JPS5983760A - Method for carburization of steel - Google Patents

Method for carburization of steel

Info

Publication number
JPS5983760A
JPS5983760A JP19280882A JP19280882A JPS5983760A JP S5983760 A JPS5983760 A JP S5983760A JP 19280882 A JP19280882 A JP 19280882A JP 19280882 A JP19280882 A JP 19280882A JP S5983760 A JPS5983760 A JP S5983760A
Authority
JP
Japan
Prior art keywords
gas
furnace
carburizing
steel
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19280882A
Other languages
Japanese (ja)
Other versions
JPH0219183B2 (en
Inventor
Koji Nakamura
幸司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP19280882A priority Critical patent/JPS5983760A/en
Publication of JPS5983760A publication Critical patent/JPS5983760A/en
Publication of JPH0219183B2 publication Critical patent/JPH0219183B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Abstract

PURPOSE:To increase economics and carburizing effect, by a method wherein the carburization and flow of atmospheric gas are controlled within a specified range thereof, oxide components such as O2, H2O, CO2, etc. in furnace being reduced, and the effects of CH4 having carburizing reducing action and H2 having reducing action are utilized. CONSTITUTION:A piece of steel is put in a furnace where the dew point D in furnace is provided at under 32 degree and the oxygen concentration V0 in furnace at max. 1,100ppm, carburizing atmospheric gas of N2, H2 and CH4 gas being continuously flowed through the furnace and the steel is carburized by heat-treating it at 850-1,050 deg.C. The flows of respective gas of N2, H2 and CH4 are regulated so that the total volume V of H2 gas and CH4 gas in that carburizing atmospheric gas becomes 2-40vol% and at the same time the volumetric ratio K of CH4 gas to H2 gas becomes 0.5-5.

Description

【発明の詳細な説明】 本発明は炉内に浸炭雰囲気ガスを連続的に流通しながら
炉内の鋼を熱処理する鋼の浸1炭処理法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for carburizing steel in which steel in a furnace is heat treated while a carburizing atmosphere gas is continuously passed through the furnace.

従来、鋼の浸炭処理法に使われる雰囲気ガスとしては、
高温に保持したガス発生炉にC,H,、C,H,、など
の燃料ガスと、この燃料ガスが不完全燃焼となる程度の
空気とを導入することによりガス発生炉から反応生成し
てくる、いわゆる一般に吸:IA型雰旺気ガスと称され
ているガスが多用されている。
Conventionally, the atmospheric gases used in steel carburizing treatment methods are:
By introducing fuel gas such as C, H, C, H, etc. into a gas generating furnace maintained at a high temperature and air to the extent that this fuel gas is incompletely combusted, the gas is reacted and generated from the gas generating furnace. Gases commonly referred to as type IA atmospheric gases are often used.

上記雰囲気ガスの代表的組成は、ガス発生炉内でN2:
43容和%、H2:32容景%、CO:25容引%% 
CO,: o、 1容量%、炉内露点りm=−5℃であ
り、この雰囲気ガス中には浸炭を妨げるCO2、H,O
などの酸化性成分が多く含まれてしまっている。このた
めその使用に際してガス中のH2、Coの爪を同ガス中
のCO,、H20の酸化、脱炭作用を押えるに足る程度
に増量し、ガスが列C3対して浸炭の役目を果せるよう
にしている。又一方、■■20.004扉が多いと謂に
含まれる合金元素の中でもCr%M nなどの特に02
と親和力の強い金属に対して酸化作用が及ぶいわゆる粒
界酸化が生じてしまい、そのために粒界近傍での焼入性
が低下してしまう。これを防ぐにはN20、C02mを
別途に減少させるか真空浸炭などの複雑かつ高価な設備
を必要とする他の方法を用いなければならない。その上
更に上記雰囲気ガスによる方法では、Cs l−Ta 
、 C4TLoなどの燃料ガスと空気とを接触反応せし
めるガス発生炉を必要とし、この炉による雰囲気ガスの
発生が安定化するまでの時IV11、すなわち立ち上が
り時間がかかるという欠点がある。さらにまた、使用す
るガスを発生炉で発生するがため必要とする雰囲気ガス
の組成およびその流量の変更などが賛しいという欠点が
ある。そこで一般にはガス発生炉のj(■仮条件は一定
とし、組成制御を別系統により直接C3r−is  、
C4H+ o  などの炭化水素を浸炭炉に添加するこ
とによって行なったり、必要流量の変更については流量
を予め必要最大量にしており、流量?少なくする場合、
過剰分を大気放出するというガスを無駄に浪費する方法
により行なっている。
The typical composition of the above atmospheric gas is N2:
43 volume%, H2: 32 volume%, CO: 25 volume%%
CO,: o, 1% by volume, dew point in the furnace m = -5°C, and this atmospheric gas contains CO2, H, O, which hinders carburization.
Contains many oxidizing components such as For this reason, when using it, the amount of H2 and Co in the gas is increased to an extent sufficient to suppress the oxidation and decarburization effects of CO, H20 in the gas, so that the gas can fulfill the role of carburizing the column C3. ing. On the other hand, among the alloying elements contained in so-called 20.004 doors, especially 02 such as Cr%Mn
So-called grain boundary oxidation, in which the oxidizing effect is exerted on metals that have a strong affinity with the metal, occurs, resulting in a decrease in hardenability near the grain boundaries. To prevent this, it is necessary to separately reduce N20 and C02m, or use other methods such as vacuum carburization that require complicated and expensive equipment. Furthermore, in the above method using atmospheric gas, Cs l-Ta
, C4TLo or the like is required, and there is a drawback that it takes IV11, that is, a start-up time, until the generation of atmospheric gas by this furnace is stabilized. Furthermore, since the gas used is generated in a generating furnace, there is a drawback that it is necessary to change the composition of the atmospheric gas and its flow rate. Therefore, in general, the gas generating furnace is
This can be done by adding hydrocarbons such as C4H+ o to the carburizing furnace, or changing the required flow rate by setting the flow rate to the maximum required amount in advance. If you want to reduce
This is done by releasing excess gas into the atmosphere, which wastes gas.

