US3891473A - Heat treating atmospheres - Google Patents

Heat treating atmospheres Download PDF

Info

Publication number
US3891473A
US3891473A US361082A US36108273A US3891473A US 3891473 A US3891473 A US 3891473A US 361082 A US361082 A US 361082A US 36108273 A US36108273 A US 36108273A US 3891473 A US3891473 A US 3891473A
Authority
US
United States
Prior art keywords
carbon
ammonia
methane
atmosphere
constituents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US361082A
Inventor
Henry F Latva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Old Carco LLC
Original Assignee
Chrysler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chrysler Corp filed Critical Chrysler Corp
Priority to US361082A priority Critical patent/US3891473A/en
Priority to US05/514,352 priority patent/US4028100A/en
Application granted granted Critical
Publication of US3891473A publication Critical patent/US3891473A/en
Assigned to FIDELITY UNION TRUST COMPANY, TRUSTEE reassignment FIDELITY UNION TRUST COMPANY, TRUSTEE MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: CHRYSLER CORPORATION
Assigned to CHRYSLER CORPORATION reassignment CHRYSLER CORPORATION ASSIGNORS HEREBY REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID INVENTIONS AND RELEASE THEIR SECURITY INTEREST. (SEE DOCUMENT FOR DETAILS). Assignors: ARNEBECK, WILLIAM, INDIVIDUAL TRUSTEE, FIDELITY UNION BANK
Assigned to CHRYSLER CORPORATION reassignment CHRYSLER CORPORATION PARTES REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID PATENTS ALSO RELEASE THEIR SECURITY INTEREST. (SEE RECORD FOR DETAIL) Assignors: MANUFACTURERS NATIONAL BANK OF DETROIL (CORPORATE TRUSTEE) AND BLACK DONALD E., (INDIVIDUAL TRUSTEE)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Definitions

