JPS5984405A - Cryogenic cooling equipment - Google Patents

Cryogenic cooling equipment

Info

Publication number
JPS5984405A
JPS5984405A JP57193513A JP19351382A JPS5984405A JP S5984405 A JPS5984405 A JP S5984405A JP 57193513 A JP57193513 A JP 57193513A JP 19351382 A JP19351382 A JP 19351382A JP S5984405 A JPS5984405 A JP S5984405A
Authority
JP
Japan
Prior art keywords
helium
valve
superconducting coil
liquid
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57193513A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Hotta
堀田 好寿
Hiroshi Kimura
浩 木村
Nobuhiro Hara
原 伸洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57193513A priority Critical patent/JPS5984405A/en
Publication of JPS5984405A publication Critical patent/JPS5984405A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To avoid the damage of a superconductive coil by a method wherein a cooling equipment is composed of a cold box for generating cryogen, a liquid He storag and a cryogenic container in which a superconductive coil is stored and prescribed valves are provided between the storage and the container. CONSTITUTION:High purity He gas, compressed by a compressor 1, is introduced into a cold box 2 and a part of it is turned into liquid He by expansion turbines 4a and 4b. The produced liquid He is led into a He storage 10 through a conveyor tube 9a to be stored as liquid He 11. Then, a part of the liquid He 11 is led into a cryogenic container 18, in which a superconductive coil 19 is stored, through a conveyer tube 12 to cool the coil 19. In this configuration, a manual valve 13b is provided to the conveyer tube 12 and the storage 10 and the container 18 are connected by a connecting tube in which manual valves 14a and 14b for recycling are connected in parallel. With this constitution, when an abnormal voltage detector 22 operates, the valve 14b is opened and at the same time the valve 13b is closed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液化冷凍機を運転しながら超電導コイルを励磁
する装置に係シ、特に、超電導コイルに異常を生じた時
、超電導コイル及び液化積管保護する極低温冷却装置に
関する 〔従来技術〕 第1図は従来から行なわれている極低温冷却装置の概略
的システムのブロック図である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a device that excites a superconducting coil while operating a liquefaction refrigerator, and in particular, when an abnormality occurs in the superconducting coil, [Prior Art] Regarding Cryogenic Cooling Devices to Protect [Prior Art] FIG. 1 is a block diagram of a schematic system of a conventional cryogenic cooling device.

液体ヘリウムの製造及び超電導コイルの励磁方法につい
て述べる。液体ヘリウムの製造は、循環圧縮機1で圧縮
した高純度のヘリウムガスをコールドボックス2内に導
ひき、一部のガスは膨張タービン4a、4bによシ膨張
されて温度を下げ、低圧の戻りガスとなって、入ってぐ
る高圧のガスを冷却する。熱交換を〈シかえして冷却さ
れた高圧のガスはJT弁8によシ断熱自由膨張して一部
が液体ヘリウムとなシ、ヘリウム移送管9aをへて、液
体ヘリウム貯槽10に貯蔵される。又、上記の液化中超
電導コイルを励磁する場合は、まずこの液体ヘリウム貯
槽10にヘリウム移送管12を挿入し、液化機の運転モ
ードにおける液体ヘリウム貯槽10の圧力と極低温容器
18との差圧によυ極低温容器18に移送する。
The production of liquid helium and the method of exciting superconducting coils will be described. To produce liquid helium, high-purity helium gas compressed by a circulation compressor 1 is introduced into a cold box 2, and some of the gas is expanded by expansion turbines 4a and 4b to lower the temperature and return low pressure. It becomes a gas and cools the high-pressure gas that enters. The high-pressure gas cooled by heat exchange undergoes adiabatic free expansion through the JT valve 8, and a portion of the gas becomes liquid helium, which is stored in the liquid helium storage tank 10 via the helium transfer pipe 9a. . In addition, when exciting the superconducting coil during liquefaction, first insert the helium transfer pipe 12 into the liquid helium storage tank 10, and set the differential pressure between the pressure of the liquid helium storage tank 10 and the cryogenic container 18 in the operation mode of the liquefaction machine. The sample is then transferred to the cryogenic container 18.

