JPS5982942A - Microcapsulation method - Google Patents

Microcapsulation method

Info

Publication number
JPS5982942A
JPS5982942A JP19436182A JP19436182A JPS5982942A JP S5982942 A JPS5982942 A JP S5982942A JP 19436182 A JP19436182 A JP 19436182A JP 19436182 A JP19436182 A JP 19436182A JP S5982942 A JPS5982942 A JP S5982942A
Authority
JP
Japan
Prior art keywords
core material
wall
coacervate
capsule
forming resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19436182A
Other languages
Japanese (ja)
Inventor
Naoyuki Ushiyama
牛山 尚之
Ichiro Osaki
大崎 一郎
Toshiaki Nakahara
中原 俊章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19436182A priority Critical patent/JPS5982942A/en
Priority to US06/527,395 priority patent/US4565764A/en
Priority to DE19833332621 priority patent/DE3332621A1/en
Priority to GB08324364A priority patent/GB2128350B/en
Publication of JPS5982942A publication Critical patent/JPS5982942A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09378Non-macromolecular organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09307Encapsulated toner particles specified by the shell material
    • G03G9/09314Macromolecular compounds
    • G03G9/09321Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09307Encapsulated toner particles specified by the shell material
    • G03G9/09314Macromolecular compounds
    • G03G9/09328Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09357Macromolecular compounds
    • G03G9/09364Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09392Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To decrease a liberated wall material and to prevent the exudation of a core material by using a core material and a coacervate drop having the electrification characteristics in a capsulation medium which are opposite from each other. CONSTITUTION:The electrification characteristics of a core material and a coacervate drop in a capsulation medium are made opposite from each other in a microcapsulation method by a phase sepn. method from an org. solvent system. For example, AC PE (available from allied chemical Co.) is used the core material, a copolymer of 95:5 polymn. ratio of styrene-dimethylaminoethyl methacrylate as a wall forming resin and dimethyl formamide and water are used as the capsulation medium. As a result, the liberated wall material is extremely decreased and the capsule free from the exudation of the core material is obtd.

Description

【発明の詳細な説明】 本発明d−、カプセル壁形成の樹脂の有機溶媒溶液をカ
プセル化媒体として、この有機溶々−(と相溶するがカ
プセル壁形成の樹脂を溶解しない貧溶媒を滴下すること
でカプセル壁形成の樹脂の濃厚相を相分離させて芯物質
を包囲させカプセル壁を形成する有機溶媒系からの相分
離方法に関する。
Detailed Description of the Invention In the present invention d-, an organic solvent solution of a capsule wall-forming resin is used as an encapsulation medium, and a poor solvent that is compatible with the organic solvent but does not dissolve the capsule wall-forming resin is added dropwise. The present invention relates to a method of phase separation from an organic solvent system in which the concentrated phase of the resin forming the capsule wall is phase-separated to surround the core material and form the capsule wall.

従来の方法においては、相分離によって生じたコアセル
ベート滴のすべてが芯物質を包囲しないために遊離しン
ヒ壁形成樹脂が存在すること、および、壁かっ”1’?
jでないだめに、特に液体や軟点固体をカプセル化した
場合には長ル」間の保存においてカプセル中から芯物質
が浸み出してしすうという欠点を有している。
In the conventional method, all of the coacervate droplets generated by phase separation do not surround the core substance, so that free wall-forming resin exists and the wall does not surround the core material.
However, especially when liquids or soft-point solids are encapsulated, they have the disadvantage that the core substance oozes out of the capsule during long-term storage.

本発明の目的は、上記欠点を改良した41機溶媒系から
の相分1’iIc力法を提供することにある。
An object of the present invention is to provide a 1'iIc force method for phase separation from a 41-solvent system that improves the above-mentioned drawbacks.

本発明の第1の目的は、遊離した壁材料の非常に少ない
相分p、fj力法を提供することにある。
A first object of the invention is to provide a phase fraction p,fj force method with very little loose wall material.

本発明の他の目的は、芯物質の浸み出しのないカプセル
を提供することにある。
Another object of the present invention is to provide a capsule free from exudation of core material.