  • ABSTRACT A heat treating atmosphere and method for its use wherein the atmosphere provides precise control over carbon content in metal parts, such as steel, and which is particularly applicable to powder metal sintering.
  • the method uses a mixture of resultant constituents from dissociated ammonia and methane combusted with air to provide an atmosphere of controlled car bon potential.
  • the ammonia is dissociated, the methane is combusted with air and the resultant constituents are mixed together prior to introduction into the heat treating furnace.
  • the method prevents the formation of undesirable hard and brittle phases of carbides during sintering, the resulting products being free of segregated high carbon constituents, i.e., eementite, and being easier to machine, thus providing much longer cutting tool life.
  • dissociation of the ammonia in the furnace provides nascent nitrogen which nitrides the workpiece undergoing treatment whereas in the subject method dissociation prior to introduction to the furnace provides molecular N which is inert and does not affect the workpiece undergoing treatment.
  • this can include any carbide forming composition.
  • Precise control is obtained according to this invention by diluting a carbiding atmosphere formed from methane combusted with air and with a diluent of anhydrous ammonia which is dissociated into N; and H prior to its being mixed with the combusted or cracked methane and prior to the introduction of the blended constituents into the furnace. It is important to this invention that the ammonia be dissociated prior to its introduction into the furnace. Otherwise, when dissociation occurs in the furnace, nascent nitrogen forms and nitrides the workpiece. This is to be avoided in the subject method.
  • the use of anhydrous ammonia as a diluent represents a practical and low cost approach.
  • a typical ferrous metal powder contains extremely low amounts of carbon.
  • a low carbon powder metal is mixed with graphite to provide about the carbon content desired. This mixture is pressed into a green compact which is subsequently sintered. Sintering is carried out in an atmosphere consisting of a certain or predetermined ratio of the products of cracked methane and dissociated ammonia.
  • the proper diluted atmosphere can be selected to provide, during normal sintering times and temperatures, an equilibrium condition which provides and/or maintains a desired final amount of carbon in the workpiece. Since the cracked methane is diluted with the nitrogen and hydrogen resulting from the dissociated ammonia, low amounts of carbon, or in other words a low carbon potential, is provided in the atmosphere so that precise amounts of carbon can be obtained by this method. This low carbon potential atmosphere is lower than has been possible heretofore. Further, it prevents oxidation because each separately generated gas is dry and of low dew point.
  • FIGURE shows a schematic combination endothermic gas generator and ammonia dissociator.
  • this invention provides Sintering and/or heat treating atmospheres for carbon level control and oxidation prevention.
  • the invention makes use of blended, low dew point atmospheres during the heating, sintering, cooling and/or subsequent heat treat ment of powder metal compacts or parts of ferrousbase or non-ferrous base compositions, which are carbide formers, so that the various levels of carbon are controlled, and at the same time the formation of metal oxides of active elemental constituents is prevented.
  • Equipment is also described which simultaneously produces and controls the atmosphere in balance with the various levels of carbon desired in the resulting sintered or heat treated workpieces to provide definite ranges of composition.
  • Typical compositions are listed in Table I as obtained from the various volume blends of dissociated ammonia (25% nitrogen and hydrogen) and endothermic cracked methane gas at 2.5 to one air/gas ratio (20% carbon monoxide, 38% hydrogen and 42% nitrogen).
  • Table I is derived for a furnace requirement of 2,000 cubic feet per hour of gas atmosphere. It shows the flow scope readings for dissociated ammonia and for endothermic gas at the various percentages of each. It also shows the number of cubic feet of each constituent flowing into the furnace at the corresponding ratios of each type of gas.
  • Table II shows the resultant analysis of the atmosphere in a furnace for the various volume percentages of dissociated ammonia gas and endothermically cracked methane gas.