この時、液体ヘリウムの移送量は超電導コイル19の励
磁中の蒸発量に見合う量で装置によっては連続で注入が
行なわれる。
At this time, the amount of liquid helium transferred corresponds to the amount of evaporation during excitation of the superconducting coil 19, and depending on the device, injection is performed continuously.

又、超電導コイル19の励磁は、まず、試験する超電導
コイル19を液体ヘリウム11内に浸漬し、十分冷却し
た後、外部直流電源26にょシ励磁する。
In order to excite the superconducting coil 19, first, the superconducting coil 19 to be tested is immersed in the liquid helium 11, cooled down sufficiently, and then excited by the external DC power source 26.

励磁中超電導コイル19にクエンチ現象その他の異常を
生じた場合には超電導コイルの電圧変動を検出して励磁
回路内のスイッチ25を開き、コイルのエネルギーを外
部抵抗24で消費させるようにしている。
If a quench phenomenon or other abnormality occurs in the superconducting coil 19 during excitation, voltage fluctuations in the superconducting coil are detected, a switch 25 in the excitation circuit is opened, and the energy of the coil is consumed by the external resistor 24.

しかし従来のこのようなシステムにあっては、上記のよ
うな保護回路があっても、大型コイル等の励磁中異常が
あった場合、極低温容器18内の液体ヘリウムの蒸発に
ょシ圧カが上昇する。
However, in such a conventional system, even with the protection circuit described above, if there is an abnormality during excitation of a large coil, etc., the pressure may increase due to the evaporation of liquid helium in the cryogenic container 18. Rise.

′ これに対し、容器には安全弁21、ヘリウム移送管
用弁13a1及び、回収系の弁14aはある妙へその開
閉に時間的遅れが生じ、ヘリウム移送管12を介し、液
体ヘリウム貯槽1oの圧力を上昇させ、さらに、ヘリウ
ム移送管9a、9bを介してコールドボックス2内の各
部署における温度バランスをみだし、液化後運転に支障
をきたしたシ、膨張タービンをを損傷させるなど、欠点
があった。
' On the other hand, the safety valve 21, the helium transfer pipe valve 13a1, and the recovery system valve 14a in the container have a certain time delay in opening and closing, and the pressure in the liquid helium storage tank 1o is reduced through the helium transfer pipe 12. Moreover, the helium transfer pipes 9a and 9b disrupted the temperature balance in each section of the cold box 2, causing problems in operation after liquefaction and damaging the expansion turbine.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、超電導マグネットがクエンチなどの異
常を生じた場合、超電導マグネット及び液化冷凍装置を
損傷することなく保護する装置を提供するにある。
An object of the present invention is to provide a device that protects a superconducting magnet and a liquefaction refrigeration system without damaging them when an abnormality such as quenching occurs in the superconducting magnet.

〔発明の概要〕[Summary of the invention]

本発明は寒剤を発生させるためのコールドボックスと液
体ヘリウム貯槽と、超電導コイルを内部に収納した極低
温容器を組合わせた冷却システムからなり、ヘリウムガ
スを液化しながら超電導コイルを励磁する装置において
、超電導コイルの異常を検知して、同時に、応動するエ
ネルギー除去装置と複数の自動弁を設けたことを特徴と
する。
The present invention consists of a cooling system that combines a cold box for generating a cryogen, a liquid helium storage tank, and a cryogenic container housing a superconducting coil inside, and is an apparatus that excites the superconducting coil while liquefying helium gas. It is characterized by the provision of an energy removal device and multiple automatic valves that detect abnormalities in the superconducting coils and respond simultaneously.

〔発明の実施例〕[Embodiments of the invention]

〈実施例1〉 第2図は本発明の一実施例を示す。 <Example 1> FIG. 2 shows an embodiment of the invention.

