JPS5985349A - Aluminum alloy for part contacting with magnetic tape - Google Patents

Aluminum alloy for part contacting with magnetic tape

Info

Publication number
JPS5985349A
JPS5985349A JP57193387A JP19338782A JPS5985349A JP S5985349 A JPS5985349 A JP S5985349A JP 57193387 A JP57193387 A JP 57193387A JP 19338782 A JP19338782 A JP 19338782A JP S5985349 A JPS5985349 A JP S5985349A
Authority
JP
Japan
Prior art keywords
alloy
magnetic tape
less
tape
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57193387A
Other languages
Japanese (ja)
Other versions
JPS6144142B2 (en
Inventor
Tsunehisa Sekiguchi
関口 常久
Shinji Fukuda
福田 伸二
Katsumi Yokoi
横井 克已
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Industries KK
Showa Keikinzoku KK
Original Assignee
Showa Aluminum Industries KK
Showa Keikinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Industries KK, Showa Keikinzoku KK filed Critical Showa Aluminum Industries KK
Priority to JP57193387A priority Critical patent/JPS5985349A/en
Publication of JPS5985349A publication Critical patent/JPS5985349A/en
Publication of JPS6144142B2 publication Critical patent/JPS6144142B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To develop an Al alloy having various excellent characteristics as a part for a magnetic recorder that contacts directly with a magnetic tape by incorporating specific amt. of Si, Cu, Mg, Fe, Mn, Ti, etc. in Al. CONSTITUTION:Parts for a magnetic recorder, such as a cylinder, stationary or rotary drum for guiding a tape, head drum, etc. for a VTR, that contact directly with a magnetic tape are manufactured of an Al alloy contg. 8.0-10.5% Si, 1.5-4.0% Cu, 0.6-2.0% Mg, 0.1-0.6% Fe, or further >=1 kinds of <0.9% Mn and <0.2% Ti. Primary crystal Si does not exist in the texture of such Al alloy. The average particle sizes of Si in the Al-Si eutectic texture is <=(20-5mum), and the alloy has the texture wherein the particles of the crystallized matter consisting of an intermetallic compd. eutectic compd. or the like are <=(10-3mum) and are dispersed at <=(10-5mum)inter-particle interval. The alloy is resistant to wear and has the characteristics of excellent machineability and a small coeff. of dynamic friction with the tape.

Description

【発明の詳細な説明】 本発明は、磁気テープの接触部品、例えばVTR(ビデ
オテープレコーダー)のシリンダー、テープ案内用固定
または回転ドラム、ヘッドドラム等、磁気テープに直接
々触する磁気記録装置用部品に適したアルミニウム合金
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to magnetic tape contact parts, such as cylinders of VTRs (video tape recorders), fixed or rotating tape guide drums, head drums, and other magnetic recording devices that directly touch magnetic tape. It concerns aluminum alloys suitable for parts.

VTRは磁気テープに映像信号を磁気記録、再生する回
転磁気ヘッド部と、磁気テープを安定に走行させるため
の静止または回転するテープ案内ドラムから構成されて
いる。これらの回転磁気ヘッド部あるいはテープ案内ド
ラムの如く磁気テープと直接々触する部品は磁粉を付着
したテープ面を損うことなく安定したテープの走行を保
持するうえて極めて重壁な機能を果すことが知られてお
り、再生映像の精度(映像の鮮明度、色むら等)を向上
するため、磁気テープ接触部品材料の改善が強く要望さ
れている。
A VTR consists of a rotating magnetic head for magnetically recording and reproducing video signals on a magnetic tape, and a stationary or rotating tape guide drum for stably running the magnetic tape. Parts that come into direct contact with the magnetic tape, such as the rotating magnetic head or the tape guide drum, play an extremely important role in maintaining stable tape running without damaging the tape surface, which has magnetic particles attached to it. In order to improve the precision of reproduced images (image clarity, color unevenness, etc.), there is a strong demand for improvements in materials for magnetic tape contact parts.

上記した磁気テープ接触部品用材料に求められる性質と
しては 1)テープに対する耐摩耗性が良いこと。
The properties required of the above-mentioned material for magnetic tape contact parts are 1) good abrasion resistance against the tape;

2)テープとの摩擦係数が小さいこと。2) The coefficient of friction with the tape is small.

3)機械的性質が優れていること。3) Excellent mechanical properties.

4)被削性に優れ、切削仕上面の平滑性が良いこと。4) Excellent machinability and smoothness of the cut surface.

5)熱処理(T6等)による残留応力が小さく寸法安定
性(円筒度、真円度等)が良好なこと。
5) Low residual stress due to heat treatment (T6, etc.) and good dimensional stability (cylindricity, roundness, etc.).

6)塑性加工性、と9わけ冷間鍛造性に優れること。6) Excellent plastic workability and especially cold forgeability.

7)熱膨張係数が小さいこと。(好ましくは磁気テープ
に近いこと。) 従来VTRのテープ接触部品は、表面にCrt・−トメ
ツキを施した銅合金、オーステナイト系SUS l、セ
ラミックコーティングやアルマイト被膜を施したアルミ
ニウム鋳物材等が使用さ祖ていたが、最近では例えば(
イ)特開昭53−93807、特開昭54−16411
0 或は(ロ)特開昭52−89512に開示されるよ
うな主として過共晶Si或の主として耐摩耗性に重点を
おいfc M −8i −Cu−Mg系合金、(、り特
開昭54−153715%に)特開昭55−11118
の提案にみられるような主として被剛性に重点をおいた
M−Cu −Mg 系合金が使用されるようになってい
る。
7) Low coefficient of thermal expansion. (Preferably, it should be similar to magnetic tape.) Conventionally, tape contact parts of VTRs have been made of copper alloy with CRT-plated surface, austenitic SUS l, aluminum casting material with ceramic coating or alumite coating, etc. However, recently, for example (
b) JP-A-53-93807, JP-A-54-16411
0 or (b) hypereutectic Si as disclosed in JP-A-52-89512, or fc M-8i-Cu-Mg alloy, which focuses mainly on wear resistance. 54-153715%) Japanese Patent Application Publication No. 55-11118
M-Cu-Mg alloys, which are mainly focused on rigidity, are now being used, as seen in the proposal of M-Cu-Mg.