  • the preferred equipment for this method is a combination endothermic generator and ammonia dissociator as shown in the FIGURE.
  • the equipment includes two or more retorts l and 11 within a combustion chamber heated by burning gas or electric heating elements.
  • One or more retorts crack an air to gas (methane) ratio of about 2.5 to l, to produce endothermic gas, and one or more retorts dissociate ammonia.
  • the input to each retort is regulated to produce desired amounts of cracked endothermic gas constituents (20% CO, 38% H and 42% N and de sired amounts of dissociated ammonia (25% H and 75% N from each of the separate retorts and 11.
  • the required output is mixed or blended to form a desired composition which will be used in equilibrium with the chemistry of the parts or workpiece to be sintered. To accomplish this the desired atmosphere is piped, as shown, to a sintering furnace.
  • Endothermic gas atmospheres are ordinarily both too high in carbon potential at low dew point and too Inn in decarburizing resistance at higher dew point to sintcr the full range of powder metal pressed parts to meet the A.I.S.I. carbon steel compositions. lt has therefore not been possible heretofore to control the carbon level of the lower range composition of carbon when high a1 loying element content of other elements prone to oxidation are included.
  • Such principal elements may be 5 manganese and chromium and there may be others to a lesser degree.
  • the low dew point endothermic atmosphere is too potent in carburizing action to be in eqilibrium with 0.7%, 0.8% and 09% carbon level compositions. Often times undesirable hard constituents such as cementite inclusions were formed. This caused brittle products and made machining difficult.
  • a predetermined ratio of constituent gas composition, to be in equilibrium with the desired composition of the sintered compact, has been used with success in accordance with this invention.
  • the exact carbon analysis of the steel grade was successfully controlled by using the subject invention.
  • the alloying elements of high level manganese content for each of the materials was also controlled without oxidation of the manganese. This is accomplished, in accordance with this invention, by using an atmosphere for sintering in which the carbon potential is maintained in equilibrium with the desired carbon chemistry of the steel powder compact.
  • the dew point is controlled at a low level by controlling the air and gas ratio, as well as the cracking temperature in the endothermic gas generator.
  • the carbon potential is further controlled by adding a dry reducing gas, which does not contain significant amounts of oxygen, carbon dioxide or water vapor, to the low dew point endothermic cracked gas. Dissociated ammonia gas cracked to low dew point is used as the diluting constituent.
  • the method of the invention produced the following results.
  • A. ratio of 60% (by volume) of dissociated ammonia with 40% (by volume) of endothermic cracked gas at a low dew point produced an atmosphere that was in equilibrium with steel powder compacts of both A.l.S.l. 4023 and A.l.S.l. 1522, which contained 0.20 to 25% and 0.18 to 0.24% carbon, respectively.
  • each steel powder with 0.70 to 0.90% manganese and 1.10 to 1.40% manganese. respectively could be sintered without oxidation in the above atmosphere at 2,050" F.
  • the composition of the atmosphere at 60/40 ratio was (by volume) carbon monoxide, 59.8% hydrogen and 31.8% nitrogen. This blend gave consistent results as to composition on the surface and in the core of the parts over several runs.
  • the dew point was determined to be at +20 F., which was that of the cracked endothermic gas.
  • the carbon potential as determined by the steel strip method was 0.28% carbon.
  • the control of low level carbon, as in carburizing grades of carbon or alloy steel compositions, is important to maintain tough core properties of densified powder metal preforms.
  • the composition of the compacted and sintered preform must be held to narrow ranges of carbon content to obtain strong and duetile core properties in case-hardened parts.
  • a method of controlling the carbon content of a steel alloy containing about 0.18% to 0.85% by weight carbon comprising:
  • ammonia and methane in a volume ratio ranging from about 60/40 for the lower C contents to 20/80 for the higher C contents while maintaining the ammonia and methane separate from each other,

