると、前記アーク
柱6付近から例えば強磁性体の金属超微粒子が生成され
る。この場合、アーク柱6の近傍で金属超微粒子が生成
されると考えられる。また陰極用の電極3と支持棒2と
は、鉛直線から傾斜させて設けてもよく、しかも陰極用
の電極3と支持棒2とは2本以上の多極にしてもかまわ
ない(第2図山)参照)。このように発生した金属超微
粒子は高速の前記ガス流に運ばさて大部分が上方に運ば
れる。この際、大部分が底面8Aを上方にした逆円錐形
の付着手段8に付着される。この金属超微粒子はアーク
柱6から上昇するにつれて成長していくが、その過程で
ほど良い位置に付着手段を受けることによって適度な粒
径をもち、かつその粒径が良く揃った金属超微粒子が得
られる。
One embodiment of the present invention has the above-described configuration, and pure hydrogen or a mixed gas of pure hydrogen and one or two inert gases such as argon gas or helium gas is supplied to the container 1 from the gas inlet IA. After introducing the gas into the container 1, the gas is discharged from the gas outlet IB to make the gas pressure inside the container 1 a gas atmosphere of about 60 to 70 Torr. Then, an inter-electrode voltage of 10 to 100 μ is applied between the cathode electrode 3 and the metal material 5 placed on the copper hearth 4 as the anode electrode and capable of forming the same polarity to cause arc discharge. When the arc column 6 is formed, ultrafine metal particles of ferromagnetic material, for example, are generated near the arc column 6. In this case, it is thought that ultrafine metal particles are generated near the arc column 6. Further, the cathode electrode 3 and the support rod 2 may be provided at an angle from the vertical line, and the cathode electrode 3 and the support rod 2 may be multipole with two or more (second (See Figure 2). The ultrafine metal particles thus generated are carried by the high-speed gas flow, and most of them are carried upward. At this time, most of it is attached to the inverted conical attachment means 8 with the bottom surface 8A facing upward. These ultrafine metal particles grow as they rise from the arc column 6, and in the process, they receive adhesion means at just the right positions, resulting in ultrafine metal particles that have an appropriate particle size and are well-uniformed. can get.

また逆円錐形の付着手段は、導入管9から水等の冷却用
の液体が導入され、排出管1oから排出されることによ
って冷却されるので金属超微粒子は効率良く付着手段8
に付着しかつ熱的に安定な状態に保持される。その後、
付着手段8に付着された一定粒径の金属超微粒子を掻き
落して容器1外に回収する。この量は、金属材料5から
発生される金属超微粒子全体の8割以上になる。第3図
は、得られる金属超微粒子の粒径分布の一例である。金
属材料5が強磁性体金属として例えばFe10wt%N
i合金の場合には保磁力120000以上、単位重量当
りの飽和磁気モーメント150emu/g、磁場配向を
させないで測定した場合の角形比0.45以上の金属合
金超微粒子が得られる。
Further, since the inverted conical attachment means is cooled by introducing a cooling liquid such as water from the inlet pipe 9 and discharging it from the discharge pipe 1o, the metal ultrafine particles are efficiently transferred to the attachment means 8.
and is maintained in a thermally stable state. after that,
Ultrafine metal particles of a certain particle size adhered to the adhesion means 8 are scraped off and collected outside the container 1. This amount accounts for 80% or more of the total ultrafine metal particles generated from the metal material 5. FIG. 3 shows an example of the particle size distribution of the obtained ultrafine metal particles. The metal material 5 is a ferromagnetic metal such as Fe10wt%N.
In the case of i-alloy, ultrafine metal alloy particles having a coercive force of 120,000 or more, a saturation magnetic moment per unit weight of 150 emu/g, and a squareness ratio of 0.45 or more when measured without magnetic field orientation can be obtained.