N冶金が軽量かつ加工性に優れ非磁性である点でYrR
のテープ接触部品材料としては総体的には他に見られな
い適合性があるが、この種材料に求められる前記の如き
多くの特性を兼備したん冶金材料は意外に得難い。
YrR has the advantage that N metallurgy is lightweight, has excellent workability, and is non-magnetic.
However, it is surprisingly difficult to find a metallurgical material that combines the many properties required for this type of material, as described above.

上記(イ)のAJJ−8i −Cu−Mg系合金は、本
来の優れた耐摩耗性及び機械的強度を損うことなく、こ
の種の糸の合金としては格段と優れた快削性を具備させ
た点でVTRのテープ接触部品用に好評価が得られては
いるが、硬質の初晶8i粒子が剥離して磁気テープを損
傷することがあるのが難点である。
The AJJ-8i -Cu-Mg alloy mentioned in (a) above has significantly superior free machinability for this type of thread alloy without compromising its original excellent wear resistance and mechanical strength. Although it has been well received for use in tape contact parts of VTRs, the problem is that the hard primary 8i particles may peel off and damage the magnetic tape.

まに切削加工時の切削刃の寿命短縮、加工面の表面粗さ
、仕上寸法精度等において必ずしも充分でないところが
ある。
However, there are some aspects that are not always sufficient in terms of shortening of the life of the cutting blade during cutting, surface roughness of the machined surface, finished dimensional accuracy, etc.

上記(ロ)は過共晶8i域のM−8i−α−Mg系の鋳
物用合金であって、金型′または砂型鋳物をもってテー
プ接触部品を製作するものであるが、かかる合金は共晶
組織におけるSi結晶の粒径が大きく、快削性を期待す
ることは困難である。上記e〕及びに)はいづれも鍛造
または脚孔し等の塑性加工を経て成形される快削性に優
れた2M−■−Mg系合金打合金材、テープなじみ性に
優れた材料ではあるが、M−8i系に比し耐摩耗性、仕
上げ面粗度、および破水性に劣るのが難点である。
The above (b) is an M-8i-α-Mg based foundry alloy in the hypereutectic 8i range, and tape contact parts are manufactured using a mold' or sand casting. Since the grain size of the Si crystals in the structure is large, it is difficult to expect free machinability. The above e] and) are all 2M-■-Mg based alloy stamped alloy materials with excellent free machinability that are formed through plastic working such as forging or leg hole drilling, and materials with excellent tape compatibility. , the disadvantage is that it is inferior to the M-8i series in abrasion resistance, finished surface roughness, and water-breaking properties.

本発明者等は上記したような現状に鑑み、VTRのテー
プ接触部品用として求められる多面的な特性をより一層
兼備した実用性の高いアルミニウム合金を開発すること
を技術的課題として梗々研究の結果、本発明に到達した
ものである。
In view of the above-mentioned current situation, the inventors of the present invention have undertaken extensive research with the technical challenge of developing a highly practical aluminum alloy that has even more of the multifaceted properties required for VTR tape contact parts. As a result, we have arrived at the present invention.

即ち、本発明の目的は、(1)  耐摩耗性、快削性、
という本来合金材では相反する性質を兼備し、かつ、V
TRテープ接触部品として充分な強度特性を有し、かつ
(2)テープとの動摩擦係数が小さく、かつ破水性に富
む仕上シ部品面を形成する特性のほか(3)機械加工仕
上げ面粗度が良く、1だ(4)鍛造加工性に優れ、加工
コストの低減をも図れるアルミニウム合金を提供するこ
とにある。
That is, the objects of the present invention are (1) wear resistance, free machinability,
Originally, alloy materials have contradictory properties, and V
It has sufficient strength characteristics as a part in contact with the TR tape, and (2) has a low coefficient of dynamic friction with the tape and forms a finished part surface with excellent water rupture properties, and (3) has a machined finished surface roughness. (4) The object of the present invention is to provide an aluminum alloy that has excellent forging workability and can reduce processing costs.

本発明者等は、さきにVTRテープ接触部品用N合金ト
L−’csi 4.0 8.0%、αr 1..5−7
.0 %、Mg0.5−2.0俤とFe0.1−2.0
%および/またはMn0.2−3.0φを含む合金がそ
の組織中に硬い初晶Siを含1ず、耐摩耗性、および被
剛性を兼備し、表面破水性、強度と共に全体として調和
された特性を具備していることを見出し、該合金を特許
出願中(特開昭57−i4ci44s号)である。しか
しながらその後さらに磁気テープおよび、磁気記録再生
装置の改良が進展し5例えばVTRに関しては、装置の
構造、機能、使用磁気テープの種類、特性等が多様化し
、従って磁気テープ接触部品の成形加工法も変ってきた
ためこれに適用される合金に求められる性質も異ってき
た。本発明は上記の先願発明の合金にさらに改良を加え
、全体の性質を損うことなく、主として耐摩耗性を一層
強化したM合金を開発することを目的とするものである
The present inventors first developed an N alloy for VTR tape contact parts L-'csi 4.0 8.0%, αr 1. .. 5-7
.. 0%, Mg0.5-2.0 and Fe0.1-2.0
% and/or Mn0.2-3.0φ does not contain hard primary Si in its structure, has both wear resistance and rigidity, and is harmonized as a whole with surface water rupture property and strength. We have found that this alloy has the following characteristics, and are currently applying for a patent for this alloy (Japanese Patent Application Laid-open No. 1983-I4CI44S). However, improvements in magnetic tapes and magnetic recording and reproducing devices have progressed since then,5 for example, with regard to VTRs, the structure and functions of devices, the types and characteristics of magnetic tapes used, etc. have diversified, and therefore the molding methods of magnetic tape contact parts have also changed. Because of these changes, the properties required of the alloys used for these changes have also changed. The object of the present invention is to further improve the alloy of the prior invention described above, and to develop an M alloy which mainly has further enhanced wear resistance without impairing its overall properties.