Abstract

A heat treating atmosphere and method for its use wherein the atmosphere provides precise control over carbon content in metal parts, such as steel, and which is particularly applicable to powder metal sintering. The method uses a mixture of resultant constituents from dissociated ammonia and methane combusted with air to provide an atmosphere of controlled carbon potential. The ammonia is dissociated, the methane is combusted with air and the resultant constituents are mixed together prior to introduction into the heat treating furnace. The method prevents the formation of undesirable hard and brittle phases of carbides during sintering, the resulting products being free of segregated high carbon constituents, i.e., cementite, and being easier to machine, thus providing much longer cutting tool life.

Description

United States Patent 11 1 Latva 1 1 3,891,473 1 1 June 24, 1975 [73] Assignee: Chrysler Corporation, Highland Park, Mich.
221 Filed: May 17,1973
21 Appl. No.: 361,082
[75] Inventor:
[52] US. Cl. l48/l6.7; 75/224; 148/16; 148/165 [51] Int. Cl C2ld 1/74 [58] Field of Search 148/16, 16.5, 16.7. 126; 252/372, 373, 376; 48/196 R, 212; 75/224 [56] References Cited UNITED STATES PATENTS 2,299.138 10/1942 Gier 148/165 2,489,839 11/1949 Whitney l48/l6.5
Primary Examiner-C. Lovell Attorney, Agenl, or FirmTalburtt & Baldwin l 5 7 1 ABSTRACT A heat treating atmosphere and method for its use wherein the atmosphere provides precise control over carbon content in metal parts, such as steel, and which is particularly applicable to powder metal sintering. The method uses a mixture of resultant constituents from dissociated ammonia and methane combusted with air to provide an atmosphere of controlled car bon potential. The ammonia is dissociated, the methane is combusted with air and the resultant constituents are mixed together prior to introduction into the heat treating furnace. The method prevents the formation of undesirable hard and brittle phases of carbides during sintering, the resulting products being free of segregated high carbon constituents, i.e., eementite, and being easier to machine, thus providing much longer cutting tool life.
5 Claims, 1 Drawing Figure PATENTEIJJUN 24 1975 1 HEAT TREATING ATMOSPHERES BACKGROUND The prior art discloses heat treatments wherein ammonia and methane combusted with air are mixed together in a furnace to provide heat treating atmospheres. However, this differs from the subject use of dissociated ammonia because in the prior art processes the ammonia is dissociated in the furnace whereas in the subject method the ammonia must be dissociated prior to its introduction into the furnace or other heat treating environment. In the prior art, dissociation of the ammonia in the furnace provides nascent nitrogen which nitrides the workpiece undergoing treatment whereas in the subject method dissociation prior to introduction to the furnace provides molecular N which is inert and does not affect the workpiece undergoing treatment.
SUMMARY Dissociation of ammonia provides N and H The combustion of methane with air provides CO, N and H The diluting of the combusted methane products by the ammonia products makes possible the provision of a heat treating atmosphere wherein predetermined and very small amounts of C are present and therefore precise control of the carbon content of a workpiece exposed at elevated temperatures can be achieved.
It is desirable to have more precise control over the carbon content of materials such as steel, iron and the like. Generally, this can include any carbide forming composition. Precise control is obtained according to this invention by diluting a carbiding atmosphere formed from methane combusted with air and with a diluent of anhydrous ammonia which is dissociated into N; and H prior to its being mixed with the combusted or cracked methane and prior to the introduction of the blended constituents into the furnace. It is important to this invention that the ammonia be dissociated prior to its introduction into the furnace. Otherwise, when dissociation occurs in the furnace, nascent nitrogen forms and nitrides the workpiece. This is to be avoided in the subject method. The use of anhydrous ammonia as a diluent represents a practical and low cost approach.
In practice, the subject method as applied to a powder metal workpiece (workpieces other than sintered parts are also amenable to this treatment) is as follows: A typical ferrous metal powder contains extremely low amounts of carbon. In certain cases it is desired to produce steel parts having precise amounts of carbon such as in the case of gears which must have a sufficient amount of carbon to be wear resistant but not so much carbon that brittle phases are formed in the core metal during heat treatment. This requires precise control of carbon content. A low carbon powder metal is mixed with graphite to provide about the carbon content desired. This mixture is pressed into a green compact which is subsequently sintered. Sintering is carried out in an atmosphere consisting of a certain or predetermined ratio of the products of cracked methane and dissociated ammonia. Knowing the amount of carbon contained in the green compact and knowing the amount desired ultimately, the proper diluted atmosphere can be selected to provide, during normal sintering times and temperatures, an equilibrium condition which provides and/or maintains a desired final amount of carbon in the workpiece. Since the cracked methane is diluted with the nitrogen and hydrogen resulting from the dissociated ammonia, low amounts of carbon, or in other words a low carbon potential, is provided in the atmosphere so that precise amounts of carbon can be obtained by this method. This low carbon potential atmosphere is lower than has been possible heretofore. Further, it prevents oxidation because each separately generated gas is dry and of low dew point.