本発明は上記事情に鑑みてなされたもので、その目的は
経済的で、浸炭効果が高く、浸炭処理中に鋼中のCr、
Mnなどの02と親和力の強い金属が酸化するのを・防
ぐことのできる徊の浸炭処理方法を提供することにあり
、雰囲気ガスの組成および流量を所定範囲内にコントロ
ールすることによって、炉内のOt 、N20 、CO
2などの酸化性成分を効果的に減らし、浸炭、)ψ元作
用を有する9C1(、と、還元作用を有するT−I 、
との効果を最大限に活用できるようにしたものである。
The present invention has been made in view of the above circumstances, and its purpose is to achieve economical and high carburizing effects, and to reduce Cr in steel during carburizing treatment.
The purpose is to provide a carburizing method that can prevent metals such as Mn that have a strong affinity for 02 from oxidizing, and by controlling the composition and flow rate of atmospheric gas within a predetermined range. Ot, N20, CO
It effectively reduces oxidizing components such as 2, carburizing,
It is designed to make maximum use of the effects of

以下、この発明の詳細な説明する。本発明の浸嗟雰囲気
ガスは、窒素ガス(N2 )および水素ガス(Hz)と
からなる担体ガスとメタンガス(GT、)とを混合t7
て調製するもので、炉内の各構成ガスは容気%で示す)
T2の濃度V HとCI−Lの濃度V。
The present invention will be explained in detail below. The immersion atmosphere gas of the present invention is a mixture of a carrier gas consisting of nitrogen gas (N2) and hydrogen gas (Hz) and methane gas (GT).
(The constituent gases in the furnace are expressed in volume %)
Concentration VH of T2 and concentration V of CI-L.

との和V(=VH−トVa)が2容品%<V<40容呈
%となるとともにV Hに対するVoの比K(=VO/
V、)がo、s、6に、6sとなるような割合”r混合
されるものである。
The sum V(=VH-Va) becomes 2 volume%<V<40 volume%, and the ratio of Vo to VH (=VO/
V, ) is mixed with o, s, 6 at a ratio of 6s.

上記05くに≦5および2容廻%<V<40容景%とい
う数値範囲は、次に説明するような理由および方法によ
り定めたものである。
The above-mentioned numerical ranges of 05kuni≦5 and 2vol.%<V<40 vol.% were determined based on the reasons and methods described below.

士ず、泄の表面1t;J木製1σ増力1時(母0とKと
の関係をiMべてみた。この時、処理温度’l’ =9
25°C1水Jトとメタンとの合計含有F?t V =
 8各1イ(%、炉内にπ点1) ==−70℃、炉内
m″スρl!; 19’ V n πO(+)囲)であ
り、ぞの結I粘(,1第、11ツ]に示すようになった
The surface of the excrement is 1t; J wooden 1σ intensification 1 o'clock (I looked at the relationship between mother 0 and K. At this time, the processing temperature 'l' = 9
25°C1 Total content of water and methane F? t V =
8 each 1 (%, 1 π point in the furnace) ==-70℃, m'' space in the furnace ρl!; 19' V n , 11].