このようにして得られた強磁性体よりなる金属超微粒子
は、高保磁力、高飽和磁密度の磁気テープ等の磁気記録
媒体用材料に使用することができる。
The ultrafine metal particles made of ferromagnetic material thus obtained can be used as materials for magnetic recording media such as magnetic tapes with high coercive force and high saturation magnetic density.

第4図(イ)(ロ)は本発明の第2実施例を示し、この
実施例においては逆円錐形の付着手段8の外周表面を波
状又は放射状に形成して前記第1実施例のものよりその
表面積を広くしたことにより金属材料5からの金属超微
粒子の付着効率を高くした点が前記第1実施例と異なる
4(a) and 4(b) show a second embodiment of the present invention, in which the outer circumferential surface of the inverted conical adhesion means 8 is formed in a wavy or radial shape, and is similar to the first embodiment. This embodiment differs from the first embodiment in that the adhesion efficiency of ultrafine metal particles from the metal material 5 is increased by increasing the surface area.

また第5図(イ) (ロ)は本発明の第3実施例であり
、この実施例においては付着手段8を数枚の翼板部8C
を放射状に配置して形成したことにより同様に第4図(
イ) (ロ)に示したように単なる円錐形の付着手段8
のものより金属超微粒子の付着効率を高くした点が前記
第1実施例と異なる。
Further, FIGS. 5(a) and 5(b) show a third embodiment of the present invention, and in this embodiment, the adhesion means 8 is attached to several blade parts 8C.
4 (
b) A mere conical attachment means 8 as shown in (b)
This embodiment differs from the first embodiment in that the adhesion efficiency of ultrafine metal particles is made higher than that of the first embodiment.

第6図(イ)(ロ)は本発明の第4実施例であり、この
実施例においては付着手段8が内芯材8D1と、この内
芯材8D+を覆うようにその外周に嵌合、配置される外
装材8D2とから形成される。そして前記内芯材8D+
 はその外周に数枚の翼板部8G+を放射状に配置して
形成され、また外装材8D2は前記内芯材8D+の外周
に配置された放射状の前記翼板部801間に挿入される
放射状の数枚の翼板部8C2を内側に設けて形成された
ことにより前記第3実施例より表面積を太きくして金属
超微粒子の付着効率を高められる。
FIGS. 6(a) and 6(b) show a fourth embodiment of the present invention, and in this embodiment, the attachment means 8 is fitted onto the outer periphery of the inner core material 8D1 and the inner core material 8D+ so as to cover the inner core material 8D1, It is formed from the exterior material 8D2 that is placed. And the inner core material 8D+
is formed by radially arranging several vane plate portions 8G+ on its outer periphery, and the exterior material 8D2 is formed by radial blade portions 8G+ inserted between the radial vane portions 801 disposed on the outer periphery of the inner core material 8D+. By forming several vanes 8C2 on the inside, the surface area can be increased compared to the third embodiment, and the adhesion efficiency of ultrafine metal particles can be increased.

また第7図(イ) (ロ)に示すものは本発明の第5実
施例であり、この実施例においては付着手段8が平板8
Eを縦横に格子状に組み合わされて形成され7たことに
より、付着手段8の表面積を大きくして金属超微粒子の
付着効率を高くしている。
Moreover, what is shown in FIGS. 7(a) and 7(b) is a fifth embodiment of the present invention, and in this embodiment, the adhesion means 8 is attached to a flat plate 8.
By combining E in a lattice pattern 7 vertically and horizontally, the surface area of the adhesion means 8 is increased and the adhesion efficiency of ultrafine metal particles is increased.

さらに第8図(イ)(ロ)に示すものは本発明の第6実
施例であり、この実施例においては付着手段8として円
形、多角形等の板材8Fを陰極用の電極3に対して水平
に配置したことにより、表面積の割りに金属超微粒子の
付着効率を高くしている。
Furthermore, what is shown in FIGS. 8(a) and 8(b) is a sixth embodiment of the present invention, and in this embodiment, a circular, polygonal, etc. plate 8F is attached to the cathode electrode 3 as the attachment means 8. By arranging it horizontally, the adhesion efficiency of ultrafine metal particles is increased relative to the surface area.