第1図と比べて回収用手動弁14aと並列にこれよシ流
箪の大きい自動弁14bを挿入し、回収用手動弁13a
は13bに替えた。
Compared to FIG. 1, an automatic valve 14b with a larger flow chamber is inserted in parallel with the manual recovery valve 14a, and a manual recovery valve 13a is inserted.
was replaced with 13b.

本例では超電導コイルに異常が生じた場合、その異常電
圧を検出装置22で検知し、その信号を操作電源23で
処理し、第2図の点線で示したように励磁電源のスイッ
チ25を開極すると同時に、各パルプを開閉するように
している。すなわち、バルブの開閉状態は正常運転時に
は13b、14aは開、14bは閉であるが、異状に際
しては極低温容器の回収自動弁14bを開くと共に、極
低温容器と液体ヘリウム貯槽とを結ぶ移送管12の弁1
3bを閉じるように設定している。
In this example, when an abnormality occurs in the superconducting coil, the abnormal voltage is detected by the detection device 22, the signal is processed by the operating power source 23, and the excitation power source switch 25 is opened as shown by the dotted line in FIG. At the same time, each pulp is opened and closed. That is, during normal operation, the valves 13b and 14a are open and 14b is closed, but in the event of an abnormality, the automatic recovery valve 14b of the cryogenic container is opened, and the transfer pipe connecting the cryogenic container and the liquid helium storage tank is opened. 12 valves 1
3b is set to close.

操作の方法は、まず、ヘリウムガスを循環圧縮機で16
気圧まで圧縮してコールドボックスにおく9、液体窒素
(図示せず)、膨張タービン等で熱交換して温度を下け
、JT弁を介して液体ヘリウムをつくる。液化率はその
時の調整によるが、今回は平均100t/hとした。液
化した液体ヘリウムはヘリウム移送管を介して、液体ヘ
リウム貯槽にたくわえた。2000を容器から超電導コ
イルを収納する極低温容器への液移送はヘリウム移送管
によって行なわれ、液化機の運転モードにおける液体ヘ
リウム貯槽の圧力が1.15〜1.2気圧であるので、
はソ大気圧の極低温容器との差圧は0.15〜0,2気
圧となシ、約100t/hで移送された。
The operation method is as follows: First, helium gas is heated to 16 cm using a circulating compressor.
It is compressed to atmospheric pressure and placed in a cold box 9. The temperature is lowered by heat exchange with liquid nitrogen (not shown), an expansion turbine, etc., and liquid helium is produced via a JT valve. Although the liquefaction rate was adjusted at that time, it was set to an average of 100 t/h this time. The liquefied liquid helium was stored in a liquid helium storage tank via a helium transfer pipe. 2000 from the container to the cryogenic container housing the superconducting coil is carried out by a helium transfer pipe, and the pressure of the liquid helium storage tank in the operation mode of the liquefier is 1.15 to 1.2 atmospheres.
The differential pressure between the container and the cryogenic container at atmospheric pressure was 0.15 to 0.2 atm, and it was transferred at a rate of about 100 t/h.

この状態で超電導コイルに20KA直流電源よシ励磁・
電流を流したところ、1380Aで超電導コイルの両端
に異常電圧を生じた。これに伴い検出装置22及び操作
電源23が働いた。
In this state, the superconducting coil is excited by a 20KA DC power supply.
When a current of 1,380 A was applied, an abnormal voltage was generated across the superconducting coil. Along with this, the detection device 22 and the operating power source 23 were activated.

その結果、超電導コイルは損傷をうけることなく正常で
あった。また、極低温容器の圧力は多少上昇したが、回
収自動弁14bがコイル異常と同時に開いたため、安全
弁21は開かず、ヘリウムガスを無駄に大気へ放出する
ことはなかった。
As a result, the superconducting coil was found to be operating normally without any damage. Further, although the pressure in the cryogenic container increased somewhat, the automatic recovery valve 14b opened at the same time as the coil abnormality, so the safety valve 21 did not open, and helium gas was not wasted into the atmosphere.

