JPS62213839A - Preparation of composite particle coated uniformly - Google Patents

Preparation of composite particle coated uniformly

Info

Publication number
JPS62213839A
JPS62213839A JP5780686A JP5780686A JPS62213839A JP S62213839 A JPS62213839 A JP S62213839A JP 5780686 A JP5780686 A JP 5780686A JP 5780686 A JP5780686 A JP 5780686A JP S62213839 A JPS62213839 A JP S62213839A
Authority
JP
Japan
Prior art keywords
particles
particle
core
polymer
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5780686A
Other languages
Japanese (ja)
Other versions
JPH0640951B2 (en
Inventor
Mamoru Sugaya
護 菅谷
Chikau Anzai
安斎 誓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst Gosei KK
Original Assignee
Hoechst Gosei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Gosei KK filed Critical Hoechst Gosei KK
Priority to JP61057806A priority Critical patent/JPH0640951B2/en
Publication of JPS62213839A publication Critical patent/JPS62213839A/en
Publication of JPH0640951B2 publication Critical patent/JPH0640951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To form a composite particle coated uniformly, by mixing a core particle such as a charged inorg. particle and a shell forming particle such as an inorg. particle smaller than the core particle and charged to inverse polarity in a specific particle number ratio. CONSTITUTION:Core particles each comprising a charged inorg. particle or polymer particle and shell forming particles each comprising an inversely charged inorg. particle or polymer particle are mixed in a ratio, wherein the number R of particles obtained by dividing the number of shell forming particles by the number of core particles satisfy formula (wherein a is the average radius of core particles and b is the average radius of shell forming particles), in a dispersed state. As the material quality of the inorg. particles, a metal, metal oxide, a metal salt, etc., are pref. and, as the polymer particles, there are thermoplastic polymer particles comprising polyvinyl acetate and thermosetting polymer particles comprising polyester.

Description

【発明の詳細な説明】 本発明は、無機質粒子又は高分子粒子からなるコア粒子
の表面を、無機質粒子又は高分子粒子からなる満足する
割合で、分散液状態で混合してコア複合体粒子の製造方
法および該複合体粒子をコア粒子として、更に満足する
割合で、分散液状態で均一に被覆することを1回以上繰
り返した複合体粒子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves mixing the surfaces of core particles made of inorganic particles or polymer particles in a dispersion state with a satisfactory ratio of inorganic particles or polymer particles to form core composite particles. The present invention relates to a manufacturing method and a method for manufacturing composite particles in which the composite particles are used as core particles and uniformly coated in a dispersion state at a satisfactory ratio one or more times.

[従来技術とその欠点] 従来、無機物と樹脂を配合して加工性の改善、物理的特
性の改良、耐熱性の付与、難燃性の付与、耐薬品性及び
電気的性質の向上などが試みられてきた。しかしながら
、樹脂と無機質微粒子を単に混合するだけでは無機質微
粒子の樹脂への分散が困難なため、不均一な複合体しか
えられず、従って各種特性にムラが生じるという欠点が
ある。又、改良法として、 (イ)無機物を粉砕しながら新生表面の活性によって、
モノマーをグラフトさせるか、又はポリマーを切断しな
がらグラフトさせるメカノケミカル的改質や、 (口)高エネルギー電子線を用いて、無機質粒子表面に
ビニルポリマーを結合させる改質や、四無機物に重合開
始剤、モノマー、ポリマーなどを吸着させた後、懸濁重
合や乳化重合して改質する方法などがあるが、これらの
改質法は均一に被覆できない詐りでなく、工程が複雑に
なったりするという欠点がある。ことに、(/〜は無機
物に対する樹脂の複合化が不十分であったり、また、ポ
リマーのみの生成が多かったりして収率が低いという欠
点があった。
[Prior art and its drawbacks] Previous attempts have been made to improve processability, improve physical properties, impart heat resistance, flame retardancy, improve chemical resistance and electrical properties by blending inorganic substances and resins. I've been exposed to it. However, simply mixing a resin and inorganic fine particles has the drawback that it is difficult to disperse the inorganic fine particles in the resin, so that only a non-uniform composite can be obtained, resulting in unevenness in various properties. In addition, as an improved method, (a) While pulverizing inorganic substances, by the activity of the newly generated surface,
Mechanochemical modification in which monomers are grafted or polymers are grafted while being cut, modification in which vinyl polymers are bonded to the surface of inorganic particles using high-energy electron beams, and polymerization initiated in four inorganic substances. There are methods of adsorbing agents, monomers, polymers, etc., and then modifying them through suspension polymerization or emulsion polymerization, but these modification methods do not result in uniform coating, and the process is complicated. There is a drawback that it does. In particular, (/~) had the drawback that the compounding of the resin with the inorganic substance was insufficient, and the yield was low because only a large amount of polymer was produced.