BRIEF DESCRIPTION OF THE DRAWING The FIGURE shows a schematic combination endothermic gas generator and ammonia dissociator.
DESCRIPTION OF THE PREFERRED EMBODIMENT In general this invention provides Sintering and/or heat treating atmospheres for carbon level control and oxidation prevention. The invention makes use of blended, low dew point atmospheres during the heating, sintering, cooling and/or subsequent heat treat ment of powder metal compacts or parts of ferrousbase or non-ferrous base compositions, which are carbide formers, so that the various levels of carbon are controlled, and at the same time the formation of metal oxides of active elemental constituents is prevented. Equipment is also described which simultaneously produces and controls the atmosphere in balance with the various levels of carbon desired in the resulting sintered or heat treated workpieces to provide definite ranges of composition.
Typical compositions are listed in Table I as obtained from the various volume blends of dissociated ammonia (25% nitrogen and hydrogen) and endothermic cracked methane gas at 2.5 to one air/gas ratio (20% carbon monoxide, 38% hydrogen and 42% nitrogen).
Table I is derived for a furnace requirement of 2,000 cubic feet per hour of gas atmosphere. It shows the flow scope readings for dissociated ammonia and for endothermic gas at the various percentages of each. It also shows the number of cubic feet of each constituent flowing into the furnace at the corresponding ratios of each type of gas.
It can be determined experimentally and by calculation what ratio of dissociated ammonia to endothermic gas will produce the level of carbon monoxide and hydrogen that is in equilibrium with the chemistry of the desired product as indicated in Table II. Table II shows the resultant analysis of the atmosphere in a furnace for the various volume percentages of dissociated ammonia gas and endothermically cracked methane gas.
TABLE I FLOW SCOPE READINGS Vol 2000 C.F.H.
CH, NH; Endo CO H N,
2000 X '71 NH 1800 200 40 I426 534 2000 X 80 Z NH, I600 400 80 I352 568 2000 X 70 "/1 NH, I400 600 I272 602 2000 X 60 7: NH, I200 800 I60 1 I96 636 2000 X 50 7% NH I000 I000 200 l I30 670 2000 X 40 '7? NH 800 I200 240 I056 704 2000 X 30 it NH 600 I400 280 982 733 2000 X 20 NH 400 I600 320 908 772 2000 X I0 I NH 200 I800 360 834 806 2000 X 0 7: NH:, 0 2000 400 760 840 TABLE I1 CONSTITU ENT ANALYSIS As a guide for some of the more typical alloys (percentages are by weight), it has been found that for alloys of0.20 to 0.25% carbon and 0.70 to 0.90% manga nese. about a 60/40 (by volume) ratio of dissociated ammonia to endothermic gas, which produces HN atmosphere of 8% CO, 59.8% H and 31.8% N gives a final part or workpiece composition of 0.22% carbon and 0.70%/0.90% manganese. For a desired 0.18% to 0.24% carbon and 1.10% to 1.40% manganese composition, this same gas ratio also provides carbon and manganese content within the above range with a final analysis of 0.21% carbon and 1.25% manganese. For a 0.35% typical carbon and for both manganese contents of 0.70% to 0.90% and 1.10% to 1.40% respectively, it was found that about 50% of each of dissociated ammonia and endothermic gas at low dew point produced 0.35% carbon and also kept the manganese from oxidizing. For higher carbon contents of 0.60% and 0.85% carbon a ratio of about 40/60 and 20/80 of dissociated ammonia to endothermic gas in each case is preferred.
The preferred equipment for this method is a combination endothermic generator and ammonia dissociator as shown in the FIGURE. The equipment includes two or more retorts l and 11 within a combustion chamber heated by burning gas or electric heating elements. One or more retorts crack an air to gas (methane) ratio of about 2.5 to l, to produce endothermic gas, and one or more retorts dissociate ammonia. By suitable meters, the input to each retort is regulated to produce desired amounts of cracked endothermic gas constituents (20% CO, 38% H and 42% N and de sired amounts of dissociated ammonia (25% H and 75% N from each of the separate retorts and 11. The required output is mixed or blended to form a desired composition which will be used in equilibrium with the chemistry of the parts or workpiece to be sintered. To accomplish this the desired atmosphere is piped, as shown, to a sintering furnace.
The control of carbon level in the sintering process or during subsequent heat treatment, annealing or hardening of ferrous powder metal compacts, has long been a difficult and almost impossible task. It has become necessary to sinter and/or heat treat porous and- /or solid compacted metal parts containing alloying elements which are prone to oxidation when heated in ordinary gaseous atmosphere. This is also true of steel parts which contain oxidation-prone elements.
Endothermic gas atmospheres are ordinarily both too high in carbon potential at low dew point and too Inn in decarburizing resistance at higher dew point to sintcr the full range of powder metal pressed parts to meet the A.I.S.I. carbon steel compositions. lt has therefore not been possible heretofore to control the carbon level of the lower range composition of carbon when high a1 loying element content of other elements prone to oxidation are included. Such principal elements may be 5 manganese and chromium and there may be others to a lesser degree.
lt has also been difficult to control the medium range carbon steel and/or alloy steel compositions, since the gas carbon potential in equilibrium with the desired medium composition ordinarily has a dew point too high to prevent oxidation of the alloying constituents.