図から明らかろ゛ように、表面炭宏動バ「増IJII沖
1(1’A Wn G’j、水ffiとメタンとのJt
(Vc/VH)、に=1.5の)I!「に1ρ大値02
15爪偕%/ IRFを示1−7、■(が15より小さ
くても、また大きくても上記増加速fθ゛/い・〜′0
が減少1−ることがわかる。従って、V n、 十V 
H==−一定としたjj(7,+合、J(=′:1.5
あZ+イ&*i iテK 〈2 トL f(−11,]
r カJ?> モ表i/n f、I SEE 濃Iff
増加沖1(1△Woが速いことがわかる。しか[7実際
的にはに値の大小による反応辻IQjの変動、さらには
cl■4ガスとN2ガスの価格差も勘′りくする必要が
あり、’!X1Jll J二の最ii1’? Kイi/
jとしてo、s、<、y<4sにIIシ定しt)t【ツ
5、K、=05*たはI(=5の時の増加速1(1°△
)■。
As is clear from the figure, the surface coal movement bar ``Masu IJII Oki 1 (1'A Wn G'j, Jt of water ffi and methane
(Vc/VH), to = 1.5) I! ``Ni1ρ large value 02
15 % / IRF 1-7,■ Even if (is smaller or larger than 15), the above increase rate fθ゛ / is ~'0
It can be seen that decreases by 1-. Therefore, V n, 10V
H = = - constant jj (7, + combination, J (=': 1.5
A Z + I & * i i te K 〈2 ト L f(-11,]
r KaJ? >Mo table i/n f, I SEE thick Iff
It can be seen that the increase Oki 1 (1△Wo) is fast. However, in practice, it is necessary to take into account the fluctuation of the reaction Tsuji IQj depending on the magnitude of the value, and also the price difference between Cl4 gas and N2 gas. Yes, '!
As j, o, s, <, y < 4s is set.
)■.

【21、△Woの最大値、すなわちに−1,5の時の△
Woに比べて30%稈N小さくなってしまうが、この程
度の増加速度の低下(ま、例えば処理濡1「を20°C
稈IO高くするなどfltJ、の層炭条件を男、えるこ
とにより容易にカバーできるので、さほどの支障ljな
いものである。
[21, the maximum value of △Wo, that is, △ when -1,5
Although the culm N is 30% smaller than that of Wo, the rate of increase is reduced to this extent (for example, when processing wet 1 is heated to 20°C)
This can be easily covered by changing the bed coal conditions such as increasing the culm IO, so there is not much of a problem.

次に水塁とメタンの合it’含有工什(Vo4−Vu)
、VのaFi !i/(範囲を求めるために炉内露点D
、処理温度T1処理時1741 H、炉内酵素濃度V。
Next is the water base and methane-containing factory (Vo4-Vu)
, V's aFi! i/(To find the range, use the furnace dew point D
, treatment temperature T1 during treatment 1741 H, in-furnace enzyme concentration V.

などの因子を変数とした場合の表口■炭素11度増加J
?J・△)〜f(敗■%)全求めた。
Table of contents when using factors such as ■ carbon 11 degree increase J
? J・△)~f (defeat ■%) were all calculated.

tず、処理温度T=925℃、処fop it、’rr
lii Il−′4時間、炉内酸素濃11:!’Vo=
 01K−1,5での表i#j炭倦たツ度増加量/\鴇
 を炉内露点DtaらひにCJT。
t, processing temperature T=925°C, processing fop it,'rr
lii Il-'4 hours, oxygen concentration in the furnace 11:! 'Vo=
01K-1, 5 Table i#j Coal exhaustion temperature increase/\采CJT to in-furnace dew point Dta Rahi.

g度V 06変数として、それらのBu係を制Jめたと
ころ、6′の(1)式のコニうになった。
When we controlled those Bu coefficients as g degree V 06 variables, we found that the formula (1) of 6' was satisfied.