[課題解決の手段] 本発明者らは、かかる改質方法の必要性とその聞届点に
鑑み、無機質粒子の表面を高分子粒子で均一に被覆する
ばかりでなく、高分子粒子の表面を無機質粒子で混合し
てコアり、あるいは無機質粒子を無機質粒子で、又は高
分子粒子を高分子粒子で混合してコア複合体粒子をうる
べく鋭意研究を重ねた結果、反対に荷電した粒子を特定
の条件で混合することによりきわめて強固にかつ均一に
被覆された複合体粒子がえられることを見出し本発明を
完成した。
[Means for Solving the Problem] In view of the need for such a modification method and the need for such a modification method, the present inventors not only uniformly coat the surface of inorganic particles with polymer particles, but also cover the surface of polymer particles with polymer particles. As a result of intensive research into creating core composite particles by mixing inorganic particles with inorganic particles, or by mixing inorganic particles with inorganic particles, or polymer particles with polymer particles, we identified oppositely charged particles. The present invention was completed based on the discovery that by mixing under these conditions, composite particles coated extremely firmly and uniformly can be obtained.

すなわち本発明は、(A)荷電した無機質粒子又は高分
子粒子からなるコア粒子と、(B)コア粒子より小さく
、かつ反対に荷電した無機質粒子又は高分子粒子からな
る満足する割合で、分散液状態を、満足する割合で、分
散液状態の数をコア粒子の数で割った粒子数比(R)が 4π (a+b) 2 (R) >         xO.52σb2 [a−コア粒子の平均半径、b−満足する割合で、分散
液状態の平均半径]を満足する割合で、分散液状態で混
合することを特徴とするコア粒子を満足する割合で、分
散液状態で混合してコア複合体粒子の製造方法、および
これを複数回繰り返して多層に被覆した複合体粒子を製
造する方法である。
That is, the present invention provides a dispersion solution comprising (A) core particles consisting of charged inorganic particles or polymeric particles and (B) inorganic particles or polymeric particles smaller than the core particles and oppositely charged in a satisfactory ratio. The particle number ratio (R) obtained by dividing the number of dispersion liquid states by the number of core particles satisfies the condition that 4π (a+b) 2 (R) > xO. 52σb2 [a-average radius of core particles, b-average radius in dispersion state at a satisfying rate] Core particles characterized by being mixed in a dispersion state at a rate satisfying There are two methods: a method for producing core composite particles by mixing in a liquid state, and a method for producing composite particles coated with multiple layers by repeating this process multiple times.

[構成の説明] 本発明において、無機質粒子又は高分子粒子が、他の無
機質粒子又は高分子粒子で均一に被覆された複合体粒子
をつくる要件としては、(1)被覆する粒子(以下、満
足する割合で、分散液状態という)は被覆される粒子(
以下、コア粒子という)より小さいことが必要である。
[Description of structure] In the present invention, the requirements for creating composite particles in which inorganic particles or polymer particles are uniformly coated with other inorganic particles or polymer particles include (1) coating particles (hereinafter referred to as satisfactory); (referred to as the dispersion state) is coated with particles (
(hereinafter referred to as core particles).

しかして、粒径分布は狭い方がより均一に被覆される。Therefore, the narrower the particle size distribution, the more uniform the coating will be.

(′2J満足する割合で、分散液状態とコア粒子は分散
液状態で混合しなければならない。
('2J The dispersion state and the core particles must be mixed in the dispersion state in a satisfactory ratio.

(3)満足する割合で、分散液状態とコア粒子は互いに
反対に荷電していなければならない。そのためには、分
散液のpHが重要なポイントとなることがある。
(3) In a satisfactory proportion, the dispersion state and the core particles must be oppositely charged. For this purpose, the pH of the dispersion liquid may be an important point.

(4)満足する割合で、分散液状態およびコア粒子は、
無機質粒子、高分子粒子のいずれでもよい。しかし、実
用上は無機質粒子を高分子粒子で被覆した複合体粒子、
又は高分子粒子を無機質粒子で被覆した複合体粒子が好
ましい。
(4) In a satisfactory proportion, the dispersion state and the core particles are
Either inorganic particles or polymer particles may be used. However, in practice, composite particles consisting of inorganic particles coated with polymer particles,
Alternatively, composite particles in which polymer particles are coated with inorganic particles are preferable.

(5)均一に被覆するための最も大切な要件は、満足す
る割合で、分散液状態とコア粒子の粒子数の比、すなわ
ち満足する割合で、分散液状態の数をコア粒子の数で割
った粒子数比(R)が次式を満足することである。
(5) The most important requirement for uniform coverage is the ratio of the number of particles in the dispersion state to the number of core particles, that is, the number in the dispersion state divided by the number of core particles in a satisfactory ratio. The particle number ratio (R) satisfied the following formula.

(R) >NX  O,5 N:コア粒子1ケの表面を最密に被覆するに要する満足
する割合で、分散液状態の数P:コア粒子1ケの表面に
、満足する割合で、分散液状態が被覆したときの表面積
−半径(a+b)の球面−(R)2・・・・・・(第1
図)Qニジエル形成用粒子がコア粒子の表面を最密に被
覆したときの満足する割合で、分散液状態1ヶ当りの占
める方形の面9−2bxib−2IBb2・・・・・ ・(第2図)本発明に於て、均一に被覆するということ
は最密に被覆する必要はなく、偏りなく、平均的に被覆
していることが大切である。そのためには(R)はNの
50%以上、好ましくは70%以上でなければならない
。これを模型図として示すと第3図のようになる。
(R) > N Surface area when covered by liquid state - spherical surface with radius (a + b) - (R)2... (first
Figure) Q Niziel-forming particles cover the surface of the core particles in a satisfactory ratio, and the rectangular surface occupied by one dispersion state 9-2bxib-2IBb2... (Second Figure) In the present invention, uniform coating does not necessarily mean dense coating, but it is important to cover evenly and evenly. For this purpose, (R) must be at least 50% of N, preferably at least 70%. This is shown as a model diagram as shown in Fig. 3.