At the high carbon level, the low dew point endothermic atmosphere is too potent in carburizing action to be in eqilibrium with 0.7%, 0.8% and 09% carbon level compositions. Often times undesirable hard constituents such as cementite inclusions were formed. This caused brittle products and made machining difficult.
A predetermined ratio of constituent gas composition, to be in equilibrium with the desired composition of the sintered compact, has been used with success in accordance with this invention. in the cases of sintering compressed briquettes, which were used as preforms for hot forming structural mechanical components. of several alloy steel compositions, the exact carbon analysis of the steel grade was successfully controlled by using the subject invention. The alloying elements of high level manganese content for each of the materials was also controlled without oxidation of the manganese. This is accomplished, in accordance with this invention, by using an atmosphere for sintering in which the carbon potential is maintained in equilibrium with the desired carbon chemistry of the steel powder compact. The dew point is controlled at a low level by controlling the air and gas ratio, as well as the cracking temperature in the endothermic gas generator. The carbon potential is further controlled by adding a dry reducing gas, which does not contain significant amounts of oxygen, carbon dioxide or water vapor, to the low dew point endothermic cracked gas. Dissociated ammonia gas cracked to low dew point is used as the diluting constituent.
By using a straight low dew point endothermic gas atmosphere to sinter an A.l.S.l, 4023 type steel composition powder metal compacts, which contain 0.20 to 0.25% carbon and 0.70 to 0.90% manganese, a higher carbon content was found to result. The manganese content was found to be at the proper level but some oxidation occurred. By sintering in straight dissociated ammonia, a loss of carbon or decarburization was found to take place in the resulting preform or compact.
For example. the method of the invention, on the other hand, produced the following results. A. ratio of 60% (by volume) of dissociated ammonia with 40% (by volume) of endothermic cracked gas at a low dew point produced an atmosphere that was in equilibrium with steel powder compacts of both A.l.S.l. 4023 and A.l.S.l. 1522, which contained 0.20 to 25% and 0.18 to 0.24% carbon, respectively. It was also found that each steel powder with 0.70 to 0.90% manganese and 1.10 to 1.40% manganese. respectively, could be sintered without oxidation in the above atmosphere at 2,050" F. The composition of the atmosphere at 60/40 ratio was (by volume) carbon monoxide, 59.8% hydrogen and 31.8% nitrogen. This blend gave consistent results as to composition on the surface and in the core of the parts over several runs. The dew point was determined to be at +20 F., which was that of the cracked endothermic gas. The carbon potential as determined by the steel strip method was 0.28% carbon.
Processing compacts of the same composition but with 0.35% carbon in the mix and at a ratio of about 50% (by volume) dissociated ammonia and 50% (by volume) endothermic gas gave resulting compositions of about 0.35% carbon after sintering at 2.050 F. for a normal time. This shows that the resulting carbon can be raised by increasing the amount of endothermic gas and reducing the amount of ammonia in the treatment atmosphere. The manganese did not pick up oxygen. Sintering and/or heat treatment without oxidation can be accomplished by regulating the ratio of low dew point endothermic gas with dissociated ammonia as a dry diluent in accordance with this invention. At the same time the carbon level can be controlled by regulating the ratio of endothermic gas to dissociated ammonia, and additionally at the same time the dew point remains low so that oxidation of any active alloying elements present does not take place.
The control of low level carbon, as in carburizing grades of carbon or alloy steel compositions, is important to maintain tough core properties of densified powder metal preforms. Here the composition of the compacted and sintered preform must be held to narrow ranges of carbon content to obtain strong and duetile core properties in case-hardened parts.
Having described the invention, an exclusive property right is claimed therein as follows:
l. A method of controlling the carbon content of a steel alloy containing about 0.18% to 0.85% by weight carbon, comprising:
providing ammonia and methane in a volume ratio ranging from about 60/40 for the lower C contents to 20/80 for the higher C contents while maintaining the ammonia and methane separate from each other,
dissociating the ammonia and combusting the methane while maintaining the separation.
mixing the constituents resulting from the dissociation and combustion of the ammonia and methane together,
introducing the mixed constituents into a heat treating environment, and
heat treating the alloy in the heat treatment environment in the presence of the mixed constituents.
2. The method of claim 1 wherein the carbon content of the alloy is about 0.18 to 0.25 by weight and the volume ratio of ammonia and methane is about 60/40.
3. The method of claim 1 wherein the carbon content is about 0.35% carbon and the volume ratio of ammonia and methane is about 50/50.
4. The method of claim 1 wherein the carbon content is about 0.60% by weight and the volume ratio of ammonia and methane is about 40/60.
5. The method of claim 1 wherein the carbon content is about 0.85% by weight and the volume ratio of ammonia and methane is about 20/80.