又、極低温容器18から液体ヘリウム貯槽10へのヘリ
ウム移送管12の弁13bが即時閉じたため液体ヘリウ
ム貯槽の圧力は#1とんど上昇せず、従って、コールド
ボックスへの影響は与られず、液化機は停止することな
く正常に運転を継続できた。
In addition, since the valve 13b of the helium transfer pipe 12 from the cryogenic container 18 to the liquid helium storage tank 10 was immediately closed, the pressure in the liquid helium storage tank #1 did not rise at all, and therefore the cold box was not affected. The liquefier was able to continue operating normally without stopping.

〈実施例2〉 第3図は本発明の別の実施例を示す。本例では実施例1
の装置にコールドボックスと極低温容器との間にヘリウ
ム移送管27a及び27bを設置し、コールドボックス
内よシ液体ヘリウムが超電導コイルを内部に収納する極
低温容器に直接供給され、さらに、戻りガスがコールド
ボックスに戻るような径路を設けた点に特色がある。
<Embodiment 2> FIG. 3 shows another embodiment of the present invention. In this example, Example 1
In this device, helium transfer pipes 27a and 27b are installed between the cold box and the cryogenic container, and liquid helium from inside the cold box is directly supplied to the cryogenic container housing the superconducting coil inside, and return gas is It is unique in that it has a path that allows it to return to the cold box.

又、超電導コイルに異常が生じた場合は本図の点線で示
す回路により、励磁電源のスイッチを開極すると同時に
各パルプを開閉するように設定している。
In addition, if an abnormality occurs in the superconducting coil, the circuit shown by the dotted line in this figure is set to open and close each pulp at the same time as the switch of the excitation power source is opened.

実施にあたっては、実施例1の方法と同様コールドボッ
クスの温[1下げ、JT弁7を介して液体ヘリウムをつ
くシ、ヘリウム移送管27aを介して直接極低温容器に
注入し、超電導コイルを冷却した。
In carrying out the implementation, the temperature of the cold box is lowered by 1, as in the method of Example 1, liquid helium is applied via the JT valve 7, and it is injected directly into the cryogenic container via the helium transfer pipe 27a to cool the superconducting coil. did.

この状態で超電導コイルに20KA直流電源よシ励磁電
流を流したところ、1390Aで超電導コイルの両端に
異状電圧を生じた。これに伴い、検出装置22及び操作
電源23が働き、励磁電源25を開くと同時に極低温容
器の回収自動弁14bが開き、液体ヘリウム貯槽への移
送管12の弁13bが閉し、コールドボックスよりの移
送管27aのJT弁7が閉じ、コールドボックスへ戻る
移送管27bの弁28が閉じ、液体ヘリウム貯槽へのJ
T弁8が開いた。
When an excitation current of 20 KA DC power source was applied to the superconducting coil in this state, an abnormal voltage of 1390 A was generated at both ends of the superconducting coil. Accordingly, the detection device 22 and the operating power supply 23 are activated, and at the same time the excitation power supply 25 is opened, the automatic recovery valve 14b of the cryogenic container is opened, the valve 13b of the transfer pipe 12 to the liquid helium storage tank is closed, and the cold box is removed. The JT valve 7 of the transfer pipe 27a is closed, the valve 28 of the transfer pipe 27b returning to the cold box is closed, and the
T-valve 8 has opened.

この結果、回収自動弁14bが開いたため圧力はほとん
ど上昇せず、移送管12の弁13b及び、移送管27b
の弁28が閉じたため、コールドボックスへの影響はみ
られなかった。又、JT弁7が閉じ、液体ヘリウム貯槽
へのJT弁8が開いたため、コールドボックスを停止さ
せることなく、そのま\、液体ヘリウムを貯槽に溜める
ことができた。
As a result, since the automatic recovery valve 14b was opened, the pressure hardly increased, and the valve 13b of the transfer pipe 12 and the transfer pipe 27b
Since valve 28 of the cold box was closed, no effect on the cold box was observed. Also, since the JT valve 7 was closed and the JT valve 8 to the liquid helium storage tank was opened, liquid helium could be stored in the storage tank without stopping the cold box.