本発明のi]的は、芯物質とコアセルベ−1・滴のカプ
セル化媒質中での帯Ylj特性が互に反対であるものを
使用することによって達成される。
The objective of the invention is achieved by using core material and coacelve-1 droplets whose band Ylj properties in the encapsulation medium are opposite to each other.

カプセル化媒質中での極性は平行乎板電(以のついたセ
ル中にカプセル化溶媒罠芯物質、又は質又はコアセルベ
ート滴がどちらの電・吟に?1.r、着するかによって
判rrfi Lうる。
The polarity in the encapsulation medium is determined by which electrode the encapsulated solvent-trap core material or coacervate droplets land in the cell with the parallel plates. L-Uru.

カプセル化媒質中で0)極性にii?電するものとして
は、ジメチルアミノエチルメタクリレート重合体、ビニ
ルピリジン重合体、アクリルアミド重合体、ジエチルア
ミノエチルメタクリレート重合体等があシ、これらは単
独又はこれらと他のものとの共重合体でも良い。
0) polar ii in the encapsulation medium? Examples of the electrically conductive material include dimethylaminoethyl methacrylate polymer, vinylpyridine polymer, acrylamide polymer, and diethylaminoethyl methacrylate polymer, and these may be used alone or in copolymers of these and other materials.

0極性に帯電するものとしては、塩化ビニル重合体、塩
化ビニリデン重合体、スチレン重合体、アクリル酸重合
体等があシ、これらは単独または他のものとの共重合体
が使用しうる。
Examples of materials that can be charged with zero polarity include vinyl chloride polymers, vinylidene chloride polymers, styrene polymers, and acrylic acid polymers, which may be used alone or in copolymers with other materials.

本発明においてカプセル化する方法としては、カプセル
壁形成樹脂を良溶媒に溶かし、この溶液中にスリーワン
モータまたはホモミキサーなどの攪拌機を用いて芯物質
を分散する。この月?拌を続けながら、系中に例えばビ
ューレットなどを使用して、壁形成樹脂溶液の溶媒とは
混合するが、壁形成樹脂を溶解しない貧溶媒を滴下し、
壁形成樹脂をコアセルベート滴として相分離せしめ、芯
物質の周囲を包囲させる。さらに貧溶媒の滴下を続けて
、芯物質を包囲したコアセルベート滴を含む良溶媒を除
去し、コアセルベート滴間を結合させてカプセル壁を)
し成する。
In the method of encapsulation in the present invention, the capsule wall-forming resin is dissolved in a good solvent, and the core material is dispersed in this solution using a stirrer such as a three-one motor or a homomixer. This month? While continuing to stir, a poor solvent that mixes with the solvent of the wall-forming resin solution but does not dissolve the wall-forming resin is dropped into the system using a buret or the like.
The wall-forming resin is allowed to phase separate as coacervate droplets and surround the core material. Furthermore, by continuing to drop the poor solvent, the good solvent containing the coacervate droplets surrounding the core substance is removed, and the coacervate droplets are bonded to form the capsule wall).
accomplish.

カプセル化が終了した後は、口過又は遠心分離によって
カプセル化媒質を除去した後、風乾又は乾燥器の使用に
よって乾燥してカプセル粉末として取シ出すことができ
る。
After the encapsulation is completed, the encapsulation medium is removed by filtration or centrifugation, and then dried by air drying or using a drier, and can be taken out as a capsule powder.

〔実施例1〕 AOポリエチレン1702 (アライドケミカル製)5
0重階部をオートホモミキサー(特殊機メ 化工巣製)を用いてD M 11” (ジ、チルホルム
アミド) 200m6中に分散した後、水を100 c
c加えたこのザスペンションを電極間距離5朋、電極面
積1.□Cntの液体セル中に入れて直流電圧300ボ
ルトを1分間印加した処、ポリエチレンは■極に電着し
た、このことからポリエチレンはeに帯電していること
が分った。
[Example 1] AO polyethylene 1702 (manufactured by Allied Chemical) 5
After dispersing the 0-layer part in 200 m6 of DM 11" (di, thylformamide) using an autohomogen mixer (manufactured by Tokushu Kime Kakosu), 100 c of water was added.
The distance between the electrodes is 5, and the electrode area is 1. When the polyethylene was placed in a □Cnt liquid cell and a DC voltage of 300 volts was applied for 1 minute, the polyethylene was electrodeposited on the □ electrode.From this, it was found that the polyethylene was charged to e.

