JPS5983995A - Growth of single crystal - Google Patents

Growth of single crystal

Info

Publication number
JPS5983995A
JPS5983995A JP19040482A JP19040482A JPS5983995A JP S5983995 A JPS5983995 A JP S5983995A JP 19040482 A JP19040482 A JP 19040482A JP 19040482 A JP19040482 A JP 19040482A JP S5983995 A JPS5983995 A JP S5983995A
Authority
JP
Japan
Prior art keywords
crystal
melt
single crystal
crucible
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19040482A
Other languages
Japanese (ja)
Inventor
Tetsuo Fukuda
哲生 福田
Iesada Hirai
平井 家定
Kazunari Amano
尼野 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19040482A priority Critical patent/JPS5983995A/en
Publication of JPS5983995A publication Critical patent/JPS5983995A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Abstract

PURPOSE:In growing single crystal by crystal pulling method, to grow high- quality single crystal free from growth stripes, by arranging a partition wall having a melt feed hole in a melt raw material in a crucible, pulling up the crystal while subjecting it to ultrasonic vibration. CONSTITUTION:The quartz crucible 1 is put in the device 7 for growing single crystal, the interior of the device is in an Ar atmosphere under reduced pressure, the crucible is heated from the outside, amorphous or polycrystalline silicon in the crucible 1 is melted, to give the melt 3. Seed crystal of single crystal of silicon is immersed in the surface of the melt 3, the seed crystal is gradually pulled up from the Mo line by the pulling device 16, and the single crystal 6 of silicon is grown on the tip of the seed crystal. In the operation, the growth part of single crystal is surrounded by the cylindrical quartz partition wall 9 with the bottom equipped with the silicon melt inlets 14. As the melt Si is fed from the inlets 14 to the interior of the wall, ultrasonic vibration is applied to the partition wall 9 through the quartz supporting bar 11 by the ultrasonic oscillator 8. Convection in the melt 3 is prevented and high-quality single crystal of silicon free from growth stripes is obtained.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は単結晶の成長方法に関し、特に引上は法を虐用
しての結晶成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for growing a single crystal, and particularly to a method for growing a crystal by abusing a pulling method.

(bン 技術の背京− 半導体集積回路はシリコン(St)或はガリウム砒素(
GaAs)などの単結晶基板を用いて形成されているが
、このような単体或は化合物半導体よりなる単結晶を作
る方法として引上げ法(チョクラルスキー法(CZ法)
)と浮遊帯域溶融法(F2法)がある。C2法は大直径
化の点でまたFZ法は高純度化の点で優れている。本発
明はC2法による単結晶成長方法に関するものである。
(b) Background of technology - Semiconductor integrated circuits are made of silicon (St) or gallium arsenide (
However, as a method for producing single crystals made of such single or compound semiconductors, there is a pulling method (Czochralski method (CZ method)).
) and the floating zone melting method (F2 method). The C2 method is superior in increasing the diameter, and the FZ method is superior in increasing the purity. The present invention relates to a single crystal growth method using the C2 method.

(c)従来技術と問題点 CZ法は坩堝の中に単結晶成長を行う半鳩体材料の多結
晶を入れて加熱溶融し、これに種結晶を接触させて一定
の温度で徐々に引上げることによF)14結晶金核とし
てこれと同一の結晶方位音もつ結晶を成長せしめるもの
である。こ\でICなどの半導体デバイスは何れも量産
工程を通じて作られるものであや、特性の均一化および
コスト低減の見地からバッチ生産される半導体基板の径
は益々大壓化に向っている。例えば現在最も多く使用さ
れているSt単結晶基板については径5〔インチ〕まで
の結晶成長技術は既に実用化されておシ、長さ1〔m〕
程度のものが引上げられている。こ\で成長結晶の必女
条件は、径寸法の変動が少く、異常成長を伴わぬなどの
外に、不純物濃度分布が少く且つ均一であると共に転位
などの欠陥や抵抗率変動が少いことなどが挙げられる。
(c) Conventional technology and problems In the CZ method, a polycrystal of a semi-crystalline material for single crystal growth is placed in a crucible, heated and melted, and then a seed crystal is brought into contact with the polycrystal and gradually pulled up at a constant temperature. In particular, a crystal having the same crystal orientation sound as F)14 crystal gold nucleus can be grown. Semiconductor devices such as ICs are all manufactured through a mass production process, and the diameter of semiconductor substrates produced in batches is becoming increasingly larger in order to uniformize characteristics and reduce costs. For example, for St single crystal substrates, which are currently the most commonly used, crystal growth technology has already been put into practical use for diameters up to 5 [inches], and lengths up to 1 [m].
Some items have been raised. The necessary conditions for the grown crystal are that in addition to having little variation in diameter and no abnormal growth, the impurity concentration distribution is small and uniform, and there are few defects such as dislocations and fluctuations in resistivity. Examples include.