△#、 =−0,O25X (D+70 ) +〇、 
25XVO−0,29−(1)次に処理湿JJ:r T
 (”0 )を変数と【7たa4の浸炭反応速度RTS
−・1’= 925°c(1’r時at R,T ヲ1
 トL、、850°(’(T”(1050”Cc/)i
f?囲ニ:Ili イT求めたところ、次の(2)式が
patられた。
△#, =-0, O25X (D+70) +〇,
25XVO-0,29-(1) Next, process moisture JJ: r T
("0) as a variable and the carburizing reaction rate RTS of [7taa4]
-・1'=925°c (1'r at R,T wo1
tL,,850°('(T"(1050"Cc/)i
f? When I calculated Ili, the following equation (2) was put.

RT−1,62X1 o−’ T−14,o 2   
  −−−−−−(2)また、処理時間H(時間)を変
数とした浸炭反応速度R)IをT−I=4(時間)の時
のR■rを1として求めたところ、次の(3)式が得ら
れた。
RT-1,62X1 o-' T-14,o 2
--------(2) In addition, when the carburizing reaction rate R) I with the treatment time H (hours) as a variable was determined by setting R■r to 1 when T-I = 4 (hours), the following results were obtained: Equation (3) was obtained.

1、.0.252−I          ・・・・・
・(8)さらに、炉内酸素濃度■。(筆)を変数とした
浸炭反応速度R8を処理温度T二925°C1処す■時
間■(=4時間、■ぐ=1.5で■。−0(p囲)の時
のR8を1として求めたところ、次の(4)式力刷らね
、た。
1. 0.252-I・・・・・・
・(8) Furthermore, the oxygen concentration in the furnace■. Carburizing reaction rate R8 with (brush) as a variable, treatment temperature T2925°C1 ■ time ■ (= 4 hours, ■ = 1.5 ■. R8 at -0 (p circle) is set as 1 When I asked for it, I found that the following formula (4) was not printed.

Ro  −8,83X 1 0−’  XV0/Va−
)−1・・・・・・(4)従って、T、I−I%Ir 
01VCの各因子を変数とした場合の浸炭反応速度Rは
、 I’t=RTXRHXR0−・・・−(5)となり1 各因子を変数とした表面炭素濃度増加量△W(重量%)
は、 ΔW−△w、X’Rとして求めることができる0 しかし、雰囲気ガス流速、予め鋼に含有されている炭素
濃度、反応阻害因子の影響については1実操業に用いら
れる浸炭炉の性能、使用状況などにより大きく左右され
るため、上記のような定量的な関係は見い出しにくい。
Ro -8,83X 1 0-' XV0/Va-
)-1...(4) Therefore, T, I-I%Ir
The carburizing reaction rate R when each factor of 01VC is used as a variable is I't=RTXRHXR0-...-(5) 1 Increase in surface carbon concentration △W (wt%) using each factor as a variable
can be determined as ΔW-Δw, It is difficult to find a quantitative relationship like the one above because it is greatly influenced by usage conditions and other factors.

そのため、こσ)ような実操業における変動を考慮し、
推定表面炭素濃度増加量に対t7て±50%の許容を設
けるのが妥当と考えて、補正係数式を0.5〜1.5と
設定した。
Therefore, considering the fluctuations in actual operation such as σ),
It was considered appropriate to provide a tolerance of ±50% for the estimated surface carbon concentration increase at t7, and the correction coefficient formula was set at 0.5 to 1.5.

従って、表面炭素濃度増加量△Wは、次の(6)式のよ
うに示すことができる。
Therefore, the surface carbon concentration increase amount ΔW can be expressed as in the following equation (6).

△W=ΔW、XRTXRHXR0XA      ”・
−(6)この(6)式を用い、下記のようにしてV=V
C十VHの数値範[I[(を求めた。
△W=ΔW, XRTXRHXR0XA ”・
-(6) Using this equation (6), as follows, V=V
The numerical range [I[() of C0VH was determined.