以上の実施例では1つのコールドボックスあるいは1つ
の液体ヘリウム貯槽に対して、1つの超電導コイルを励
磁する場合であるが、複数個の超電導コイル及び極低温
容器が1台のコールドボックスあるいは液体ヘリウム−
貯槽よシヘリウム移送管で接続され液体ヘリウムの供給
をうけながら、それぞれ独立に励磁されているときでも
同様の効果が得られる。
In the above embodiment, one superconducting coil is excited for one cold box or one liquid helium storage tank, but multiple superconducting coils and cryogenic containers are used for one cold box or liquid helium storage tank.
The same effect can be obtained even when the storage tank is connected to the helium transfer pipe and is supplied with liquid helium, but each is independently excited.

すなわち、1つの超電導コイルに異常が生じてもその超
電導コイルの異常電圧を検知してその超電導コイルを収
納する極低温容器とヘリウム液化冷凍装置を結ぶ連絡弁
を開閉することにより、他の超電導コイルには何ら影響
を与えることなく運転できる効果がある。
In other words, even if an abnormality occurs in one superconducting coil, the abnormal voltage of that superconducting coil is detected and the communication valve connecting the cryogenic container that houses the superconducting coil and the helium liquefaction refrigeration equipment is opened or closed, and the other superconducting coils are connected to the other superconducting coils. has the effect of allowing you to drive without any adverse effects.

なお、図中3は熱交換器、5は気液分離器、6はJT弁
、15はガスバッグ、16は回収ガス系圧縮機、17は
回収ガス容器、2Qa、2obは抵抗器である。
In the figure, 3 is a heat exchanger, 5 is a gas-liquid separator, 6 is a JT valve, 15 is a gas bag, 16 is a recovered gas system compressor, 17 is a recovered gas container, and 2Qa and 2ob are resistors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超電導コイルにクエンチなどの異常を
生じた時、超電導コイルを損傷することなく、シかも、
液体ヘリウム貯槽、ならびにコールドボックスへの影響
を与えることなく運転できる。
According to the present invention, when an abnormality such as quench occurs in a superconducting coil, it can be removed without damaging the superconducting coil.
It can be operated without affecting the liquid helium storage tank or cold box.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヘリウム液化および超電導コイルの励磁
システムを示す系統図、第2図は本発明の一実施例の液
化及び゛励磁システムを示す系統図、第3図は本発明の
他の実施例を示す液化及び励磁システムを示す系統図で
ある。 10・・・液体ヘリウム貯槽、14a・・・回収用手動
弁、18・・・極低温容器、19・・・超電導コイル、
22・・・異常電圧検出装置。 ゛(シ− 第1図 第2図
Fig. 1 is a system diagram showing a conventional helium liquefaction and superconducting coil excitation system, Fig. 2 is a system diagram showing a liquefaction and excitation system according to an embodiment of the present invention, and Fig. 3 is a system diagram showing another embodiment of the present invention. 1 is a system diagram illustrating an example liquefaction and excitation system; FIG. 10... Liquid helium storage tank, 14a... Manual valve for recovery, 18... Cryogenic container, 19... Superconducting coil,
22... Abnormal voltage detection device.゛(C- Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1゜循環圧縮機、コールドボックス、液体ヘリウム貯槽
、回収装置からなるヘリウム液化冷凍装置と、超電導コ
イルを収納した極低温容器とがヘリウム移送管で連結さ
れ、液体ヘリウムを製造し極低温容器に供給しながら超
電導コイルを励磁する装置において、前記超電導コイル
の異常を検出する装置と、この検出装置の信号に応動し
て励磁電源を開極させる手段と、前記−、リウム液化冷
凍装置への連絡弁とからなることを特徴とする極低温冷
却装置。 2、超電導コイルが収納された極低温容器が複数個配置
され、それぞれがヘリウム液化冷凍装置とヘリウム移送
管で連結されることを特徴とする特許請求の範囲第1項
に記載の極低温冷却装置。
[Claims] A helium liquefaction refrigeration system consisting of a 1° circulation compressor, a cold box, a liquid helium storage tank, and a recovery device is connected to a cryogenic container containing a superconducting coil through a helium transfer pipe to produce liquid helium. A device for exciting a superconducting coil while supplying it to a cryogenic container, comprising: a device for detecting an abnormality in the superconducting coil; a means for opening an excitation power source in response to a signal from the detecting device; A cryogenic cooling device characterized by comprising a communication valve to a refrigeration device. 2. A cryogenic cooling device according to claim 1, characterized in that a plurality of cryogenic containers containing superconducting coils are arranged, each of which is connected to a helium liquefaction refrigerator through a helium transfer tube. .
JP57193513A 1982-11-05 1982-11-05 Cryogenic cooling equipment Pending JPS5984405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57193513A JPS5984405A (en) 1982-11-05 1982-11-05 Cryogenic cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57193513A JPS5984405A (en) 1982-11-05 1982-11-05 Cryogenic cooling equipment