然し乍らこれらの必′な采件は結晶成長が大直径化する
に従って6・“6すことが邦しくなっている。
However, as crystal growth becomes larger in diameter, it becomes more common to meet these necessary conditions.

以下si4”結晶引上げを例として説明する。第11:
y、lH引上げ機構を示す。図において坩堝1は石英(
SI02)からなり、これをカーボンヒータ2に通’T
li L抵抗加熱方式で加熱するように構成されている
。こ\で直径4〔インチ〕或は5〔インチ〕の4.’;
晶の成長に使用される坩堝は、直径が12〜14しイン
チ〕、深さが約10〔インチ〕ものが用いられこれに2
0Ckg)以上の多結晶Si金入れ、1450じC]程
に加熱し溶融して融液3とする。
The si4'' crystal pulling will be explained below as an example. 11th:
y, lH pulling mechanism is shown. In the figure, crucible 1 is quartz (
SI02), which is passed through carbon heater 2.
It is configured to heat using the li L resistance heating method. This is a 4.0 inch diameter 4 [inch] or 5 [inch] diameter. ';
The crucible used for crystal growth has a diameter of 12 to 14 inches and a depth of approximately 10 inches.
A polycrystalline Si gold case with a weight of 0 Ckg or more is heated to about 1450 Ckg and melted to form a melt 3.

こ\で加熱は減圧したアルゴン(Ar )雰囲気中で行
い、温度分布は幅射高温剖を用い±02[’C]以−ト
ート御される。次に成長させようとする結晶方位を゛も
つ利(結晶4の先端を融液3に接触させる。
Heating is carried out in a reduced pressure argon (Ar) atmosphere, and the temperature distribution is controlled to within ±02['C] using radial high temperature analysis. Next, the tip of the crystal 4 that has the crystal orientation to be grown is brought into contact with the melt 3.

この際の融液3の温度は種結晶4の先端が仏かに161
iH解しつ\約9合いが保たれる温度に設足してあり、
平衡に?ji L、た後はiU分2〜:3 (mm )
の引上げ遇・ハして結晶を細く絞って種結晶にある転位
を外周V?−退い出すと共に転位の発生を抑えて無転位
化する。なおこの際矢印5の方向に起る熱対流により融
液3と引上げ結晶6との界面で生ずる温度の揺ぎを防ぐ
ため種結晶4と坩堝1とをそれぞれ反対方向に回転させ
て融液3の中に横方向の強制流を発生させる。
At this time, the temperature of the melt 3 is such that the tip of the seed crystal 4 is 161
It is set at a temperature that maintains approximately 9 degrees of heat during iH heating.
In equilibrium? ji L, then iU min 2~:3 (mm)
When pulling the crystal, the crystal is narrowed down and the dislocations in the seed crystal are removed from the outer periphery. - As it retreats, the generation of dislocations is suppressed and no dislocations occur. At this time, in order to prevent temperature fluctuations occurring at the interface between the melt 3 and the pulling crystal 6 due to thermal convection occurring in the direction of the arrow 5, the seed crystal 4 and the crucible 1 are rotated in opposite directions, respectively. generates lateral forced flow in the