Claims (5)

1. A METHOD OF CONTROLLING THE CARBON CONTENT OF A STEEL ALLOY CONTAINING ABOUT 0.18% TO 0.85% BY WEIGHT CARBON, COMPRISING: PROVIDING AMMONIA AND METHANE IN A VOLUME RATIO RANGING FROM ABOUT 60/40 FOR THE LOWER C CONTENTS TO 20/80 FOR THE HIGHER C CONTENTS WHILE MAINTAINING THE AMMONIA AND METHANE SEPARATE FROM EACH OTHER; DISSOCIATING THE AMMONIA AND COMBUSTING THE METHANE WHILE MAINTAINING THE SEPARATION, MIXING THE CONSTITUENTS RESULTING FROM THE DISSOCIATION AND COMBUSTION OF THE AMMONIA AND METHANE TOGETHER, INTRODUCING THE MIXED CONSTITUENTS INTO A HEAT TREATING ENVIRONMENT, AND HEAT TREATING THE ALLOY IN THE HEAT TREATMENT ENVIRONMENT IN THE PRESENCE OF THE MIXED CONSTITUENTS.
2. The method of claim 1 wherein the carbon content of the alloy is about 0.18 to 0.25 by weight and the volume ratio of ammonia and methane is about 60/40.
3. The method of claim 1 wherein the carbon content is about 0.35% carbon and the volume ratio of ammonia and methane is about 50/50.
4. The method of claim 1 wherein the carbon content is about 0.60% by weight and the volume ratio of ammonia and methane is about 40/60.
5. The method of claim 1 wherein the carbon content is about 0.85% by weight and the volume ratio of ammonia and methane is about 20/80.
US361082A 1973-05-17 1973-05-17 Heat treating atmospheres Expired - Lifetime US3891473A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US361082A US3891473A (en) 1973-05-17 1973-05-17 Heat treating atmospheres
US05/514,352 US4028100A (en) 1973-05-17 1974-10-15 Heat treating atmospheres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US361082A US3891473A (en) 1973-05-17 1973-05-17 Heat treating atmospheres

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/514,352 Division US4028100A (en) 1973-05-17 1974-10-15 Heat treating atmospheres

Publications (1)

Publication Number Publication Date
US3891473A true US3891473A (en) 1975-06-24

Family

ID=23420573

Family Applications (1)

Application Number Title Priority Date Filing Date
US361082A Expired - Lifetime US3891473A (en) 1973-05-17 1973-05-17 Heat treating atmospheres

Country Status (1)

Country Link
US (1) US3891473A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042385A (en) * 1974-11-09 1977-08-16 Toyo Kogyo Co., Ltd. Sintering method for making a high carbon ferrous sliding element
US4049473A (en) * 1976-03-11 1977-09-20 Airco, Inc. Methods for carburizing steel parts
US4106931A (en) * 1977-05-18 1978-08-15 Airco, Inc. Methods for sintering powder metallurgy parts
US4139375A (en) * 1978-02-06 1979-02-13 Union Carbide Corporation Process for sintering powder metal parts
US4153485A (en) * 1974-12-28 1979-05-08 Kobe Steel, Ltd. Process for heating steel powder compacts
US4234337A (en) * 1977-12-02 1980-11-18 Hoerbiger & Co. Method of producing sintered friction laminae
US4579713A (en) * 1985-04-25 1986-04-01 Ultra-Temp Corporation Method for carbon control of carbide preforms
EP3042967A1 (en) * 2015-01-08 2016-07-13 Linde Aktiengesellschaft Gas mixture and method for controlling a carbon potential of a furnace atmosphere