上述のように本発明はアーク放電を用いて金属超微粒子
の製造を行う従来の装置に比べて装置自体に大幅の変更
を加えることなく適度な粒径をもちかつ粒径のよく揃っ
た金属超微粒子を効率良く製造できる。従って金属材料
に強磁性体を用いて之から製造される強磁性体の金属超
微粒子を用いて磁気テープ等の磁気記録媒体を製作した
場合には高保磁力、高飽和磁束密度のものが得られ、製
品としての信頼性が向上する。
As mentioned above, the present invention can produce metal ultrafine particles with appropriate particle size and uniform particle size without making any major changes to the apparatus itself compared to conventional equipment that uses arc discharge to produce metal ultrafine particles. Fine particles can be produced efficiently. Therefore, when a magnetic recording medium such as a magnetic tape is manufactured using ultrafine ferromagnetic metal particles produced by using a ferromagnetic material as a metal material, a medium with high coercive force and high saturation magnetic flux density can be obtained. , the reliability of the product is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアーク放電を用いて金属超微粒子を製造する従
来の装置の一例を示した断面図、第2図talは同じく
本発明の第1実施例を示した断面図、第2図(b)は同
じく他の変形例を示した断面図、第3図は同じく本発明
の第1実施例の装置を用いて製造した場合のF e −
N i合金金属超微粒子の粒径分布曲線を示した特性図
、第4図(イ)は本発明の第2実施例を示した上面図、
(ロ)は同じく側面図、第5図(イ)は本発明の第3実
施例を示した上面図、(ロ)は同じ(側面図、第6図(
イ)は第4実施例を示した上面図、(ロ)は同じく側面
図、第7図(イ)は第5実施例を示した上面図、(ロ)
は同じく側面図、第8図(イ)は第6実施例を示した上
面図、(ロ)は同じく側面図である。 1・・・・・・容器、2・・・・・・支持棒、3・・・
・・・陰極用の電極、4・・・・・・陽極用の電極とし
ての桐ハース、5・・・・・・金属材料、6・・・・・
・アーク柱、7・・・・・・フィルター、8・・・・・
・付着手段、8A・・・・・・底面、8Ct8C+s8
C2・・・・・・翼板部、8Dt・・・・・・内芯材、
8D2・・・・・・外装材、8E・・・・・・平板、8
F・・・・・・板材。 特許出願人   パイオニア株式会社 0
FIG. 1 is a sectional view showing an example of a conventional apparatus for manufacturing ultrafine metal particles using arc discharge, FIG. ) is a sectional view similarly showing another modification, and FIG.
A characteristic diagram showing the particle size distribution curve of Ni alloy metal ultrafine particles, FIG. 4 (A) is a top view showing the second embodiment of the present invention,
(B) is the same side view, FIG. 5 (A) is a top view showing the third embodiment of the present invention, (B) is the same (side view,
A) is a top view showing the fourth embodiment, (B) is a side view, and FIG. 7(A) is a top view showing the fifth embodiment.
8(A) is a top view showing the sixth embodiment, and FIG. 8(B) is a side view. 1...Container, 2...Support rod, 3...
... Electrode for cathode, 4 ... Paulownia hearth as electrode for anode, 5 ... Metal material, 6 ...
・Arc column, 7...Filter, 8...
・Adhesion means, 8A...Bottom surface, 8Ct8C+s8
C2... Wing plate part, 8Dt... Inner core material,
8D2... Exterior material, 8E... Flat plate, 8
F...Plate material. Patent applicant Pioneer Corporation 0

Claims (1)