(R)がNの50%未満では、露出部分が多くなり、そ
のため大きい凝集体を形成することになる。これを模型
図として示すと第4図のようになる。すなわち、露出し
ているコア粒子の負のイオン性により疎らに被覆した正
の粒子を介して他のコア粒子が密着し、凝集して大きい
凝集体となる。(R)の上限はとくに制限はないが、余
分の満足する割合で、分散液状態はいたずらに浮遊して
いるだけであるから、実用的には150%程度が適当で
ある。
If (R) is less than 50% of N, there will be a large amount of exposed parts, resulting in the formation of large aggregates. This is shown as a model diagram as shown in Fig. 4. That is, due to the negative ionicity of the exposed core particles, other core particles adhere to each other through the loosely coated positive particles, and aggregate to form a large aggregate. There is no particular upper limit to the upper limit of (R), but since the dispersion state is only suspended at a satisfactory level, approximately 150% is practically appropriate.

本発明で用いる無機質粒子としては、金、銀、銅、鉄、
アルミニウムなどの金属粉、シリカ、アルミナ、酸化鉄
、酸化チタン、酸化亜鉛などの金属酸化物、炭酸カルシ
ウム、蓚酸カルシウム、硫酸バリウムなどの塩などが適
当である。
Inorganic particles used in the present invention include gold, silver, copper, iron,
Suitable examples include metal powders such as aluminum, silica, alumina, metal oxides such as iron oxide, titanium oxide, and zinc oxide, and salts such as calcium carbonate, calcium oxalate, and barium sulfate.

しかして、これらの無機質粒子は、平均粒径0.005
〜100」のものが適当である。
However, these inorganic particles have an average particle size of 0.005
~100'' is suitable.

本発明で用いる高分子粒子としては、ポリ酢酸ビニル、
ポリアクリル酸エステル、ポリエチレン、ポリプロピレ
ン、ポリスチレン、酢酸ビニル−エチレンコポリマー、
酢酸ビニル−(メタ)アクリル酸エステルコポリマー、
スチレン−(メタ)アクリル酸エステルコポリマー、酢
酸ビニルーベオバ(シェル化学■製のビニルエステル)
コポリマーなどの熱可塑性高分子粒子やポリエステル、
エポキシ樹脂、尿素樹脂、メラミン樹脂、シリコン樹脂
、フッ素樹脂などの熱硬化性高分子粒子などがある。こ
れらの高分子粒子は、平均粒径0.01〜50屡のもの
が適当である。
The polymer particles used in the present invention include polyvinyl acetate,
Polyacrylic acid ester, polyethylene, polypropylene, polystyrene, vinyl acetate-ethylene copolymer,
Vinyl acetate-(meth)acrylic acid ester copolymer,
Styrene-(meth)acrylic acid ester copolymer, vinyl acetate Rubeova (vinyl ester manufactured by Shell Chemical ■)
Thermoplastic polymer particles such as copolymers and polyester,
Examples include thermosetting polymer particles such as epoxy resin, urea resin, melamine resin, silicone resin, and fluororesin. These polymer particles suitably have an average particle size of 0.01 to 50 mm.

これらの粒子の分散液としては水性分散液が最もよいが
、イオンに解離できる程度の水分が含有されていれば非
水性分散液でもよい。使用できる非水溶剤としてはシク
ロヘキサン、ヘプタン、ヘキサンなどの無極性有機溶剤
が好ましい。
Although an aqueous dispersion is best as a dispersion of these particles, a non-aqueous dispersion may also be used as long as it contains enough water to dissociate into ions. As the non-aqueous solvent that can be used, non-polar organic solvents such as cyclohexane, heptane, and hexane are preferred.

無機質粒子の分散液を作るには、前述の無機質物質を粉
砕し、三本ロール、ペブルミル、超音波分散などの公知
の方法で水又は含水した非水溶剤に分散させるか、又は
コロイドゾル合成法により合成すればよい。
To make a dispersion of inorganic particles, the above-mentioned inorganic substance is pulverized and dispersed in water or a water-containing non-aqueous solvent by a known method such as a three-roll mill, a pebble mill, or an ultrasonic dispersion, or by a colloidal sol synthesis method. All you have to do is synthesize.

このようにして、粒子径0.005〜100ρの範囲の
無機質粒子の分散液かえられる。
In this way, a dispersion of inorganic particles having a particle size in the range of 0.005 to 100 ρ is changed.

えられた分散液は無機物質の種類によって正又は負に荷
電しているが、中にはpI■を変えることによってζ電
位が変り、負又は正に変るものがある。このような荷電
は、水素イオン、水酸イオン、電位決定イオン、又は高
原子価を有する対イオンによってもたらされる。その強
さはζ電位として測定することができる。このことは後
述する高分子粒子についても同様である。
The obtained dispersion is positively or negatively charged depending on the type of inorganic substance, and in some cases, the ζ potential changes by changing the pI■, which changes to negative or positive. Such charges are provided by hydrogen ions, hydroxide ions, potential-determining ions, or counterions with high valences. Its strength can be measured as ζ potential. This also applies to the polymer particles described below.