D M F 200 m、l?にスチレン−ジメチルア
ミノエチルメタクリレートの重合比95:5のMw12
.000の共重合体を5g溶解したものにビューレット
でイオン交換水を100m1滴下した処、スチレンージ
メチルアミノエチルメククリレートのコアセルベート滴
が相分離した。このコアセルベート滴の分散液を上記の
液体セルに入れ閣 て、300ボルトを1勿、印加した処、コアセルベート
滴はe電極に付着した。このことからコアセルベート滴
は■極性に帯電していることが分った。
DMF 200 m, l? Mw12 with a polymerization ratio of styrene-dimethylaminoethyl methacrylate of 95:5.
.. When 100ml of ion-exchanged water was added dropwise to a solution of 5g of 000 copolymer using a burette, coacervate droplets of styrene-dimethylaminoethyl meccrylate phase-separated. This dispersion of coacervate droplets was placed in the above-mentioned liquid cell, and 300 volts was applied once, and the coacervate droplets adhered to the e-electrode. From this, it was found that the coacervate droplets were charged with a polarity.

次に、スチレ/−ジメチルアミノエチルメタクリレート
の95:5の共重合体の2.5 wt %D M F溶
液中にAOポリエチレン(アライドケミカル製)50g
をオートホモミキサーを使って分散し、平均粒子径20
μrnのポリエチレン粒子分散系を得た。オートホモミ
キサーの回転数を7000 rpm に保って攪拌を続
けながら、ビューレットを使ってイオン交換水をi 0
 m67m1nの速度で100md滴下した後、口過し
てカプセル化媒質であるDMFと水の混合溶媒を除去し
た後、30℃乾燥器中で24時間乾燥して、スチレン−
ジメチルホルムアミドの壁をもったポリエチレ/を芯物
質としたマイクロカプセルを得た。
Next, 50 g of AO polyethylene (manufactured by Allied Chemical) was added to a 2.5 wt % DMF solution of a 95:5 copolymer of styrene/-dimethylaminoethyl methacrylate.
was dispersed using an autohomogen mixer, and the average particle size was 20.
A polyethylene particle dispersion of μrn was obtained. While keeping the rotation speed of the autohomogen mixer at 7000 rpm and continuing stirring, add ion-exchanged water using a burette.
After dropping for 100m at a speed of 67m1n, the mixed solvent of DMF and water, which is the encapsulation medium, was removed by passing through the mouth, and then dried in a 30°C dryer for 24 hours to form styrene-
Microcapsules were obtained having a core material of polyethylene with walls of dimethylformamide.

〔比較例1〕 実施例1のスチレン−ジメチルアミンエチルメタクリレ
ート(95:5)の代9に、スチレン重合体Mw12,
000を使った以外は実施例1と全く同じ方法でカプセ
ル化を行なった0このスチレン重合体のコアセルベート
滴は300ボルト1分の直流電圧印加で■極に電着し、
eに帯電していることが分った。実施例1と比較例1の
カプセル粉末それぞれ20gを50ccのビーカーに入
れて60℃の乾燥器に1週間放置した処、実施91]1
のものはもとの粉末状態を保っていたのに対して、比較
例1のものは凝集してしまっていた。
[Comparative Example 1] Styrene polymer Mw12,
Encapsulation was carried out in exactly the same manner as in Example 1 except that 000 was used. The coacervate droplets of this styrene polymer were electrodeposited on the electrode by applying a DC voltage of 300 volts for 1 minute.
It was found that it was charged with e. 20g of each of the capsule powders of Example 1 and Comparative Example 1 were placed in a 50cc beaker and left in a dryer at 60°C for one week, Example 91]1
The sample of Comparative Example 1 had agglomerated, whereas the sample of Comparative Example 1 had maintained its original powder state.