Publications (1)

Publication Number Publication Date
JPS5984405A true JPS5984405A (en) 1984-05-16

Family

ID=16309306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57193513A Pending JPS5984405A (en) 1982-11-05 1982-11-05 Cryogenic cooling equipment

Country Status (1)

Country Link
JP (1) JPS5984405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624160U (en) * 1985-06-22 1987-01-12
JPS624159U (en) * 1985-06-22 1987-01-12

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624160U (en) * 1985-06-22 1987-01-12
JPS624159U (en) * 1985-06-22 1987-01-12
JPH0510372Y2 (en) * 1985-06-22 1993-03-15
JPH0510371Y2 (en) * 1985-06-22 1993-03-15

Similar Documents

Publication Publication Date Title
JP2017227432A (en) System and method for improving liquefaction rate at refrigerant gas liquefaction device of low temperature refrigeration machine
EP0578241B1 (en) Cryogenic refrigeration system and refrigeration method therefor
JP2009243837A (en) Very low temperature cooling device
JPS5984405A (en) Cryogenic cooling equipment
JP2011171729A (en) Helium filling method
KR100958748B1 (en) Cooling apparatus for superconducting magnet
Augueres et al. 700mm diameter cryostat operating at 1.8 K and atmospheric pressure
JP3749514B2 (en) Maintenance method of refrigerator for superconducting magnet device
JPH07142234A (en) Apparatus for cooling cryogenic-temperature superconducting coil
JP3113992B2 (en) Helium liquefaction refrigeration equipment
JPH0445740B2 (en)
JP2019173865A (en) Method for charging liquid helium and device
CN115420034A (en) Superconducting magnet extremely-low temperature refrigerator and control method thereof
JPS59117281A (en) Cooling apparatus
JPS61226904A (en) Very low temperature cooling method and very low temperature cooling device
JPH0689956B2 (en) Small He liquefaction refrigeration system
KR100210704B1 (en) Portable apparatus for formation of liquid nitrogen
JPS629171A (en) He liquefying refrigerator
JPH05322343A (en) Freezer device with reservoir tank
JPH02145939A (en) Refrigerator
CN112509781A (en) Magnet precooling device of magnetic resonance imaging system
Doi et al. Cryogenic system of a 3 tesla superconducting solenoid for the AMY particle detector at TRISTAN
Kusaka Long term operation of the superconducting triplet quadrupoles with cryocoolers
JP3176087B2 (en) Cryogenic refrigeration equipment
JPH0370914B2 (en)