高分子粒子の分散液は、乳化重合法や懸濁重合法によっ
て作ることができる。又、ポリマーを後乳化することに
よっても作ることができる。
A dispersion of polymer particles can be produced by an emulsion polymerization method or a suspension polymerization method. It can also be made by post-emulsifying the polymer.

このようにして平均粒子径0.01〜50ρの範囲の高
分子粒子の分散液かえられる。
In this way, a dispersion of polymer particles having an average particle diameter in the range of 0.01 to 50 ρ is changed.

えられる分散液は、組成や製法によって正又は負に荷電
させることができる。荷電させる方法としては、カチオ
ン性又はアニオン性単量体、および正又は負のポリマー
末端を与える重合開始剤、およびカチオン性又はアニオ
ン性の重合性乳化剤のいずれかを選択的に単独又は併用
して、必要により非イオン性単量体や他の乳化剤ととも
にラジカル重合する方法が用いられる。
The resulting dispersion can be positively or negatively charged depending on the composition and manufacturing method. As a charging method, a cationic or anionic monomer, a polymerization initiator giving a positive or negative polymer terminal, and a cationic or anionic polymerizable emulsifier are selectively used alone or in combination. If necessary, a method of radical polymerization with nonionic monomers and other emulsifiers is used.

カチオン性単量体としては、たとえばジエチルアミノエ
チルメタクリレート、ジメチルアミノエチルメタクリレ
ートなどがあげられ、アニオン性単量体としては、たと
えばアクリル酸、メタクリル酸などがあげられる。これ
らのイオン性単量体はそれぞれ単独で重合してもよく、
又他の非イオン性単量体と組合せて用いてもよい。
Examples of cationic monomers include diethylaminoethyl methacrylate and dimethylaminoethyl methacrylate, and examples of anionic monomers include acrylic acid and methacrylic acid. These ionic monomers may be polymerized individually,
It may also be used in combination with other nonionic monomers.

イオン性単量体だけで荷電させるためには、非イオン性
単量体100ffi量部に対して、イオン性単量体0.
01 ii量郡部以上ことに0.2ffi量部以上の使
用が好ましい。0.01重量部未満ではえられた粒子の
帯電量が不足し、本発明の目的に使用できない。
In order to charge with only the ionic monomer, 0.00 parts of the ionic monomer should be added to 100 parts of the non-ionic monomer.
It is preferable to use more than 0.01 parts, especially more than 0.2 parts. If the amount is less than 0.01 part by weight, the resulting particles will have insufficient charge and cannot be used for the purpose of the present invention.

正のポリマー末端を与える重合開始剤としては、たとえ
ば2,2°−アゾビス(2−アミジノプロパン)塩酸塩
などがあげられる。負のポリマー末端を与える重合開始
剤としては、たとえば過硫酸ナトリウム、過硫酸カリウ
ム、過硫酸アンモニウムなどがあげられる。これらの重
合開始剤は、ラジカル重合性単量体100重量部に対し
て0.01〜20重量部、ことに0.2〜10重量部の
使用が好ましい。
Examples of the polymerization initiator that provides a positive polymer terminal include 2,2°-azobis(2-amidinopropane) hydrochloride. Examples of the polymerization initiator that provides negative polymer terminals include sodium persulfate, potassium persulfate, and ammonium persulfate. These polymerization initiators are preferably used in an amount of 0.01 to 20 parts by weight, particularly 0.2 to 10 parts by weight, based on 100 parts by weight of the radically polymerizable monomer.

また、正又は負のポリマー末端を与えない重合開始剤、
たとえば過酸化ベンゾイル、過酸化ラウリルなどを併用
してもよい。
Also, a polymerization initiator that does not give a positive or negative polymer end,
For example, benzoyl peroxide, lauryl peroxide, etc. may be used in combination.

カチオン性の重合性乳化剤としては、アルキルジメチル
アンモニウムクロライドとアリルエーテル化合物との合
成化合物があり、アニオン性の重合性乳化剤としては、
アルキルアリルスルホサクシネートのアルカリ塩や、ビ
ニルスルホン酸のアルカリ塩などがある。勿論他の乳化
剤と併用してもよい。
Examples of cationic polymerizable emulsifiers include synthetic compounds of alkyldimethylammonium chloride and allyl ether compounds, and examples of anionic polymerizable emulsifiers include:
Examples include alkali salts of alkylaryl sulfosuccinate and alkali salts of vinyl sulfonic acid. Of course, it may be used in combination with other emulsifiers.

しかし乍ら、重合性乳化剤を使用するか又は全く乳化剤
を使用せずに重合した、所謂ソープフリー重合法でえら
れた乳化重合体は、とくに均一に被覆された複合体粒子
を作るために好適である。
However, emulsion polymers obtained by the so-called soap-free polymerization method, which are polymerized with polymerizable emulsifiers or without any emulsifier, are particularly suitable for producing uniformly coated composite particles. It is.