上記目的達成のため、種々研究の結果Cu%Mg。In order to achieve the above objective, various researches resulted in Cu%Mg.

Fe、 Mn等の構成元素の含有量を特定領域に限定す
ることにより、初晶Siの実質的な晶出なしにSi含有
量を8.0 %−10,5%に増加しうろこと、および
合金の組織要件との相乗関係において優ね、た特性を有
するM合金を開発するに至った。すなわち、本発明合金
の基本的構成要件は、組成として(1)  重量テSi
 8.0−10.51、Cu 1.5−4.0 q6、
MgO,b〜2.0%、i;’e□、1〜0,6係  
を含み、残部は通當の不純物を含むMよりなること。
By limiting the content of constituent elements such as Fe and Mn to specific regions, the Si content can be increased from 8.0% to 10.5% without substantial crystallization of primary Si. We have developed an M alloy that has superior properties in a synergistic relationship with the alloy's structural requirements. That is, the basic constituent requirements of the alloy of the present invention are as follows:
8.0-10.51, Cu 1.5-4.0 q6,
MgO, b~2.0%, i;'e□, 1~0,6 section
, and the remainder consists of M containing the usual impurities.

(2)上記組成に対し、さらに0.9%以下の除、0.
2係以下のTiの1種以上を含むこと。
(2) Addition of 0.9% or less to the above composition.
Contains one or more types of Ti of 2 or less proportions.

そしてさらに好ましくは組織として (3)実質的に初晶Siは存在せず、Al −、S i
共晶組織中のSiの平均粒子径が20μm以下であるこ
と。
More preferably, as a structure (3) substantially no primary Si exists, Al −, Si
The average particle diameter of Si in the eutectic structure is 20 μm or less.

合金はそれ自体、磁気テープ接触部品用として優れた特
性を有しており、本発明の目的にかなうものであるが、
合金材の組織をさらに調整することにより、−要改善さ
れた特性が得らねる。すなわち (4)上記(3)の要件に加えてさらに金属間化合物。
Although the alloy itself has excellent properties for magnetic tape contact parts and is suitable for the purpose of the present invention,
By further adjusting the structure of the alloy material, the desired improved properties cannot be obtained. That is, (4) an intermetallic compound in addition to the requirements of (3) above.

共晶化合物よりなる晶出物、析出物などの粒子径が10
μm以下でその間隔が10μm以下で分散していること
The particle size of crystallized substances, precipitates, etc. made of eutectic compounds is 10
µm or less, and the distance between them is 10 µm or less.

にある。It is in.

以下、捷ず本発明の合金の組成範囲限定の理由について
説明する。
The reason for limiting the composition range of the alloy of the present invention will be explained below.

Si:  M−8i共晶組織を有する素地を形成し、本
発明の他の構成元素との相乗作用を果しつ\主として合
金に耐摩耗性、低熱膨張性を賦与し、寸法安定性を向上
する。Siが80重量係未満では本発明合金の他の元素
の組成範囲では耐摩耗性の改善が充分でなく、一方Si
が10.5%を超える領域では初晶Siの析出が不可避
となり、特にCu、 Mn等の元素の共存下においてこ
の析出が促さh1前記したごとき初晶Siによる欠点が
出てぐる。合金組織中に痕跡の初晶Siを含まない均質
な共晶組織を基地とするところが本発明合金の組織的要
件の一つである。また8iが10.5%を超えると合金
の鍛造性が悪化する。このような理由によJSiは8.
0〜10.5俤の範囲とする。
Si: Forms a matrix with an M-8i eutectic structure, works synergistically with other constituent elements of the present invention, and primarily provides wear resistance and low thermal expansion to the alloy, improving dimensional stability. do. If Si is less than 80% by weight, the wear resistance will not be sufficiently improved within the composition range of other elements in the alloy of the present invention;
In a region where H1 exceeds 10.5%, precipitation of primary Si becomes inevitable, and this precipitation is particularly promoted in the coexistence of elements such as Cu and Mn, resulting in the defects caused by primary Si as described above. One of the structural requirements for the alloy of the present invention is that the alloy structure is based on a homogeneous eutectic structure containing no trace of primary Si. Moreover, when 8i exceeds 10.5%, the forgeability of the alloy deteriorates. For these reasons, JSi is 8.
The range shall be 0 to 10.5 yen.

Cu:Cuは強度を高め、かつ被剛性を良くする。Cu: Cu increases strength and improves stiffness.

1.5チ未満ではこの効果が十分でなく、一方4.0係
を超えると初晶8iが晶出するようになり、また鍛造性
を悪化する。このため■は1.5〜4,0チの範囲とす
る。
If the coefficient is less than 1.5, this effect is not sufficient, while if it exceeds 4.0, primary crystals 8i will begin to crystallize, and the forgeability will deteriorate. Therefore, ■ is set in the range of 1.5 to 4.0 inches.