次に結晶の引上げ速度を下げ、また温度も徐々に下げて
希望する直径にまで太らせると共に引上げ速度を調整す
ることによp直胴形の単結晶6の成長が行われる。然し
Stは融点が1410(℃)と頗る高いため坩堝1の底
部における融液3の温度Cよ衣面に較べて数10〔℃〕
高く、そのため坩堝1の底部よυ内壁に沿って熱対流5
の流速は大きい。また熱対流5は定常的なものではなく
乱流を伴っているため熱の揺き゛が大きく、そのため結
晶6の成長方向に沿って不純物疾裏分布が異る成長縞を
生ずる。
Next, the p-shaped single crystal 6 is grown by lowering the pulling speed of the crystal and gradually lowering the temperature to thicken the crystal to a desired diameter and adjusting the pulling speed. However, since the melting point of St is extremely high at 1410 (°C), the temperature of the melt 3 at the bottom of the crucible 1 is several tens of degrees Celsius compared to the temperature C of the melt 3 at the bottom of the crucible 1.
Therefore, heat convection 5 occurs from the bottom of crucible 1 along the inner wall of crucible 1.
The flow velocity of is large. Further, since the thermal convection 5 is not steady but accompanied by a turbulent flow, the heat fluctuations are large, and therefore, growth stripes with different impurity distributions are produced along the growth direction of the crystal 6.

そこで熱対流5を抑制する方法として結晶6と坩堝1と
を回転させる方法が用いられている。すなわち種結晶4
を固定した引上げ軸と坩堝1を保持しているザセブタと
をそれぞれ別々にモータを用いて反対方向に回転させ融
液3の中に坩堝の壁面に沿って水平方向に流れる強制流
を起させることにより熱対流を抑制する方法がとられて
いる。
Therefore, as a method of suppressing the thermal convection 5, a method of rotating the crystal 6 and the crucible 1 is used. That is, seed crystal 4
The pulling shaft fixed to the crucible 1 and the converter holding the crucible 1 are rotated in opposite directions using separate motors to generate a forced flow in the melt 3 that flows horizontally along the wall surface of the crucible. A method is used to suppress heat convection.

然し乍ら使用する坩堝が大形となりまたチャージ是が増
大するに従って熱対流は顕者となpこれらの抑制動床は
充分でなくなっている。また熱対流5および強制流は坩
堝1の内壁全開り、結果として融液3の中の酸素含有量
が増加し成長結晶6の中の酸素濃度が増加して結晶品X
t下ける。
However, as the size of the crucible used increases and the charge resistance increases, thermal convection becomes more prominent, and these suppressing beds are no longer sufficient. In addition, the thermal convection 5 and the forced flow fully open the inner wall of the crucible 1, resulting in an increase in the oxygen content in the melt 3 and an increase in the oxygen concentration in the growing crystal 6, resulting in a crystal product X.
t lower.

(d)  発明の目的 不発す」は融液中の熱対流に基因して結晶成長界面にお
いて生じる温度変動を抑制し、−品質の成長結晶を(+
)ることかできる結晶成長方法を提供することを目的と
する。
(d) The purpose of the invention is to suppress temperature fluctuations that occur at the crystal growth interface due to thermal convection in the melt, and to grow crystals of - quality (+
).

(e)  ウ6明のイ再成 不発[Jjの目的は結晶の引上は成長に際して坩堝の中
に結晶成長都をとり囲んで側面に複数の融液供給孔をも
つ有底円筒状の隔壁全般けこの隔壁に超汁阪振動を与え
乍ら結晶引上けを行う方法をとることにより達成するこ
とができる0 (f)  発明の笑施例 第2図は本発明の成長方法全実施する成長g置の構成図
であり、第4図はこれに使用する石英製隅壁の正面図囚
および平面図03)である。
(e) U6 Ming's regeneration failure [Jj's purpose is to pull up the crystal during growth.The purpose of Jj is to create a cylindrical partition wall with a bottom that surrounds the crystal growth center in the crucible and has multiple melt supply holes on the side. This can be achieved by applying a method of pulling up crystals while applying super-stable vibrations to the bulkheads. This is a block diagram of the growth station, and FIG. 4 is a front view and a plan view of the quartz corner wall used therein.