次に、実施例1のものと比l線側1のものをそれぞれ電
子顕微鏡観察してみた処、実施例1のものはカプセル表
面が滑らかで壁形成樹脂の遊離物が見られなかったのに
対して、比「1佼例1のものはカプセル壁表面に小さな
付着物が無数存在し、壁形成樹脂の遊離物が存在するこ
とが分ったO tip !J亀1シリ2 〕 エルバミド(デュポン製アルコール可溶性ナイロン)ヲ
環υIL冷却脚つきフラスコ中で加熱溶解したものを、
急冷することによジェタノール甲Vc分故した平均粒径
2(′Jμのナイロン球を得たこれを口過乾燥をしてナ
イロンを20μの粉末どしてとり出した。
Next, when we observed the capsules of Example 1 and Comparative Line 1 under an electron microscope, we found that the capsule surface of Example 1 was smooth and no free substances of the wall-forming resin were observed. On the other hand, in Example 1, there were numerous small deposits on the capsule wall surface, and it was found that free substances of wall-forming resin were present. alcohol-soluble nylon) heated and dissolved in a flask with cooling legs,
By quenching, nylon spheres with an average particle size of 2 ('Jμ) were obtained by separating Jetanol A Vc. The nylon spheres were dried and the nylon powder was taken out as a 20μ powder.

上mlナイロン粒子50gをDMF200mβ中にオー
トホモミキサーで分散したものに水100m1を加えた
。このサスベ/ジョンを液体セルを用いて実姉例1と同
じ方法で電着を行なった処、ナイロン粒子の極性はΦで
あった。
100 ml of water was added to 50 g of upper ml nylon particles dispersed in 200 mβ of DMF using an autohomogen mixer. This suspension was electrodeposited using a liquid cell in the same manner as in Example 1, and the polarity of the nylon particles was Φ.

サラン(旭ダウ製塩化ビニリデンーアクリルニトリル共
重合体)5gをD M F 200m6に溶解し、ビュ
ーレットでイオン交換水100rneを加えた処、サラ
ンのコアセルベート滴が相分離した。
When 5 g of Saran (vinylidene chloride-acrylonitrile copolymer manufactured by Asahi Dow) was dissolved in 200 m6 of DMF and 100 rne of ion-exchanged water was added using a burette, the coacervate droplets of Saran phase-separated.

このコアセルベート滴の分散液を液体セル中に入れて直
流300ボルトを1分間印加した処、コアセルベート滴
は■極に付着した。このことからコアセルベート滴はe
極性に帯電していることが分った。
This dispersion of coacervate droplets was placed in a liquid cell and a DC voltage of 300 volts was applied for 1 minute, and the coacervate droplets adhered to the pole (1). From this, coacervate droplets are e
It turns out that it is polar charged.

次に、サランの2.5wt%DMi−溶液中にナイロン
球50gをオートホモミキサーを使って分散し、ホモミ
キサーの回転数を500Orpmに保って攪拌を続けな
がら、ビューレットを使ってイオン交換水を10 +′
ne/min の速度で100rn/滴下した後、口過
してカプセル媒体であるDMFと水の混合溶謀を除去し
、30℃の乾燥器中で24時間乾燥してサランの壁をも
ったナイロンを芯物質としたマイクロカプセルを得た。
Next, 50 g of nylon spheres were dispersed in a 2.5 wt% DMi solution of Saran using an autohomogen mixer, and while the rotation speed of the homomixer was maintained at 500 rpm and stirring was continued, ion-exchanged water was added using a burette. 10 +'
After dropping at a rate of 100 rn/min, the mixture of DMF and water, which is the capsule medium, was removed by passing through the mouth, and dried in a drying oven at 30°C for 24 hours to form nylon with Saran walls. Microcapsules were obtained using as a core material.

〔比リフ例2〕 実施例2のサランの代シにスチレン−ジメチルアミンエ
チルメタクリレート(実施例1のもの)を使用した以外
は実施例2と全く同じ方法でカプセル化を行なった。実
m列2と比較例2のカプセルの表面をそれぞれ電子顕微
鏡で観察した処、実施例2のものは表面が滑らかだった
のに対し、比較例2のものはカプセル表面に小さな付着
物が多数みられた。
[Ratio Example 2] Encapsulation was carried out in exactly the same manner as in Example 2, except that styrene-dimethylamine ethyl methacrylate (from Example 1) was used in place of Saran in Example 2. When the surfaces of the capsules of Actual M Row 2 and Comparative Example 2 were observed using an electron microscope, the surfaces of Example 2 were smooth, whereas those of Comparative Example 2 had many small deposits on the capsule surface. It was seen.