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2299138A (en) * 1941-10-04 1942-10-20 Westinghouse Electric & Mfg Co Heat treating of steel
US2489839A (en) * 1946-04-30 1949-11-29 Isthmian Metals Inc Process for carburizing compacted iron articles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2299138A (en) * 1941-10-04 1942-10-20 Westinghouse Electric & Mfg Co Heat treating of steel
US2489839A (en) * 1946-04-30 1949-11-29 Isthmian Metals Inc Process for carburizing compacted iron articles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042385A (en) * 1974-11-09 1977-08-16 Toyo Kogyo Co., Ltd. Sintering method for making a high carbon ferrous sliding element
US4153485A (en) * 1974-12-28 1979-05-08 Kobe Steel, Ltd. Process for heating steel powder compacts
US4049473A (en) * 1976-03-11 1977-09-20 Airco, Inc. Methods for carburizing steel parts
US4106931A (en) * 1977-05-18 1978-08-15 Airco, Inc. Methods for sintering powder metallurgy parts
US4234337A (en) * 1977-12-02 1980-11-18 Hoerbiger & Co. Method of producing sintered friction laminae
US4139375A (en) * 1978-02-06 1979-02-13 Union Carbide Corporation Process for sintering powder metal parts
FR2416075A1 (en) * 1978-02-06 1979-08-31 Union Carbide Corp PROCESS FOR SINTING PARTS SHAPED FROM POWDER
US4579713A (en) * 1985-04-25 1986-04-01 Ultra-Temp Corporation Method for carbon control of carbide preforms
EP3042967A1 (en) * 2015-01-08 2016-07-13 Linde Aktiengesellschaft Gas mixture and method for controlling a carbon potential of a furnace atmosphere
WO2016110450A1 (en) * 2015-01-08 2016-07-14 Linde Aktiengesellschaft Gas mixture and method for controlling a carbon potential of a furnace atmosphere

Similar Documents

Publication Publication Date Title
US4049472A (en) Atmosphere compositions and methods of using same for surface treating ferrous metals
US4386972A (en) Method of heat treating ferrous metal articles under controlled furnace atmospheres
EP2285996B1 (en) Iron- based pre-alloyed powder
CA2412520C (en) Method of production of surface densified powder metal components
US2411073A (en) Making products of iron or iron alloys
US4028100A (en) Heat treating atmospheres
US2333573A (en) Process of making steel
US3891473A (en) Heat treating atmospheres
CA2698139A1 (en) Method of producing a sinter-hardened component
CA1190418A (en) Process for producing sintered ferrous alloys
US4153485A (en) Process for heating steel powder compacts
US4436696A (en) Process for providing a uniform carbon distribution in ferrous compacts at high temperatures
JPH0125823B2 (en)
Bocchini Influence of controlled atmospheres on the proper sintering of carbon steels
US5777247A (en) Carbon steel powders and method of manufacturing powder metal components therefrom
US2489838A (en) Powder metallurgy process for producing steel parts
Hrubovčáková et al. Parameters controlling the oxide reduction during sintering of chromium prealloyed steel
US5441579A (en) Method of recycling scrap metal
US3892597A (en) Method of nitriding
Maliska et al. Microstructural characterization of plasma nitriding surface of sintered steels containing Si
RU2425166C1 (en) Procedure for production of mechanically alloyed nitrogen containing steel
Beiss Processing of sintered stainless steel parts
Eudier Role of atmosphere in sintering of copper steels
Koftelev et al. Experience in chemical heat treatment of parts made of powder materials for vaz passenger cars
Santuliana Effect of surface treatments on mechanical properties of low alloy sintered steels

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIDELITY UNION TRUST COMPANY, 765 BROAD ST., NEWAR

Free format text: MORTGAGE;ASSIGNOR:CHRYSLER CORPORATION;REEL/FRAME:003832/0358

Effective date: 19810209

Owner name: FIDELITY UNION TRUST COMPANY, TRUSTEE,NEW JERSEY

Free format text: MORTGAGE;ASSIGNOR:CHRYSLER CORPORATION;REEL/FRAME:003832/0358

Effective date: 19810209

AS Assignment

Owner name: CHRYSLER CORPORATION, HIGHLAND PARK, MI 12000 LYNN

Free format text: ASSIGNORS HEREBY REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID INVENTIONS AND RELEASE THEIR SECURITY INTEREST.;ASSIGNORS:FIDELITY UNION BANK;ARNEBECK, WILLIAM, INDIVIDUAL TRUSTEE;REEL/FRAME:004063/0604

Effective date: 19820217

AS Assignment

Owner name: CHRYSLER CORPORATION

Free format text: PARTES REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID PATENTS ALSO RELEASE THEIR SECURITY INTEREST.;ASSIGNOR:MANUFACTURERS NATIONAL BANK OF DETROIL (CORPORATE TRUSTEE) AND BLACK DONALD E., (INDIVIDUAL TRUSTEE);REEL/FRAME:004355/0154

Effective date: 19840905