まず、最も浸炭反応速度が早い条件の下で、通常の浸炭
時間範囲の長時間側に属する)j−16時間処理し、こ
れから表面炭素濃度増加量△Wを浸炭処理目的として表
面硬化が達せられるとさね、る0、8重:51%にする
のに必要な■を求め、この値?vL:r>最小値とした
0 従って、処理温度T=1050°C1処理時間)■−=
16時間、炉内酸素濃度V。−oppm、炉内露点1)
=−70°C5K=フ、5、A==1.5の条件下で△
W−0,8重景%とす重量は、(6)式より、0.8−
−(0,25XVo−0,29)N2.99X4.OX
”1Xt5となり、 V □= 1.35 従って、 V=Va+Vtr:=2.25>2(重量1%)   
  −−−−−<’r)となる。
First, under the conditions where the carburizing reaction rate is the fastest, treatment is carried out for j-16 hours (which belongs to the long side of the normal carburizing time range), and from this point, surface hardening is achieved by increasing the surface carbon concentration △W for the purpose of carburizing treatment. Tosane, Ru 0, 8 layers: Find the ■ necessary to make it 51%, and find this value? vL:r>minimum value 0 Therefore, processing temperature T=1050°C1 processing time)■-=
16 hours, oxygen concentration in the furnace V. -oppm, furnace dew point 1)
=-70°C5K=F, 5, under the conditions of A==1.5△
W-0.8 heavy view% and weight are 0.8- from formula (6).
-(0,25XVo-0,29)N2.99X4. OX
"1Xt5, V □ = 1.35 Therefore, V = Va + Vtr: = 2.25 > 2 (weight 1%)
-----<'r).

次にVの最大値を求めるにあたダ友り、まず■)につい
てPSA法により製造したN2ガス中に含有される最大
0□澄度(約10D[)l腓1)、あるいは市販N、ボ
ンベ中の02濃度(約50p部)をも考慮してV。≦1
1011)11p111とした。そしてH,0量につい
では浸炭効果を充分に生かす上からもできるだけ少ない
方が良いので・従来法において浸炭舅、囲気ガス中に許
容されるH、Oftよりも10倍以上少ない3[)Op
l’J、つまり炉内露点W示すと:[)=−32°Cよ
り低い範囲と規定した。この条件下で処理湿度は通常行
なわれるT=925℃とし、処理時1[5Hは通′にへ
の浸炭時間範囲の短時間側に近いH=2.5時間とし聾
表面炭紫濃度増加量△Wを0.8重に%とするに必要な
V射を求め、このイ直をVの最大値とした。従って、処
理温度’l’、=925’c処理時間14−2.5時間
、炉内酸素濃度■。−110口回、炉内露点D=−33
°C,に=1.5、A=0.5の条件下で△W=o、8
重量%とするGこは、前記(7)式より、 0.8=(G、25XVc−1,22)XIXo、63
X(1−9,71/rVa)N0.5 となり、 V O=23=1.5vH すy+7わち V’=V(3+VH= 38.ろ〈40(重量%)・・
・・・・      (8)となる。
Next, in order to find the maximum value of V, first of all, with regard to V considering the 02 concentration (approximately 50 parts) in the cylinder. ≦1
1011) 11p111. As for the amount of H, 0, it is better to keep it as small as possible in order to fully utilize the carburizing effect. 3
l'J, that is, the in-furnace dew point W is defined as a range lower than [)=-32°C. Under these conditions, the processing humidity was set to T = 925°C, which is the usual temperature, and H = 2.5 hours, which is close to the short time side of the carburizing time range of 1[5H], and the increase in the purple density of the deaf surface carbon. The V radiation necessary to make ΔW 0.8% was determined, and this value was taken as the maximum value of V. Therefore, treatment temperature 'l', =925'c treatment time 14-2.5 hours, oxygen concentration in the furnace ■. -110 mouths, furnace dew point D = -33
°C, under the conditions of = 1.5, A = 0.5, △W = o, 8
From the above formula (7), G in weight% is: 0.8=(G, 25XVc-1,22)XIXo, 63
It becomes
...(8).

このようにして、実操業において最も効果の上がる浸炭
雰囲気ガスの組成濃度範囲として、05〈■ぐ= V 
o /V m45”よび2容it%<V=Vu+VO<
40容垣%が規定される。次にこの数値範囲をVoを横
軸に、V 11 ’G: IK軸にとった亭標上にプロ
ットすると、第2図のようになる。つまり、mc、二お
し)てA、B、C,Dの4つの紛にW口亮された領域G
こ駕するようにVO値、vHを選んでv5囲気ガスを構
成すれば、実操業において効率的な浸炭処理が行なえる
ことになる。
In this way, the composition concentration range of the carburizing atmosphere gas that is most effective in actual operation is set to 05〈■gu=V
o /V m45” and 2 volume it%<V=Vu+VO<
40% of the capacity is stipulated. Next, when this numerical range is plotted on a scale with Vo as the horizontal axis and V 11 'G: IK axis as shown in FIG. 2, it becomes as shown in FIG. In other words, the area G is covered by the four areas A, B, C, and D (mc, two).
If the VO value and vH are selected to compensate for this and the v5 surrounding gas is configured, efficient carburizing treatment can be performed in actual operation.