Mg:  合金の機械的強度、特に耐力向上に寄与し■
との相乗的効果によりその被剛性を一層確実にする。そ
のほか8iとの相乗効果として、過剰のSi ′!1−
Mg28 iとして析出せしめ、これによってテープの
走行性を良好にしまた合金に適度な硬度を賦与するほか
耐食性を増進する。Mg含有量が0.6チ未満ではMg
2Siの析出が不足し、上記したような効果を奏しえな
い。またMg含有量が2.0俤を超えると鍛造性が悪く
なる。このためMgは0.6〜2.0チの範囲とする。
Mg: Contributes to improving the mechanical strength of the alloy, especially the yield strength■
The synergistic effect with this makes the rigidity even more reliable. In addition, as a synergistic effect with 8i, excessive Si'! 1-
It is precipitated as Mg28i, which improves the running properties of the tape, imparts appropriate hardness to the alloy, and improves corrosion resistance. If the Mg content is less than 0.6 inches, Mg
Precipitation of 2Si is insufficient, and the above-mentioned effects cannot be achieved. Moreover, when the Mg content exceeds 2.0 yen, forgeability deteriorates. For this reason, Mg is set in the range of 0.6 to 2.0.

Fe:Feは合金組織中にIJ −8i −Fe、 #
 −Fe −Mn 等の第二相粒子を析出せしめこれら
F”e 、 Mnに係る第二相粒子の存在によって耐摩
耗性、テープ走行性を良好にする効果がある。Feが0
.14未満ではこのような効果が少く、0,6チ  を
超えると耐食性が劣化するのでFeは01〜0.6%の
範囲とする。
Fe: Fe has IJ-8i-Fe, # in the alloy structure.
-Fe -Mn etc. are precipitated, and the presence of these F"e, Mn second phase particles has the effect of improving wear resistance and tape running properties.Fe is 0
.. If the Fe content is less than 14%, this effect will be small, and if it exceeds 0.6%, the corrosion resistance will deteriorate, so the Fe content should be in the range of 0.01 to 0.6%.

Mn%Ti:  本願発明の基本構成成分は上記の如く
、# −S i −Cu −Mg−Feであり、これに
ヨッて目的を達成するものであるが、さらにMn%Ti
の所定量を単独または複合して添加含有せしめることに
よって付加的な改善がえられる。すなわち、Mn、Ti
はいづれも合金基質を強化し、その強度を向上すると共
に耐摩耗性を増強する。MnはM基地を強化し強度を向
上する。またFeと金属間化合物を形成して耐摩耗性、
テープ走行性を一層良好にする。しかし隨が0.9%を
超えると初晶S1の晶出を促しあるいは巨大晶出物を生
成し、鍛造性、切削性を損なうのでこれを上限とする。
Mn%Ti: As mentioned above, the basic constituent components of the present invention are #-S i -Cu-Mg-Fe, which achieves the purpose, but Mn%Ti
Additional improvements can be obtained by adding predetermined amounts of , singly or in combination. That is, Mn, Ti
Both strengthen the alloy matrix, increasing its strength and increasing its wear resistance. Mn strengthens the M base and improves its strength. In addition, it forms an intermetallic compound with Fe to provide wear resistance.
To further improve tape running properties. However, if the content exceeds 0.9%, the crystallization of primary crystal S1 is promoted or giant crystallized substances are generated, impairing forgeability and machinability, so this is set as the upper limit.

TIは組織を微細化し、合金の強度及び耐摩耗性を向上
するが。
TI refines the structure and improves the strength and wear resistance of the alloy.

0.2%を超える量を添加含有せしめても、その効果は
増進されず、かえってTie3の巨大晶出物を生成し鍛
造性、切削性を悪化するので、0.2俤を在形態を規制
する。すなわち実質的に初晶Siが存在しないM−8i
共晶組織とし、共晶S1の平均粒子径を20μm以下の
微細粒とすることにより主として平滑な切削仕上9面を
もたらす良好な切削性と改善された耐摩耗性が兼備され
る。さらに、第2の組織的要件として、金属化合物、共
晶化合物よりなる晶出物、析出物などいわゆる第二相粒
子の存在形態を特定する。すなわち、これら第二相粒子
の粒子径が10μm以下でその粒子間隔が10μm以下
で均一に微細化分散している組織とすることによって、
切削性、耐摩耗性が一層向上すると共に、とぐにテープ
走行性および動摩擦係数等が改法について説明する。前
記組成の合金溶湯を鋳塊面内のどの位置でも15℃/ 
sec以上の冷却速度で鋳造することが第1の組織要件
を満すために必要であり、その生産性および均質性から
みて最適には、上記冷却速度に維持さねた垂直または水
平連続鋳造によって柱状鋳塊に鋳造することである。
Even if it is added in an amount exceeding 0.2%, the effect will not be improved, and on the contrary, it will generate giant Tie3 crystals and deteriorate the forgeability and machinability. do. In other words, M-8i is substantially free of primary Si.
By forming a eutectic structure and making the average grain size of the eutectic S1 fine grains of 20 μm or less, both good machinability and improved wear resistance, which mainly provide a smooth cutting finish on 9 surfaces, are achieved. Furthermore, as a second structural requirement, the existence form of so-called second phase particles such as crystallized substances and precipitates made of metal compounds and eutectic compounds is specified. That is, by creating a structure in which these second phase particles have a particle diameter of 10 μm or less and a particle interval of 10 μm or less and are uniformly finely dispersed,
In addition to further improving machinability and abrasion resistance, we will soon explain the improvements in tape runnability, dynamic friction coefficient, etc. The molten alloy having the above composition is heated at 15°C/at any position within the ingot surface.
It is necessary to cast at a cooling rate of sec or more in order to meet the first structure requirement, and from the viewpoint of productivity and homogeneity, it is optimally cast by vertical or horizontal continuous casting without maintaining the above cooling rate. Casting into columnar ingots.