本発明の複合体粒子を作るには、無機質粒子を高分子粒
子で混合してコア複合体粒子を作る場合を例にとって説
明すると、たとえば水に分散させた、平均粒子径1.5
.cmのシリカ粒子のごとき無機質粒子をコア粒子とし
て選び、その表面を正又は負に帯電させるために酸又は
塩基を加え撹拌混合して9Hを調整し、目的の電荷、た
とえば負に帯電させる。つぎに、同−pHで正に荷電し
ている、たとえば水に分散させた平均粒子径0.3虜の
ポリスチレン粒子を満足する割合で、分散液状態として
選び、この場合Nは130なので、この粒子数をシリカ
粒子に対して130X O,5−65以上になるように
両方の分散液を調整して混合し、緩やかに10分〜2時
間撹拌すればコア粒子に満足する割合で、分散液状態が
きわめて均一に、かつ強固に付着し、無機質粒子を高分
子粒子で混合してコア複合体粒子の分散液かえられる。
To make the composite particles of the present invention, an example is explained in which core composite particles are made by mixing inorganic particles with polymer particles.
.. An inorganic particle such as a silica particle with a diameter of 1 cm is selected as a core particle, and in order to charge the surface positively or negatively, an acid or base is added and mixed with stirring to adjust 9H, and the target charge is charged, for example, negatively. Next, select positively charged polystyrene particles at the same pH and, for example, dispersed in water and with an average particle diameter of 0.3 mm, as a dispersion liquid in a satisfying ratio. In this case, N is 130, so Adjust both dispersions so that the number of particles is 130X O, 5-65 or more relative to the silica particles, mix them, and stir gently for 10 minutes to 2 hours. The state is extremely uniform and strongly adhered, and the dispersion of core composite particles can be changed by mixing inorganic particles with polymer particles.

両分散液を混合する場合、硫酸カリウム、塩化マグネシ
ウム、塩化アルミニウムなどの無機電解質を添加すると
、より均一に、かつ緻密に被覆することができる。これ
は無機電解質が満足する割合で、分散液状態のシャドー
効果を減少させるため被覆率の増加をもたらすものと考
えられる。
When both dispersions are mixed, adding an inorganic electrolyte such as potassium sulfate, magnesium chloride, or aluminum chloride allows for more uniform and dense coating. It is believed that this is a ratio that is satisfactory for the inorganic electrolyte, and that it reduces the shadow effect in the dispersion state, resulting in an increase in coverage.

また、ソープフリー製法による高分子粒子分散液を使用
すると、より均一に、かつ強く被覆することができる。
In addition, when a polymer particle dispersion prepared by a soap-free manufacturing method is used, it is possible to coat more uniformly and strongly.

これは高分子分散液中にポリビニルアルコール、メチル
セルロースなどの高分子物質や、その他いわゆる乳化剤
が含まれていないので、これらによる被覆の阻害がない
ためと考えられる。
This is thought to be because the polymer dispersion does not contain polymer substances such as polyvinyl alcohol, methyl cellulose, or other so-called emulsifiers, so that coating is not inhibited by these substances.

又、本発明によればさらに多層に複合した粒子を作るこ
とができる。その製造方法としては、前述によってえら
れた粒子表面が正又は負に荷電し、かつ均一に被覆され
た複合体粒子の分散液に、この複合体粒子より小さく、
かつ反対に荷電した無機質粒子又は高分子粒子の分散液
を添加し、ゆるやかに撹拌混合すればよい。
Further, according to the present invention, it is possible to produce particles having even more layers. The manufacturing method includes adding particles smaller than the composite particles to a dispersion of the composite particles whose surfaces are positively or negatively charged and uniformly coated, obtained as described above.
A dispersion of oppositely charged inorganic particles or polymer particles may be added and mixed by gentle stirring.

この操作を繰り返すことにより、より多層に被覆した複
合体粒子かえられる。
By repeating this operation, composite particles coated with more layers can be obtained.

[効 果] 本発明によって均一に被覆された複合体粒子がえられる
生成機構に・ついては、コア粒子の表面電荷と満足する
割合で、分散液状態の反対電荷との静電的相互作用によ
るものと思われるが、普通反対電荷に荷電した分散液同
士を混合すると、凝集沈殿を起こすものであるが、本発
明によるときわめて均一に被覆された複合体粒子が凝集
することなく安定に個々に分散した分散液かえられ、粒
子の比重などによって沈降することがあっても、軽く振
盪するだけで容易に再分散させることができる。又、被
覆はきわめて強固であり数度の水洗によっても満足する
割合で、分散液状態が殆んど脱離することがないという
すぐれた効果を示す。
[Effect] The production mechanism for obtaining uniformly coated composite particles according to the present invention is due to electrostatic interaction between the surface charge of the core particle and the opposite charge in the dispersion state in a satisfactory ratio. However, when dispersions charged with opposite charges are mixed together, they usually coagulate and precipitate, but according to the present invention, the extremely uniformly coated composite particles are stably dispersed individually without agglomeration. Even if the dispersion solution is changed and sedimentation occurs due to the specific gravity of the particles, it can be easily redispersed by simply shaking it lightly. Furthermore, the coating is extremely strong and exhibits an excellent effect in that the dispersion state hardly comes off at a satisfactory rate even after several washings with water.