不発Qllは結晶成長が行われる融液3に超音波振動を
加えることにより引上げ結晶6との界面の近くにおける
融液温度の揺ぎを無くするものである。
The misfire Qll is to eliminate fluctuations in the temperature of the melt near the interface with the pulled crystal 6 by applying ultrasonic vibration to the melt 3 where crystal growth is performed.

これを実親、するため第2図に示す成長装置7の中に超
音波発振器8を備え、これを用いて融液3内に浸漬され
た石英製の隔壁9を振動せしめる。こ\で成長装置7の
内部は20 (1,’orr)に鉦圧芒れたアルゴン(
Ar)W囲気であり、壕だ融液3からの輻射熱も大きい
ので超音波発振器8は水冷棺I造とすると共にこの外側
に反射板10全設けるとよい。
In order to accomplish this, an ultrasonic oscillator 8 is provided in the growth apparatus 7 shown in FIG. 2, and is used to vibrate a partition wall 9 made of quartz immersed in the melt 3. The inside of the growth apparatus 7 is filled with argon (1,'orr) pressurized to 20 (1,'orr).
Since the trench is surrounded by an Ar)W atmosphere and the radiant heat from the melt 3 is large, it is preferable that the ultrasonic oscillator 8 is made of a water-cooled coffin structure and that a reflector plate 10 is provided entirely outside of the ultrasonic oscillator 8.

また隔壁9より出ている2つの石英製保持棒11の内一
端は超音波発振器8の撮動子と接’iii boil定
され、他の一端は第3図に拡大して7JKすように成長
装置η7の内11i11に突出部12を設けこの部分に
ikt熱性弾性体13例えばシリコンゴム板を設けて撮
動を吸収すると共に保持棒11を1♂d厘する。才た隔
壁9は第4図に示すように有底円筒状で引上げ結晶6を
中央に#−゛<よう配置されこの側面に複数個の融液供
給口14(この実施例の場合4個)が設けられている。
Also, one end of the two quartz holding rods 11 protruding from the partition wall 9 is connected to the sensor of the ultrasonic oscillator 8, and the other end is grown to 7JK as shown in Fig. 3. A protruding portion 12 is provided in 11i11 of the device η7, and an ikt thermal elastic body 13, such as a silicone rubber plate, is provided in this portion to absorb the photographing and to hold the holding rod 11 by 1♂d. As shown in FIG. 4, the rounded partition wall 9 has a cylindrical shape with a bottom, and the pulled crystal 6 is arranged in the center so as to have a plurality of melt supply ports 14 (four in this embodiment) on the side thereof. is provided.

こ\で隔壁9は坩堝1と同様に石英(SiO2)よpな
るがこの理由は融点が1610 (”C)と頗る高く、
融液中にStイオンおよび酸素イオン(0イオン)とし
て溶解されてもSiは融液と同一元素のため無害であり
、また隔壁9を有底とする理由は融液の対流により坩堝
が削られる関係で底部および側面の酸素濃度が高く、底
部より直接醒系含有址の多い融液が上昇してくるのを防
ぐためである。また融液供給口14は結晶成長中に融液
が供給される通路であり、直径4(インチ〕のSj単結
晶を成長させる場合、隔壁9として直径150 (a7
+I)のものを用い、捷た融静供給口14の直径は20
CMg)とする。
In this case, the partition wall 9 is made of quartz (SiO2) like the crucible 1, but the reason for this is that the melting point is extremely high at 1610 ("C).
Even if Si is dissolved in the melt as St ions and oxygen ions (0 ions), it is harmless because it is the same element as the melt, and the reason why the partition wall 9 is bottomed is that the crucible is scraped by the convection of the melt. This is because the oxygen concentration at the bottom and sides is high, and this is to prevent the melt, which contains a large amount of directly dissolved matter, from rising from the bottom. Further, the melt supply port 14 is a passage through which the melt is supplied during crystal growth, and when growing an Sj single crystal with a diameter of 4 (inches), a diameter of 150 (a7
+I) was used, and the diameter of the melting supply port 14 was 20.
CMg).