Claims (1)

【特許請求の範囲】[Claims] 有機溶媒系からの相分離法によるマイクロカプセル化方
法において、芯物T↓とコアセルベート滴のカプセル化
剤質中における帯電極性が互に反対であることを特徴と
するマイクロカプセル化方法。
A microencapsulation method using a phase separation method from an organic solvent system, characterized in that the charge polarity of the core material T↓ and the coacervate droplets in the encapsulating agent are opposite to each other.
JP19436182A 1982-09-10 1982-11-04 Microcapsulation method Pending JPS5982942A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19436182A JPS5982942A (en) 1982-11-04 1982-11-04 Microcapsulation method
US06/527,395 US4565764A (en) 1982-09-10 1983-08-29 Microcapsule toner and process of making same
DE19833332621 DE3332621A1 (en) 1982-09-10 1983-09-09 MICROCAPSULE TONER
GB08324364A GB2128350B (en) 1982-09-10 1983-09-12 Microcapsule toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19436182A JPS5982942A (en) 1982-11-04 1982-11-04 Microcapsulation method

Publications (1)

Publication Number Publication Date
JPS5982942A true JPS5982942A (en) 1984-05-14

Family

ID=16323295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19436182A Pending JPS5982942A (en) 1982-09-10 1982-11-04 Microcapsulation method

Country Status (1)

Country Link
JP (1) JPS5982942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275542A (en) * 1985-09-30 1987-04-07 Canon Inc Pressure fixing capsule toner
JPS63287543A (en) * 1987-05-19 1988-11-24 Eisai Co Ltd Production of microcapsule

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439346A (en) * 1977-09-02 1979-03-26 Hitachi Ltd Spool removing apparatus
JPS56158140A (en) * 1980-05-09 1981-12-05 Itaru Yamaguchi Production of polymer coated body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439346A (en) * 1977-09-02 1979-03-26 Hitachi Ltd Spool removing apparatus
JPS56158140A (en) * 1980-05-09 1981-12-05 Itaru Yamaguchi Production of polymer coated body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275542A (en) * 1985-09-30 1987-04-07 Canon Inc Pressure fixing capsule toner
JPH0431581B2 (en) * 1985-09-30 1992-05-26
JPS63287543A (en) * 1987-05-19 1988-11-24 Eisai Co Ltd Production of microcapsule

Similar Documents

Publication Publication Date Title
US5358822A (en) Method of making a liquid toner for electrophotographic imaging
JP4947288B2 (en) Magnetic particle, method for producing the same, and carrier for biochemistry
JP4628519B2 (en) Composite particle and method for producing the same
WO1991010506A1 (en) Aqueous core microcapsules and method for their preparation
JPH026839A (en) Method for manufacturing dispersed substance of composite particles
JPS62259051A (en) Electrostatic generating display particle and manufacture
US4599294A (en) Particles obtained by atomization while applying voltage
EP2709752A2 (en) Microcapsules comprising black pigments
AU661678B2 (en) Method of forming fine polymer particles and polymer-encapsulated particulates
JPH03101829A (en) Method for preparation of dispersed particles of composite material
JPS62213839A (en) Preparation of composite particle coated uniformly
JPS5982942A (en) Microcapsulation method
JPS6164326A (en) Preparation of composite particle
Furusawa et al. Electrokinetic behavior in synthatic process of composite particles
EP2459609B1 (en) Electrically chargeable encapsulated particles
JP2581120B2 (en) Method for producing microencapsulated fine particles
JP2004102235A5 (en)
JPH02173666A (en) Manufacture of spherical particles for toner
JPH08127790A (en) Electro-rheological fluid composition and device using the same
JP3599536B2 (en) Spherical body composed of crosslinked polymer and method for producing the same
Mu et al. Spiky Magnetic Microparticles Synthesized from Microrod‐Stabilized Pickering Emulsion
Ueda et al. One continuous process of agglomeration and microencapsulation for enoxacin. Preparation method and mechanism of microencapsulation
JPH0778085B2 (en) Method for producing emulsion-polymerized latex
JPH02141730A (en) Electrophoretic image display device
JPH0620822A (en) Magnetic dialant suspension