これは加え合わすコア粒子と満足する割合で、分散液状
態の粒子数比(R)を限定したことによるものである。
This is because the particle number ratio (R) in the dispersion liquid state is limited to a ratio that satisfies the core particles to be added.

複合体粒子の完成後は、コア粒子と付着した粒子の電荷
を異符号に保ちさえすれば殆んど脱離することがなく、
付着粒子の電荷で安定化された複合体粒子の安定な分散
系となる。    ′つぎに製造例、実施例、比較例を
あげて本発明を説明する。
After the composite particle is completed, as long as the charges of the core particle and the attached particle are kept with opposite signs, there will be almost no detachment.
This results in a stable dispersion of composite particles stabilized by the charge of the attached particles. 'Next, the present invention will be explained with reference to production examples, examples, and comparative examples.

製造例1 撹拌器、還流冷却器、滴下漏斗、温度計を備えた容量2
gの四ツロフラスコ中に水38.1g 。
Preparation Example 1 Capacity 2 with stirrer, reflux condenser, addition funnel and thermometer
38.1 g of water in a four-piece flask.

28%アンモニア水280.4g 、エタノール793
gを加えて撹拌したのち、58.Igのオルトケイ酸エ
チルを加え30分間撹拌した。ついで4ee、egのオ
ルトケイ酸エチルを添加撹拌後、透析して固形分19.
2%、平均粒子径1.59 Iaのシリカコロイド水性
分散液をえた。
28% ammonia water 280.4g, ethanol 793
After adding and stirring 58. Ethyl orthosilicate of Ig was added and stirred for 30 minutes. Next, 4ee and eg of ethyl orthosilicate was added and stirred, followed by dialysis to reduce the solid content to 19.
A silica colloid aqueous dispersion having a concentration of 2% and an average particle size of 1.59 Ia was obtained.

製造例2 製造例1で用いたものと同様の四ツロフラスコ中に水1
750g 、ジエチルアミノエチルメタクリレート17
.5gを入れ、この混合液のpHが1.2になるように
塩酸を加える。ついでスチレン158.8g 、過硫酸
カリウム3.5gを入れ、窒素置換後、70℃まで昇温
し、6時間重合反応を行なった。冷却後、凝集塊を除去
し、透析して固形分9.8%、平均粒子径0.25 a
mのラテックスをえた。
Production Example 2 In a Yotsuro flask similar to that used in Production Example 1, add 1 part of water.
750g, diethylaminoethyl methacrylate 17
.. Add 5 g of hydrochloric acid so that the pH of this mixture becomes 1.2. Next, 158.8 g of styrene and 3.5 g of potassium persulfate were added, and after purging with nitrogen, the temperature was raised to 70°C and a polymerization reaction was carried out for 6 hours. After cooling, the agglomerates were removed and dialyzed to give a solid content of 9.8% and an average particle size of 0.25 a.
I got m latex.

製造例3 製造例1で用いたものと同様の四ツロフラスコ中に水1
512g 、アクリルアミド14g1ジメチルホルムア
ミド168g、塩化ナトリウム4g1過硫酸カリウム6
gを入れ、窒素置換後70℃まで昇温し、1時間重合反
応を行なった。ついでスチレン280gを添加し、70
℃で4時間重合反応を行ない、つぎにジエチルアミノエ
チルメタクリレートを14g加え、さらに1時間重合反
応を行なった。冷却後、凝集塊を除去し、透析し平均粒
子径が1.8.canのラテックスをえた。
Production Example 3 In a Yotsuro flask similar to that used in Production Example 1, add 1 part of water.
512g, acrylamide 14g1 dimethylformamide 168g, sodium chloride 4g1 potassium persulfate 6g
After purging with nitrogen, the temperature was raised to 70°C, and a polymerization reaction was carried out for 1 hour. Next, 280g of styrene was added, and the
The polymerization reaction was carried out at ℃ for 4 hours, then 14 g of diethylaminoethyl methacrylate was added, and the polymerization reaction was further carried out for 1 hour. After cooling, the aggregates were removed and dialyzed until the average particle size was 1.8. I got the can latex.

製造例4 製造例1で用いたものと同様の四ツ目フラスコ中に水1
440g 、スチレン130g、過硫酸カリウム0.1
2gを入れ、70℃まで昇温し、8時間重合反応を行な
った。冷却後、凝集塊を除去し、透析して平均粒子径が
0.44 屡のラテックスをえた。
Production Example 4 In a four-eye flask similar to that used in Production Example 1, add 1 part of water.
440g, styrene 130g, potassium persulfate 0.1
2 g was added, the temperature was raised to 70°C, and a polymerization reaction was carried out for 8 hours. After cooling, the agglomerates were removed and dialyzed to obtain a latex with an average particle size of 0.44 degrees.