この代表的な実施態様は例えば特公昭54−42847
号(特許第1007387号)公報記載の直冷式ホット
トップ連続鋳造法による直径100朔以下の細径ビレッ
トの鋳造である。このようにして鋳造された合金鋳塊を
鋳造のま\もしくは予め均質化処理あるいはT6処理等
の熱処理を施した後、切削加工、または鍛造、押出し、
抽伸、スェージ等の塑性加工を施した後切削加工して目
的にかなった合金製品が得られる。
This typical embodiment is, for example, published in Japanese Patent Publication No. 54-42847.
A thin billet having a diameter of 100 mm or less is cast by the direct cooling hot top continuous casting method described in Japanese Patent No. 1007387. The alloy ingot thus cast is left as it is for casting, or after being subjected to heat treatment such as homogenization treatment or T6 treatment, cutting, forging, extrusion, etc.
After plastic working such as drawing and swaging, cutting is performed to obtain an alloy product that meets the purpose.

塑性加工は、上記合金鋳塊を望ましくは400〜510
℃において1.5〜40時間加熱することによって均質
化処理した後、そのま\、または表皮切削を施してから
行われる。これらの塑性加工により合金中のM−8i共
晶組織中の81、および金属開化合物、共晶化合物より
なる晶出物、析出物などは破壊され、微細・均一化され
る。特に鍛造加工は手記の組織破壊による微細、均一化
と成形とが同時に達成でき、塑性加工法としては最も得
策である。鍛造加工は熱間、冷間のいずれでも良い。
The plastic working is preferably performed on the alloy ingot at a temperature of 400 to 510.
After homogenization treatment by heating at ℃ for 1.5 to 40 hours, it is carried out as is or after skin cutting is performed. Through these plastic workings, 81 in the M-8i eutectic structure in the alloy, as well as crystallized substances and precipitates made of metal open compounds and eutectic compounds, are destroyed and made fine and uniform. In particular, forging is the most advantageous plastic processing method, as it can simultaneously achieve fineness, uniformity, and forming through microstructural destruction. Forging may be done either hot or cold.

従来本発明のごとき組成のkl −S i −Cu −
Mg 系合金の鋳塊を直接冷間鍛造することは困難とさ
れてきたが、前記したような本発明合金の組織的要件を
具備した合金鋳塊は容易に冷間鍛造することが可能であ
り、低コストで成型が行われるので工業的に基だ有利で
ある。
Conventionally, kl -S i -Cu - having a composition as in the present invention
Although it has been considered difficult to directly cold forge an ingot of an Mg-based alloy, it is possible to easily cold forge an alloy ingot that meets the structural requirements of the alloy of the present invention as described above. It is industrially advantageous because it can be molded at low cost.

本発明の合金鋳塊を鍛造等によって塑性加工する場合、
加工度(断面変化率)が35チ未満では上記した破壊は
十分性われず、より好ましくは35チ以上の加工度で熱
間、または冷間加工することによって、M−8i共晶組
織中のSiの平均粒子径は5μm以下、金属間化合物、
共晶化合物よりなる晶出物、析出物などの粒子径が3μ
m以下、粒子間隔が5μm以下で分散している組織の合
金が得られる。このような均一微細な組織の合金は耐摩
耗性。
When plastically working the alloy ingot of the present invention by forging or the like,
If the working degree (cross-sectional change rate) is less than 35 inches, the above-mentioned destruction will not be sufficiently prevented. More preferably, by hot or cold working at a working degree of 35 inches or more, the The average particle diameter of Si is 5 μm or less, intermetallic compound,
The particle size of crystallized substances and precipitates made of eutectic compounds is 3μ
m or less, an alloy having a dispersed structure with particle spacing of 5 μm or less can be obtained. Alloys with such a uniform microstructure are wear resistant.

磁気テープ走行性と切削加工性という背反する性質を一
層強く兼備するようになり、鍛造等の一次塑性加工後の
切削仕上げ加工性が一段と向上し優れた平滑度(表面粗
さ)、寸法精度と共に耐摩耗性、テープ走行性を具備す
る製品が得られる。
The contradictory properties of magnetic tape runnability and cutting workability have become even stronger, and machining and finishing workability after primary plastic processing such as forging has been further improved, along with excellent smoothness (surface roughness) and dimensional accuracy. A product with wear resistance and tape running properties can be obtained.

以下、本発明を実施例に基いて説明する。The present invention will be explained below based on examples.

実施例および比較例 第1表に実施例および比較例の合金組成を示す。Examples and comparative examples Table 1 shows the alloy compositions of Examples and Comparative Examples.

第1表の合金No、 1〜No、 8およびNo、11
、No、 12は冷却速度28 ’Q / secに保
持された気体圧印加ホットトップ連続鋳造法(特公昭5
4−42847号公報記載の方法)により直径68 m
mの円柱状長尺鋳塊に製造したものである。
Alloy No. 1 to No. 8 and No. 11 in Table 1
, No. 12 is a hot-top continuous casting method (Special Publication Act 1986) with gas pressure applied at a cooling rate of 28'Q/sec.
68 m in diameter by the method described in Publication No. 4-42847)
The ingot was manufactured into a long cylindrical ingot with a diameter of m.

また第1表の合金No、 9、No、 10およびNo
、 1.3、No、14は金型鋳造により上記と同じ直
径の円柱状鋳塊に製造したものであり、この場合の冷却
速度は04’Q / secであった。
In addition, alloy No. 9, No. 10 and No. 1 in Table 1
, 1.3, No. 14 were manufactured into cylindrical ingots with the same diameter as above by die casting, and the cooling rate in this case was 04'Q/sec.