このような栴成を有する隔壁を第2図に力くすように該
隔壁9の保長棒11會超音阪発振器8と成J−を装置白
肉の突出部12に固定した状態でSt多結Ai+をil
l堝1に充填し、以後従来と同様に結晶の引上げを行う
がこの際例えば周波数100 [kHz )、出力0.
2(KW)超音波発振器を用いて隔壁9を弁口て融液3
に超音波振動を与え乍ら結晶引上は機構16を用いて結
晶引上げを行う。こ\で引上げ機構16はモータで駆動
されるプーリー17とモリブデン(MO)線18からな
りMO脚を徐々に巻き上げることによυ結晶が引上げら
れる0このような方法によれば、結晶の引上げが行われ
る隔壁9の内部の融液15には、超音波振動によシ対流
の発生抑制されるため融液の温度変煎揺ぎ)が無くなる
0従って引上は結晶6の中の成長縞が消失し、また酸素
含有量の少い結晶を成長させることができる0 (g)  発すJの効果 本発明の実施により成長縞が無くまた不純物の偏析含有
酸素量が少い高品仰の大口径結晶の成長が可能となる0
As shown in FIG. 2, the partition wall having such a structure is fixed with the maintenance rod 11 of the partition wall 9, the ultrasonic wave oscillator 8 and the structure J- fixed to the protrusion 12 of the white wall of the device, and the St multi-connection. Ai+il
1 is filled into the pot 1, and thereafter the crystal is pulled in the same manner as before, but at this time, for example, the frequency is 100 [kHz] and the output is 0.
2 (KW) Using an ultrasonic oscillator, the partition wall 9 is opened to the melt 3.
The crystal is pulled up using a mechanism 16 while applying ultrasonic vibration to the crystal. The pulling mechanism 16 consists of a pulley 17 driven by a motor and a molybdenum (MO) wire 18, and the υ crystal is pulled up by gradually winding up the MO legs. According to this method, the crystal is pulled up. In the melt 15 inside the partition wall 9, the generation of convection is suppressed by the ultrasonic vibration, so there is no temperature fluctuation of the melt. 0 (g) Effect of emitting J By carrying out the present invention, it is possible to grow high-quality, large-diameter crystals without growth striations and with a small amount of oxygen segregated as impurities. 0 that allows for growth

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は結晶の引上げ成長を説明する断面図、舘2図は
本発明の方法を適用した成長装置の+f+?成図、第3
図はこの部分拡大図また第4図は本発明に係る隔壁の止
面図と′平m1図である。 1y:l UC針いて、1は坩堝、3は融液、4は柚結
晶、5は熱対流、6+′i引土は結晶、7は成長装置6
.8はd(を昌波発伽機、9は隔壁、14は融液供給口
。 第1 図 ○ 第4−ロ (A)
Figure 1 is a cross-sectional view explaining the pulling growth of a crystal, and Figure 2 is a +f+? Completion diagram, 3rd
This figure is a partially enlarged view, and FIG. 4 is a top view and a plan view of the partition wall according to the present invention. 1y:l UC needle, 1 is crucible, 3 is melt, 4 is yuzu crystal, 5 is thermal convection, 6+′i soil is crystal, 7 is growth device 6
.. 8 is d (Shoha generator, 9 is the bulkhead, and 14 is the melt supply port. Figure 1 ○ 4-B (A)

Claims (1)

【特許請求の範囲】[Claims] 坩堝に収容された成長用融液に種結晶を接触させて引き
上げることにょシ単結晶の成長を行う際、前記坩堝の中
に、結晶成長部をとり囲んで側面に複数の融液供給孔を
もつ隔壁を配置し、該隔壁に超音波振動を与え乍ら結晶
の引上げを行うことを特徴とする単結晶の成長方法。
When growing a single crystal by bringing a seed crystal into contact with a growth melt housed in a crucible and pulling it up, a plurality of melt supply holes are provided in the crucible on the sides surrounding the crystal growth section. 1. A method for growing a single crystal, comprising: arranging a partition wall with a partition wall, and pulling the crystal while applying ultrasonic vibration to the partition wall.
JP19040482A 1982-10-29 1982-10-29 Growth of single crystal Pending JPS5983995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19040482A JPS5983995A (en) 1982-10-29 1982-10-29 Growth of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19040482A JPS5983995A (en) 1982-10-29 1982-10-29 Growth of single crystal