なお、図中A線はに=0.5の線であり、B線はV=4
0 (爪針%)の線、C線はに=5の線、D線はに=1
.5かつV=2.0の時(b点ンの浸炭能力と同等の浸
炭能力を示す。
Note that in the figure, line A is a line where V = 0.5, and line B is a line where V = 4.
0 (nail needle %) line, C line is = 5 line, D line is = 1
.. 5 and V=2.0 (shows carburizing ability equivalent to that at point b).

即ち、例えば下記3東件は同等の浸炭能力を示している
That is, for example, the following three cases show equivalent carburizing ability.

■ K=α5 かつ V=3  (8,点)■ K−シ
15 かつ V=2 (b虞)■ K=5  かつ V
=3fO人ケ)本発明における雰囲気ガスの導入方法と
しては、第3図に示すように、鋼Mを炉1内に装入後、
流量調整弁2を開き、ライン3を介してN2を炉1内に
導入し、炉1内を充分にパージする。炉内露点D<−5
2°C1炉内醗素濃度Vo 41100ppmに達した
後、流量調整弁4を開き、ライン3からのN2とライン
5からのN2を混合し、(N2+H2)混合ガスとして
炉1内に導入し、昇温を開始する。所定湿度に達した後
、流量1:)q整弁6を開き、ライン3からのN2、ラ
イン5からのN2、ライン7からのCII。を混合しく
 N2+丁(2+CIL )混合ガスとして炉内に導入
し、浸炭処理全行なう□この時のCI(4およびLl、
の■については、K値を0.5〜5の間で一定比率とし
た上で、炉工内の露点り、雰囲気組成を測定しながら必
要とする浸炭R粍カが得られるように、V計を2〈Ar
〈40内で調整することで行なってもよいし、逆にV拒
を一定としに値を変えることによって行なってもよい。
■ K=α5 and V=3 (8, points) ■ K-shi15 and V=2 (b) ■ K=5 and V
=3fO Personnel) As a method of introducing atmospheric gas in the present invention, as shown in FIG. 3, after charging steel M into the furnace 1,
The flow rate regulating valve 2 is opened and N2 is introduced into the furnace 1 through the line 3 to sufficiently purge the inside of the furnace 1. Furnace dew point D<-5
After the in-furnace concentration Vo of 2°C1 reached 41100 ppm, the flow rate adjustment valve 4 was opened, N2 from line 3 and N2 from line 5 were mixed, and the mixture was introduced into the furnace 1 as a (N2 + H2) mixed gas. Start heating up. After reaching the predetermined humidity, open the flow rate 1:) q regulating valve 6, N2 from line 3, N2 from line 5, and CII from line 7. Introduce N2+CIL into the furnace as a mixed gas and carry out the entire carburizing process.
Regarding (■), set the K value at a constant ratio between 0.5 and 5, and then adjust the V to obtain the required carburizing R strength while measuring the dew point and atmospheric composition inside the furnace. The total is 2〈Ar
This may be done by adjusting within 40, or conversely, it may be done by keeping V rejection constant and changing the value.

しかし、雰囲気ガスを効果的に利用するためには1(=
一定として行なった方が好ましい。
However, in order to effectively utilize atmospheric gas, 1 (=
It is preferable to do this as a constant value.

以上説明したように、本発明に係る浸炭処理方法によれ
ば、浸炭雰囲気ガスを!i&成する窒素ガス、水素ガス
およびメタンガスをそれぞれ別々に流して混合できるば
かりでなく、それぞ1+、の組成濃度を浸炭効果を最も
冨めることのできる濃度範囲に設定できる方法なので、 (i)0□、C02、N20などの酸化性成、分周を低
く抑えることができ、しかも浸炭に必要とするCH,お
よびI−I 2の量を削減することができる。
As explained above, according to the carburizing treatment method according to the present invention, the carburizing atmosphere gas can be used! This method not only allows nitrogen gas, hydrogen gas, and methane gas to be mixed by flowing them separately, but also allows the composition concentration of each 1+ to be set within the concentration range that maximizes the carburizing effect. )0□, C02, N20, and other oxidizing components and frequency division can be kept low, and the amounts of CH and I-I2 required for carburizing can be reduced.

(ii)  雰囲気ガスの組成変更は各組成ガスの流量
を調整すれば良く、パージ操作も兼ねることができ、経
済的である。
(ii) The composition of the atmospheric gas can be changed by adjusting the flow rate of each composition gas, and can also be used as a purge operation, which is economical.