上記鋳塊は、いずれも480°Cにおいて4時間均質化
熱処理を施した。この状態で上記連続鋳造法により得ら
れた鋳塊の組織は、第1図に例示(第1表の合金N05
)するごと<M−8i共晶組織中の81の粒子径が20
μmをこえずかつ球状化しておシ・かつそのほかの晶出
物、析出物等が10μm以下で、その粒子間隔が10μ
m以下の微細均一な組織を呈している。また上記金型鋳
造により得られた鋳塊の組織は第2図に例示(第1表の
合金N09)するとと(Ajl! −Si共晶組織中の
Siの粒子径は20μmを超え、そのほかの晶出物、析
出物等も10μm以上であり、第1図に比して相当粗い
組織となっている。
The above ingots were all subjected to homogenization heat treatment at 480°C for 4 hours. The structure of the ingot obtained by the above continuous casting method in this state is illustrated in Figure 1 (alloy N05 in Table 1).
), the particle size of 81 in the M-8i eutectic structure is 20
The particle size does not exceed 10 μm, and the grain size is 10 μm or less, and other crystallized substances and precipitates are spheroidized and the particle spacing is 10 μm.
It exhibits a fine uniform structure of less than m. In addition, the structure of the ingot obtained by the above mold casting is illustrated in FIG. 2 (Alloy No. 09 in Table 1). The crystallized substances, precipitates, etc. are also 10 μm or more, and the structure is considerably rougher than that shown in FIG.

上記鋳塊はピーリング機により表面鋳皮を削除し、つい
でT6熱処理(505℃×3時間加熱後、温水焼入れ、
170°C×9時間人工時効処理)を施した後切削成形
して供試片とした。たソし第1表の合金No、 5 、
No、 6については、上記供試片とは別に鋳塊に均質
化熱処理を施した後、第4図に示すごときVTR回転ド
ラムの形状に冷間鍛造成形(加工率60%)シ、ついで
T6熱処理(上記と同一条件)を施した後切削成型して
供試片と17た。第3図は上記冷間鍛造、T6熱処理後
の合金の組織例(合金No、 5 )で、第1図と対比
して明らかなように鋳塊より組織は一段と微細均一化し
ており、M−8i共晶組織中の81の平均粒子径は5μ
m以下で細かくかつ球状化し、またその他の晶出物、析
出物等の粒子径は3μm以下でその粒子間隔は5μm以
下で分散していることが認められる。
The surface skin of the above ingot was removed using a peeling machine, and then T6 heat treatment (after heating at 505℃ for 3 hours, hot water quenching,
After performing artificial aging treatment at 170°C for 9 hours, the specimens were cut and formed into test pieces. Alloy No. 5 in Table 1
Regarding No. 6, the ingot was subjected to homogenization heat treatment separately from the above-mentioned test piece, and then cold forged into the shape of a VTR rotating drum (processing rate 60%) as shown in Fig. 4, and then T6. After heat treatment (same conditions as above), cutting and molding were performed to obtain a test piece. Figure 3 shows an example of the structure of the alloy (alloy No. 5) after the above-mentioned cold forging and T6 heat treatment.As is clear from the comparison with Figure 1, the structure is more fine and uniform than the ingot, and the M- The average particle size of 81 in the 8i eutectic structure is 5μ
It is observed that the particle size of other crystallized substances and precipitates is 3 μm or less, and the particles are dispersed at intervals of 5 μm or less.

なお、表面粗さ、耐摩耗性、真円度、磁気テープ走行性
、動摩擦係数の測定用には上記T6熱処理後、ダイヤモ
ンド切削刃を有する切削工具により切削して鏡面仕上げ
加工を施した供試片を用いた。
In addition, for the measurement of surface roughness, wear resistance, roundness, magnetic tape running performance, and coefficient of dynamic friction, the test specimens were subjected to mirror finishing by cutting with a cutting tool having a diamond cutting blade after the above T6 heat treatment. A piece was used.

第1表の合金の緒特性値を第2表に示した。表中合金N
o、 5−1、およびNo、 6−1は前記した第4図
に示すとときV’l’R回転ドラムの形状に冷間鍛造成
形した供試片である。
The characteristic values of the alloys in Table 1 are shown in Table 2. Alloy N in the table
No. 5-1 and No. 6-1 are test pieces that were cold forged into the shape of the V'l'R rotating drum shown in FIG. 4 described above.

特性値の試験方法は下記のとおりである。The test method for characteristic values is as follows.

イ)鍛造性: 前記のごとく均質化熱処理した鋳塊から
第5図(a)に示すととき模試駒片をIJJり出して供
試した。試験方法は第5図(ロ)に示すごとく試験片1
を金敷2に載置し、ハンマー3(1/2)ン)により室
温において鍛圧し、鍛圧後の試験片4に割れが発生し始
める加工率を限界加工率としこねにより鍛造性を評価し
た。この方法(「金属塑性加工学」加藤健三著、丸善■
)は鍛造性の評価方法として甚だ適切であり、信頼され
ている。
b) Forgeability: A mock test piece as shown in FIG. 5(a) was extracted from the ingot subjected to the homogenization heat treatment as described above and tested by IJJ. The test method is as shown in Figure 5 (b).
was placed on an anvil 2 and forged at room temperature with a hammer 3 (1/2), and the forgeability was evaluated by kneading, with the working rate at which cracks began to occur in the test piece 4 after being pressed as the limit working rate. This method (“Metal Plastic Processing” by Kenzo Kato, Maruzen
) is an extremely appropriate and reliable method for evaluating forgeability.

口)表面粗さ: 供試片の仕上面を表面粗さ割により測
定した。
(a) Surface roughness: The finished surface of the specimen was measured by surface roughness.