Publications (1)

Publication Number Publication Date
JPS5983995A true JPS5983995A (en) 1984-05-15

Family

ID=16257577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19040482A Pending JPS5983995A (en) 1982-10-29 1982-10-29 Growth of single crystal

Country Status (1)

Country Link
JP (1) JPS5983995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750969A (en) * 1985-06-27 1988-06-14 Research Development Corporation Of Japan Method for growing single crystals of dissociative compound semiconductor
JPH03162566A (en) * 1989-11-19 1991-07-12 Ken Takahashi Formation of thin film and thin film forming device, element, electro-magnetic device, information recording and reproducing device, signal processor and formation of molten crystal
FR2951741A1 (en) * 2009-11-30 2011-04-29 Commissariat Energie Atomique ULTRASONIC WAVE GUIDING DEVICE SUITABLE FOR USE IN A SILICON DIRECTED SOLIDIFICATION FURNACE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910664A (en) * 1972-05-24 1974-01-30
JPS5623679B2 (en) * 1976-11-06 1981-06-01
JPS5761696A (en) * 1980-09-29 1982-04-14 Seiko Instr & Electronics Ltd Manufacturing of single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910664A (en) * 1972-05-24 1974-01-30
JPS5623679B2 (en) * 1976-11-06 1981-06-01
JPS5761696A (en) * 1980-09-29 1982-04-14 Seiko Instr & Electronics Ltd Manufacturing of single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750969A (en) * 1985-06-27 1988-06-14 Research Development Corporation Of Japan Method for growing single crystals of dissociative compound semiconductor
JPH03162566A (en) * 1989-11-19 1991-07-12 Ken Takahashi Formation of thin film and thin film forming device, element, electro-magnetic device, information recording and reproducing device, signal processor and formation of molten crystal
FR2951741A1 (en) * 2009-11-30 2011-04-29 Commissariat Energie Atomique ULTRASONIC WAVE GUIDING DEVICE SUITABLE FOR USE IN A SILICON DIRECTED SOLIDIFICATION FURNACE
WO2011064390A1 (en) * 2009-11-30 2011-06-03 Commissariat à l'énergie atomique et aux énergies alternatives Ultrasonic waveguide device suitable for use in a directional solidification furnace for silicon

Similar Documents

Publication Publication Date Title
JPS6046998A (en) Pulling up of single crystal and its device
JP3841863B2 (en) Method of pulling silicon single crystal
JP2973917B2 (en) Single crystal pulling method
JPS5983995A (en) Growth of single crystal
CN111876822A (en) Heat shield for monocrystalline silicon growth furnace and monocrystalline silicon growth furnace
JP2004315289A (en) Method for manufacturing single crystal
JPH04104988A (en) Growth of single crystal
JP4640796B2 (en) Method for producing silicon single crystal
JPS598695A (en) Crystal growth apparatus
KR101134499B1 (en) Silicon single crystal ingot forming apparatus with double guider
US4045278A (en) Method and apparatus for floating melt zone of semiconductor crystal rods
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
US3607109A (en) Method and means of producing a large diameter single-crystal rod from a polycrystal bar
KR20150017502A (en) Apparatus and method for growing ingot
JPS5939794A (en) Method and device for producing single crystal
JP2011153034A (en) Silicon single crystal production method
JP2783624B2 (en) Single crystal manufacturing method
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH0680493A (en) Method for crystal growth and crucible for use therefor
JPH06340493A (en) Apparatus for growing single crystal and growing method
JP2758038B2 (en) Single crystal manufacturing equipment
JPH05319973A (en) Single crystal production unit
KR20230016382A (en) Silicon single crystal ingot growth and manufacturing apparatus for semiconductor and manufacturing method
JPS59141494A (en) Production unit for single crystal
JPH03174390A (en) Production device for single crystal