(iii)  O□、C02、N20の量を極力法らし
たの°゛(゛で、02と親和力の強い合金元素の酸化を
抑えることができ、従来のガス浸炭法に比べて、粒界酸
化物の形成を著しく減少させることができる。
(iii) By adjusting the amounts of O□, C02, and N20 as much as possible, it is possible to suppress the oxidation of alloying elements that have a strong affinity with 02, and to reduce grain boundary oxidation compared to the conventional gas carburizing method. The formation of objects can be significantly reduced.

(拗 簑゛囲気ガス発生用の炉を必要としないので、運
転操作が容易となり、また組成流量の変動に対応し易い
(Since a furnace for generating ambient gas is not required, operation is easy and it is easy to respond to fluctuations in composition flow rate.

このような、本発明の効果を定量的に確認するために、
鋼試験片(たて45mmXよこ60mmX厚さCII、
6關)を用いて種々の条件下で浸炭処理を行ない、その
時の表面炭素濃度増加量を求める実験を行なった。なお
、初期に含有されている鋼中炭素濃度は0.004 w
 t%であり、又全ガス流量は80ONrJ/minで
ある。
In order to quantitatively confirm the effects of the present invention,
Steel test piece (vertical 45mm x width 60mm x thickness CII,
An experiment was carried out to determine the increase in surface carbon concentration during carburizing under various conditions. In addition, the initial carbon concentration in the steel is 0.004 w
t%, and the total gas flow rate is 80 ONrJ/min.

その結果、下表の数値が得られた。As a result, the values shown in the table below were obtained.

■ [ [ 上表から明らかなように、表面炭素濃度増加最はいずれ
も0.13 w t%以上あり、浸炭能力は従来と同等
以上の能力を持つことがわかる。しかも本発明方法で処
理すると該浸炭処理に用いるN2、CH4、’H2ガス
は、いずれも高純度、低露点であるため、炉内#素濃度
、炉内にマ点を相当低く維持することができ、それ由、
従来に比べてCI(4、I−■2などの高価な活性ガス
の使用量が減少するばかりでなく、ちなみに従来法の場
合G:!:H2・CO1炭化水=gなどの活性ガス搦が
50〜60 vo1%又水分も約4000四(D、I’
Tキー5°C)含まれているため、この水分が粒界耐化
物を形成するが、本発明方法でこの好ましくない現象を
惹起することなく、極めて良好な浸炭処理が出来る。
■ [ [ [ As is clear from the above table, the increase in surface carbon concentration was 0.13 wt% or more in all cases, and it can be seen that the carburizing ability was equal to or higher than that of the conventional method. Moreover, when treated with the method of the present invention, the N2, CH4, and 'H2 gases used in the carburizing process are all of high purity and low dew point, so it is possible to maintain the # element concentration in the furnace and the M point in the furnace considerably low. Yes, that's why.
Compared to the conventional method, not only does the amount of expensive active gases such as CI (4, I- 50-60 vo1% and water content is about 40004 (D, I'
Although this water forms grain boundary resistors, the method of the present invention can perform extremely good carburizing treatment without causing this undesirable phenomenon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は表面炭素濃度増加速度△WOとKとの関係図、
第2図は本発明に使用される浸炭雰囲気ガス中の水素お
よびメタンガスの濃度範囲を示す図、第6図は本発明を
実産するに好適な浸炭処理装置の概略構成図である。 1・・・・・炉、2・・・・・室紫ガス流量F、i、l
J整弁、3・・・・・窒素ガスライン、4・・・・・水
素ガス流量調整弁、5・・・・・ 水素ガスライン、6
・・・・・メタンガス流星調整弁、7・・・・・メタン
ガスライン。 第1図 隻 c H 第2図
Figure 1 is a diagram of the relationship between surface carbon concentration increase rate △WO and K.
FIG. 2 is a diagram showing the concentration ranges of hydrogen and methane gas in the carburizing atmosphere gas used in the present invention, and FIG. 6 is a schematic diagram of a carburizing treatment apparatus suitable for actually producing the present invention. 1...furnace, 2...chamber purple gas flow rate F, i, l
J valve adjustment, 3...Nitrogen gas line, 4...Hydrogen gas flow rate adjustment valve, 5...Hydrogen gas line, 6
...Methane gas meteor adjustment valve, 7...Methane gas line. Figure 1 Ship c H Figure 2

Claims (1)