製造例5 製造例1で用いたものと同様の四ツ目フラスコ中に水1
300g 、ジエチルアミノエチルメタクリレート93
g、スチレン52g1ラテムルに−180(花王石鹸■
製のカチオン性重合性乳化剤)18.5gを入れ、80
℃まで昇温し、V−50(和光純薬工業■製、2,2°
−アゾビス(2−アミジノプロパン)塩酸塩の商品名)
の5%水溶液30gを入れ、5時間重合反応を行なった
。冷却後、凝集塊を除去し、平均粒子径o、oe 刷の
ラテックスをえた。
Production Example 5 In a four-eye flask similar to that used in Production Example 1, add 1 part of water.
300g, diethylaminoethyl methacrylate 93
g, styrene 52g 1 latemul -180 (Kao soap■
Add 18.5 g of cationic polymerizable emulsifier manufactured by
The temperature was raised to ℃, and V-50 (manufactured by Wako Pure Chemical Industries, Ltd., 2.2°
- Trade name of azobis(2-amidinopropane) hydrochloride)
30 g of a 5% aqueous solution of was added thereto, and a polymerization reaction was carried out for 5 hours. After cooling, the agglomerates were removed to obtain a latex with an average particle diameter of o and oe.

製造例6 製造例1で用いたものと同様の四ツ目フラスコ中に水1
400g 、スチレン70g1メチルメタクリレート7
0g1 コータミソ88Pコンク (花王石鹸■製のカ
チオン乳化剤)12gを入れ、70℃まで昇温し、v−
50の5%水溶液28gを加えて、6時間重合反応を行
なった。冷却後、凝集塊を除去し、粒子径0.1−のラ
テックスをえた。
Production Example 6 In a four-eye flask similar to that used in Production Example 1, add 1 part of water.
400g, 70g of styrene, 70g of methyl methacrylate
0g1 12g of Kotamiso 88P Conc (cationic emulsifier manufactured by Kao Soap ■) was added, the temperature was raised to 70°C, and v-
28 g of a 5% aqueous solution of 50 was added, and a polymerization reaction was carried out for 6 hours. After cooling, the agglomerates were removed to obtain a latex with a particle size of 0.1-.

製造例1〜6の粒子について、pl+と電荷の関係は第
1表の通りであった。
Regarding the particles of Production Examples 1 to 6, the relationship between pl+ and charge was as shown in Table 1.

[以下余白] 実施例1 製造例1でえたシリカコロイド分散液を水で5%に稀釈
し、その2.0gをとり、塩酸でpHを6に調整し、緩
やかに撹拌した。この稀釈コロイド分散液は負に帯電し
ていた。別に製造例2でえたラテックスを水で2%に稀
釈し、塩酸でpl+を6に調製した。この稀釈ラテック
スは正に帯電していた。
[Margin below] Example 1 The silica colloid dispersion obtained in Production Example 1 was diluted to 5% with water, 2.0 g of it was taken, the pH was adjusted to 6 with hydrochloric acid, and the mixture was gently stirred. This diluted colloidal dispersion was negatively charged. Separately, the latex obtained in Production Example 2 was diluted with water to 2%, and the pl+ was adjusted to 6 with hydrochloric acid. This diluted latex was positively charged.

この稀釈ラテックスの1.74gを、前記の稀釈コロイ
ド分散液に徐々に加え、緩やかに撹拌して、無機質粒子
が高分子粒子で均一に被覆された複合体粒子の分散液を
えた。この分散液は正に帯電していた。このときの、粒
子数比(R)はNの約100%に当る。
1.74 g of this diluted latex was gradually added to the diluted colloidal dispersion and gently stirred to obtain a dispersion of composite particles in which inorganic particles were uniformly coated with polymeric particles. This dispersion was positively charged. At this time, the particle number ratio (R) corresponds to approximately 100% of N.

顕微鏡で観察すると、シリカコロイドの粒子表面が充分
均一にラテックス粒子で覆われており、静置により沈降
しても軽く振盪するだけで容易に再分散した。
When observed under a microscope, the surface of the silica colloid particles was sufficiently uniformly covered with latex particles, and even if they settled when left to stand still, they were easily redispersed by only slight shaking.

実施例2 製造例3でえたラテックスを水で10%に稀釈し、塩酸
でpiを5に調整した。この稀釈のラテックスは正に帯
電していた。
Example 2 The latex obtained in Production Example 3 was diluted to 10% with water, and the pi was adjusted to 5 with hydrochloric acid. The latex at this dilution was positively charged.

別に平均粒子径0.01Jca++のスノーテックスO
(日産化学工業■製のシリカゾル)の10%分散液をp
H5に調整した。このスノーテックス分散液は負に帯電
していた。この分散液0.42gを、前記の稀釈ラテッ
クスLOgに添加し、緩やかに撹拌して、高分子粒子が
無機質粒子で均一に被覆された複合体粒子の分散液をえ
た。こ°のときの、粒子数比(R)はNの約80%に当
る。走査型電子顕微鏡で観察すると、ラテックス粒子表
面がシリカ粒子で充分均一に覆われており、静置により
沈降しても軽く振盪するだけで容易に再分散した。
Separately, Snowtex O with an average particle diameter of 0.01 Jca++
(Silica sol manufactured by Nissan Chemical Industries ■) 10% dispersion of p
Adjusted to H5. This Snowtex dispersion liquid was negatively charged. 0.42 g of this dispersion was added to the diluted latex LOg and gently stirred to obtain a dispersion of composite particles in which polymer particles were uniformly coated with inorganic particles. At this time, the particle number ratio (R) corresponds to about 80% of N. Observation with a scanning electron microscope revealed that the surfaces of the latex particles were sufficiently uniformly covered with silica particles, and even if they settled when left to stand still, they were easily redispersed by gentle shaking.