ハ)比摩耗量: 大越式摩耗試験機により摩耗速度3n
v/sec、荷重18.9Kg、摩擦距離600mmで
試験を行った。
C) Specific wear amount: Wear rate 3n by Okoshi type wear tester
The test was conducted at v/sec, a load of 18.9 kg, and a friction distance of 600 mm.

二)磁気テープ走行性:  1500時間VTR用磁気
テープを走行させた後の再生映像の安定性を市販のVT
Rにより試験を行った。
2) Magnetic tape running performance: The stability of the reproduced video after running the VTR magnetic tape for 1500 hours was measured using a commercially available VT.
The test was conducted using R.

ホ)動摩擦係数二 市販VTRと同様の走行方法で供試
片の片方には50g の逆張力(Wp)を負荷し、18
,0ctn/SeCの速度で磁気テープを供試片上に走
行させ、負荷と相対する片側で作用荷重(WT )  
を測定し、これにより動摩擦係数を測定した。
e) Dynamic friction coefficient 2 A reverse tension (Wp) of 50 g was applied to one side of the specimen using the same running method as a commercially available VTR.
The magnetic tape was run over the specimen at a speed of ,0ctn/SeC, and the applied load (WT) was applied on one side facing the load.
was measured, thereby determining the coefficient of dynamic friction.

へ)真円度: 仕上げ面外用を三次元測定器により真円
度測定を行った。
f) Roundness: The roundness of the finished surface was measured using a three-dimensional measuring device.

第2表の特性値にみられるように、本発明の合金材は充
分な強度(引張り強さ、伸び)を有するほか鍛造加工性
に富み、かつ優れた切削性(表面粗度)、耐摩耗性、磁
気テープ走行性、動摩擦係数を有するので磁気テープ接
触部品用材料として甚だ好適である。
As seen in the characteristic values in Table 2, the alloy material of the present invention has sufficient strength (tensile strength, elongation), excellent forging workability, excellent machinability (surface roughness), and wear resistance. It is extremely suitable as a material for magnetic tape contacting parts because it has excellent properties such as magnetic tape running properties and dynamic friction coefficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷却速度28℃/ secで連続鋳造された鏡
組織写真。第3図は第1図の合金鋳塊を冷間鍛造(加工
率60%)しついでT6熱処理した本発明合金の顕微鏡
組織写真。第4図は本発明合金の冷間鍛造成形による試
験片の形状(VTR回転ドラムの形状)。第5図(a)
は合金の鍛造性評価のための楔試験片の形状、第5図の
)は鍛造性試験方法の説明図。 特許出願人 昭和軽金属株式会社 代理人 鈴木杏− 范5図 (α) (b) ↓ 手続補正書(自発) 昭和57年12月6日 特許庁長官 若 杉 和 夫 殿 1 事件の表示 昭和57年特許願第193387号 2 発明の名称 磁気テープ接触部品用アルミニウム合金3、補正をする
もの 事件との関係 特許出願人 住所 東京都港区芝公園−丁目7番13号名称 昭和軽
金属株式会社 代表者 林  健 彦 4代理人 居所 東京都港区芝大門−丁目13番9号図面 6 補正の内容
Figure 1 is a mirror microstructure photograph of continuous casting at a cooling rate of 28°C/sec. FIG. 3 is a microscopic structure photograph of the alloy of the present invention obtained by cold forging the alloy ingot shown in FIG. 1 (processing rate: 60%) and then T6 heat treatment. FIG. 4 shows the shape of a test piece (the shape of a VTR rotating drum) obtained by cold forging the alloy of the present invention. Figure 5(a)
Figure 5 shows the shape of a wedge test piece for evaluating the forgeability of alloys, and Figure 5) is an explanatory diagram of the forgeability test method. Patent Applicant Showa Light Metal Co., Ltd. Agent An Suzuki - Fan 5 Diagram (α) (b) ↓ Procedural Amendment (Voluntary) December 6, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1 Indication of the Case 1988 Patent Application No. 193387 2 Name of the invention Aluminum alloy for magnetic tape contact parts 3, things to be amended Relationship to the case Patent applicant address 7-13 Shiba Koen-chome, Minato-ku, Tokyo Name Showa Light Metal Co., Ltd. Representative Hayashi Kenhiko 4 Agent residence No. 13-9, Shiba Daimon-chome, Minato-ku, Tokyo Drawing 6 Contents of amendment

Claims (1)