【特許請求の範囲】[Claims] 炉内派点りをD(−32°Cに設定するとともに炉内酸
素濃追V。をV。≦11ooprnに設定した炉内に鋼
を置き、この炉内に窒素ガスと水素ガスとメタンガスと
からなる浸炭雰囲気ガスを連続的に流通させつつ鋼を8
50’C〜105[]”Cで熱処理する方法であり、上
記炉内の浸炭雰囲気ガス中の水素ガスとメタンガスとの
合計容ft Vが2容量%〈v〈40容量%となるとと
もに水素ガスに対するメタンガスの容眉比Kが054に
イ5になるように上記窒素、水素およびメタンの各ガス
の流量を調節することを特徴とする鋼の浸炭処理方法。
The steel was placed in a furnace with the furnace temperature set to D (-32°C and the furnace oxygen concentration V.≦11ooprn), and nitrogen gas, hydrogen gas, and methane gas The steel is heated while continuously passing through a carburizing atmosphere gas consisting of
It is a method of heat treatment at 50'C to 105[]''C, and the total volume of hydrogen gas and methane gas in the carburizing atmosphere gas in the above furnace becomes 2% by volume (ftV) and 40% by volume, and hydrogen gas A method for carburizing steel, comprising adjusting the flow rates of each of the nitrogen, hydrogen, and methane gases so that the volume ratio K of methane gas to that of methane gas is 0.54 to 5.
JP19280882A 1982-11-02 1982-11-02 Method for carburization of steel Granted JPS5983760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19280882A JPS5983760A (en) 1982-11-02 1982-11-02 Method for carburization of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19280882A JPS5983760A (en) 1982-11-02 1982-11-02 Method for carburization of steel

Publications (2)

Publication Number Publication Date
JPS5983760A true JPS5983760A (en) 1984-05-15
JPH0219183B2 JPH0219183B2 (en) 1990-04-27

Family

ID=16297327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19280882A Granted JPS5983760A (en) 1982-11-02 1982-11-02 Method for carburization of steel

Country Status (1)

Country Link
JP (1) JPS5983760A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215657A (en) * 1989-07-13 1991-09-20 Solo Fours Ind Sa Method and device for carbulizing
FR2854904A1 (en) * 2003-05-13 2004-11-19 Bosch Gmbh Robert Heat treatment of metal components in a muffle furnace under a gaseous atmosphere of nitrogen, hydrogen and a carbon carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215657A (en) * 1989-07-13 1991-09-20 Solo Fours Ind Sa Method and device for carbulizing
FR2854904A1 (en) * 2003-05-13 2004-11-19 Bosch Gmbh Robert Heat treatment of metal components in a muffle furnace under a gaseous atmosphere of nitrogen, hydrogen and a carbon carrier

Also Published As

Publication number Publication date
JPH0219183B2 (en) 1990-04-27

Similar Documents

Publication Publication Date Title
US4049472A (en) Atmosphere compositions and methods of using same for surface treating ferrous metals
CA1140438A (en) Process for carburizing ferrous metals
US4175986A (en) Inert carrier gas heat treating control process
US4139375A (en) Process for sintering powder metal parts
SE525433C2 (en) Way to form a chrome-rich layer on the surface of a nickel alloy
JPH064906B2 (en) Carburizing of metal work
US4153485A (en) Process for heating steel powder compacts
US20080149225A1 (en) Method for oxygen free carburization in atmospheric pressure furnaces
US4236941A (en) Method of producing heat treatment atmosphere
JPS5983760A (en) Method for carburization of steel
GB2066301A (en) Process for carburising or heating of steel workpieces in a protective atmosphere
US3891473A (en) Heat treating atmospheres
US4359351A (en) Protective atmosphere process for annealing and or spheroidizing ferrous metals
JPS58123821A (en) Heat treatment
JPS6372821A (en) Treatment of metal
US4285742A (en) Heat treatment method
JPS6050159A (en) Gas carburization hardening method
JP6112283B1 (en) Method for producing alloy steel powder for powder metallurgy
US5785773A (en) Process for avoiding stickers in the annealing of cold strip
JPH0515782B2 (en)
JP6031313B2 (en) Carburizing method
US2188275A (en) Heat treatment of metals
US20040231753A1 (en) Method for carburizing and carbonitriding steel by carbon oxide
JPS5980713A (en) Heat treatment of steel product accompanied by no decarburization
EP1966396A2 (en) Method for oxygen free carburization in atmospheric pressure furnaces