【特許請求の範囲】[Claims] 金属材料にプラズマ・アーク放電を行い、金属超微粒子
を得る金属超微粒子の製造方法であって、アーク柱の略
直上に発生した金属超微粒子を付着させる付着手段を設
けたことを特徴とする金属超微粒子の製造装置。
A method for producing ultrafine metal particles by subjecting a metal material to plasma arc discharge to obtain ultrafine metal particles, the method comprising an attachment means for adhering the ultrafine metal particles generated substantially directly above an arc column. Ultrafine particle manufacturing equipment.
JP19452782A 1982-11-08 1982-11-08 Production of ultrafine metallic particle Pending JPS5985808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19452782A JPS5985808A (en) 1982-11-08 1982-11-08 Production of ultrafine metallic particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19452782A JPS5985808A (en) 1982-11-08 1982-11-08 Production of ultrafine metallic particle

Publications (1)

Publication Number Publication Date
JPS5985808A true JPS5985808A (en) 1984-05-17

Family

ID=16326012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19452782A Pending JPS5985808A (en) 1982-11-08 1982-11-08 Production of ultrafine metallic particle

Country Status (1)

Country Link
JP (1) JPS5985808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505149A (en) * 1973-05-15 1975-01-20
JPS5544123A (en) * 1978-09-20 1980-03-28 Kamiichi Denshi Kk Device for automatically shutting off main valve
JPS56136634A (en) * 1980-03-29 1981-10-26 Res Dev Corp Of Japan Production of ultra-fine powder and particle using laser beam
JPS58104103A (en) * 1981-12-17 1983-06-21 Natl Res Inst For Metals Method and device for producing fine metallic particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505149A (en) * 1973-05-15 1975-01-20
JPS5544123A (en) * 1978-09-20 1980-03-28 Kamiichi Denshi Kk Device for automatically shutting off main valve
JPS56136634A (en) * 1980-03-29 1981-10-26 Res Dev Corp Of Japan Production of ultra-fine powder and particle using laser beam
JPS58104103A (en) * 1981-12-17 1983-06-21 Natl Res Inst For Metals Method and device for producing fine metallic particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
US5874684A (en) * 1993-07-27 1999-02-23 Nanophase Technologies Corporation Nanocrystalline materials

Similar Documents

Publication Publication Date Title
US4482134A (en) Apparatus for producing fine metal particles
US4732369A (en) Arc apparatus for producing ultrafine particles
CN105880612B (en) A kind of increasing material manufacturing active metal powder preparation method
CN106216702A (en) A kind of spherical titanium or the preparation method of Titanium Powder
CN106694894A (en) High-activity metal superfine powder preparation device and method
JPH0693309A (en) Method and device for producing superfine particles
CN101728049A (en) Synthetic method and equipment of magnetic liquid taking carbon coated metal nano particles as magnetic carriers
JPH0234707A (en) Method for pulverizing a metal and apparatus for performing it
US4886547A (en) Powder manufacturing apparatus and method therefor
JPS5985808A (en) Production of ultrafine metallic particle
GB2176582A (en) Furnace for producing fine grains
JPS6173843A (en) Method and apparatus for melting rod like material by induction coil
US3040112A (en) Electron-beam furnace with beam emission suppressors
JPH0625717A (en) Method and device for producing globular grain by high-frequency plasma
CN112658272B (en) High-cooling gradient plasma arc-gas atomization composite powder preparation device and method
JPS59166605A (en) Apparatus for preparing ultra-fine particle
JPS60224706A (en) Production of ultrafine metallic particles
JPS5933161B2 (en) Active metal or active alloy powder manufacturing method and its manufacturing equipment
JPS5822309A (en) Manufacture of amorphous alloy powder and apparatus therefor
JPS63267431A (en) Preparation of ultrafine particles
GB1462385A (en) Manufacture of hollow metal bodies
TWI250709B (en) Process for producing metal-containing carbon nanomaterials
JPS6242002B2 (en)
JPS63145703A (en) Apparatus for producing powder
JPH034602B2 (en)