【特許請求の範囲】 1、重量でSi 8.0〜10.5%%Cu 1.5〜
4.0 %、Mg0.6〜2.0%、Fe O,1〜0
.6 Toを含み、残=++ハ通常ノ不純物を含むMよ
りなる磁気テープ接触部品用アルミニウム合金。 2、 重量テsi 8.0〜10.5%、Cu 1.5
〜4.0 %、Mg 0.6〜2.0%、Fe0.1〜
0.6%およびMnQ、9%以下、Ti0,2係以下の
1種以上を含み、残部は通常の不純物を含むMよりなる
磁気テープ接触部品用アルミニウム合金。 3、合金組織中に実質的に初晶Siが存在せず%M−S
 i共晶組織中のSiの平均粒子径が20μm以下であ
り、かつ金属間化合物、共晶化合物よりなる晶出物、析
出物などの粒子が10μm以下、粒子間隔が10μm以
下で分散している組織からなる特許請求の範囲第1項お
よび第2項記載の磁気テープ接触部品用アルミニウム合
金。 4、合金組織中に実質的に初晶Siが存在せず、M −
S i共晶組織中のSi平均粒子径が5μm以下であり
、かつ金属間化合物、共晶化合物よりなる晶出物、析出
物などの粒子径が3μm以下、粒子間隔が5μm以下で
分散している組織からなる特許請求の範囲第1項および
第2項記載の磁気テープ接触部品用アルミニウム合金。
[Claims] 1. Si 8.0-10.5%% Cu 1.5-10% by weight
4.0%, Mg0.6-2.0%, FeO, 1-0
.. An aluminum alloy for magnetic tape contact parts, comprising M containing 6 To and the remainder = ++ C normal impurities. 2. Weight Tesi 8.0-10.5%, Cu 1.5
~4.0%, Mg 0.6~2.0%, Fe0.1~
An aluminum alloy for use in magnetic tape contact parts, comprising M containing 0.6%, MnQ, 9% or less, Ti0.2 or less, and the remainder containing ordinary impurities. 3. Substantially no primary Si exists in the alloy structure and %M-S
i The average particle diameter of Si in the eutectic structure is 20 μm or less, and particles such as intermetallic compounds, crystallized substances, precipitates, etc. made of eutectic compounds are dispersed at 10 μm or less, and the particle spacing is 10 μm or less. An aluminum alloy for magnetic tape contact parts according to claims 1 and 2, which comprises a structure. 4. Substantially no primary Si is present in the alloy structure, and M −
The average Si particle size in the Si eutectic structure is 5 μm or less, and the particle size of intermetallic compounds, crystallized substances, precipitates, etc. consisting of eutectic compounds is 3 μm or less, and the particle spacing is 5 μm or less. An aluminum alloy for magnetic tape contact parts according to claims 1 and 2, which has a structure of:
JP57193387A 1982-11-05 1982-11-05 Aluminum alloy for part contacting with magnetic tape Granted JPS5985349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57193387A JPS5985349A (en) 1982-11-05 1982-11-05 Aluminum alloy for part contacting with magnetic tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57193387A JPS5985349A (en) 1982-11-05 1982-11-05 Aluminum alloy for part contacting with magnetic tape

Publications (2)

Publication Number Publication Date
JPS5985349A true JPS5985349A (en) 1984-05-17
JPS6144142B2 JPS6144142B2 (en) 1986-10-01

Family

ID=16307083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57193387A Granted JPS5985349A (en) 1982-11-05 1982-11-05 Aluminum alloy for part contacting with magnetic tape

Country Status (1)

Country Link
JP (1) JPS5985349A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193238A (en) * 1983-03-10 1984-11-01 Kobe Steel Ltd Abrasion resistant aluminum alloy for extrusion forging
JPS60197838A (en) * 1984-03-19 1985-10-07 Kobe Steel Ltd Wear-resistant aluminum alloy for forging
JP2006241531A (en) * 2005-03-04 2006-09-14 Ryoka Macs Corp Continuous casting aluminum alloy ingot and its production method
JP2006283124A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Abrasion resistant aluminum alloy for cold forging
JP2009144596A (en) * 2007-12-13 2009-07-02 Honda Motor Co Ltd Engine cooling water passage structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671361B (en) * 2016-02-02 2017-11-03 永春左耳贸易有限公司 A kind of preparation method of alloy filter element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149747A (en) * 1977-06-01 1978-12-27 Seiko Instr & Electronics Ltd Voltage comparator circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149747A (en) * 1977-06-01 1978-12-27 Seiko Instr & Electronics Ltd Voltage comparator circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193238A (en) * 1983-03-10 1984-11-01 Kobe Steel Ltd Abrasion resistant aluminum alloy for extrusion forging
JPS6151017B2 (en) * 1983-03-10 1986-11-07 Kobe Steel Ltd
JPS60197838A (en) * 1984-03-19 1985-10-07 Kobe Steel Ltd Wear-resistant aluminum alloy for forging
JPS6238420B2 (en) * 1984-03-19 1987-08-18 Kobe Steel Ltd
JP2006241531A (en) * 2005-03-04 2006-09-14 Ryoka Macs Corp Continuous casting aluminum alloy ingot and its production method
JP4707413B2 (en) * 2005-03-04 2011-06-22 三菱樹脂株式会社 Continuously cast aluminum alloy ingot and method for producing the same
JP2006283124A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Abrasion resistant aluminum alloy for cold forging
JP2009144596A (en) * 2007-12-13 2009-07-02 Honda Motor Co Ltd Engine cooling water passage structure

Also Published As

Publication number Publication date
JPS6144142B2 (en) 1986-10-01

Similar Documents

Publication Publication Date Title
JPH0122343B2 (en)
JPH0239578B2 (en)
JPS5985349A (en) Aluminum alloy for part contacting with magnetic tape
US4740250A (en) Aluminium base-alloy for head drum of video cassette recorders
JPH0116901B2 (en)
JPS6138254B2 (en)
JPH04176836A (en) Aluminum alloy excellent in wear resistance
JPS6069855A (en) Production of guiding drum for magnetic tape scanner
JPS5836668B2 (en) Manufacturing method of aluminum alloy with high toughness and machinability
JPH0297638A (en) Aluminum alloy for parts to be brought into contact with magnetic tape
JPS6154854B2 (en)
JPH0348257B2 (en)
KR910006019B1 (en) Al alloy for head drum of audio tape recorder
JPS635459B2 (en)
JPS62222039A (en) Aluminum alloy excellent in wear resistance and extrudability
JPS62192553A (en) Aluminum alloy for cold forging
JPS6069853A (en) Static drum for magnetic tape scanner
JPS62222040A (en) Aluminum alloy excellent in wear resistance and cold forgeability
JPS6069854A (en) Rotary drum for magnetic tape scanner
JPS62103333A (en) Aluminum alloy for contact parts for magnetic tape
JPH0332403B2 (en)
JPH0136543B2 (en)
JPH01268839A (en) Aluminum alloy for working
JPH0418020B2 (en)
JPS6286142A (en) Aluminum alloy material having superior machinability and frictional characteristic for parts contacting with magnetic tape