実施例3 平均粒子径が0.015虜のスノーテックスOの10%
分散液をpH4に調整した。このスノーテックス分散液
は負に帯電していた。このスノーテックス分散液0.1
9gを実施例1でえた正に帯電しているシリカコロイド
/ラテックス複合体粒子の分散液10gに徐々に添加し
、緩やかに撹拌して、高分子粒子で均一に被覆された無
機質粒子をさらに無機質粒子で混合してコア多層複合体
粒子の分散液をえた。
Example 3 10% of Snowtex O with an average particle size of 0.015
The dispersion was adjusted to pH4. This Snowtex dispersion liquid was negatively charged. This Snowtex dispersion 0.1
9 g of the positively charged silica colloid/latex composite particle dispersion obtained in Example 1 was gradually added to 10 g of the positively charged silica colloid/latex composite particle dispersion, and gently stirred to further coat the inorganic particles uniformly coated with the polymer particles. The particles were mixed to obtain a dispersion of core multilayer composite particles.

この分散液を電気泳動装置で電荷を測定すると添加した
シリカコロイドと同じ負の電荷を示し、多層複合体粒子
が生成していることを証明した。静置により沈降しても
軽く振盪するだけで容易に再分散した。
When the charge of this dispersion was measured using an electrophoresis device, it showed the same negative charge as the added silica colloid, proving that multilayer composite particles were produced. Even if it settled when left to stand still, it was easily redispersed by shaking lightly.

実施例4 製造例3でえたラテックスを水で10%に稀釈し、pH
を6.5に調整した。この稀釈ラテックスは正に帯電し
ていた。
Example 4 The latex obtained in Production Example 3 was diluted to 10% with water, and the pH
was adjusted to 6.5. This diluted latex was positively charged.

別に酸化チタンJR(帝国化工■製の平均粒子径0.3
1sのルチル型酸化チタン)をボールミルで水に分散さ
せて5%の水性分散液を作り、pl+を6.5に調整し
た。この分散液は負に帯電していた。
Separately, titanium oxide JR (manufactured by Teikoku Kako ■, average particle diameter 0.3
1s rutile type titanium oxide) was dispersed in water using a ball mill to prepare a 5% aqueous dispersion, and the pl+ was adjusted to 6.5. This dispersion was negatively charged.

この分散液47gを前記の稀釈ラテックス10gに添加
し、緩やかに撹拌して高分子粒子が無機質粒子で均一に
被覆された複合体粒子の分散液をえた。
47 g of this dispersion was added to 10 g of the diluted latex and gently stirred to obtain a dispersion of composite particles in which polymer particles were uniformly coated with inorganic particles.

顕微鏡で観察すると、ラテックス粒子表面が酸化チタン
粒子で充分均一に被覆されており、静置により沈降して
も軽く振盪するだけで容易に再分散した。
When observed under a microscope, the surfaces of the latex particles were sufficiently uniformly coated with titanium oxide particles, and even if they settled when left to stand still, they were easily redispersed by only slight shaking.

実施例5 実施例1において、稀釈ラテックスとともに0.1モル
/Rの硫酸カリウム水溶液1gを添加した以外は、実施
例1と同様に行なって、無機質粒子が高分子粒子で均一
に被覆された複合体粒子の分散液をえた。
Example 5 A composite in which inorganic particles were uniformly coated with polymer particles was prepared in the same manner as in Example 1 except that 1 g of a 0.1 mol/R potassium sulfate aqueous solution was added together with the diluted latex. A dispersion of body particles was obtained.

静置により沈降しても軽く振盪するだけで容易に再分散
した。顕微鏡で観察すると、シリカコロイド粒子の表面
がきわめて密にラテックス粒子で覆われていた。この複
合体粒子を沈降させて採取し、示差熱分析法によりシリ
カとラテックス樹脂の比率を調べたところ、実施例1で
えたものよりも約lO%多くラテックス樹脂が検出され
た。これは硫酸カリウムの作用によるものと考えられる
Even if it settled when left to stand still, it was easily redispersed by shaking lightly. When observed under a microscope, the surface of the silica colloid particles was extremely densely covered with latex particles. When the composite particles were collected by sedimentation and the ratio of silica to latex resin was examined by differential thermal analysis, about 10% more latex resin than that obtained in Example 1 was detected. This is thought to be due to the action of potassium sulfate.

実施例6 製造例4でえたラテックスを水で5%に稀釈し、塩酸で
pHを5に調整した。このラテックスは負に帯電してい
た。
Example 6 The latex obtained in Production Example 4 was diluted to 5% with water, and the pH was adjusted to 5 with hydrochloric acid. This latex was negatively charged.

別に製造例2でえたラテックスを水で5%に稀釈し、塩
酸でpHを5に調整した。このラテックスは正に帯電し
ていた。
Separately, the latex obtained in Production Example 2 was diluted to 5% with water, and the pH was adjusted to 5 with hydrochloric acid. This latex was positively charged.

この正に帯電しているラテックス76gと、前記の負に
帯電し゛ているラテックスlOgを混合し、緩やかに撹
拌して、高分子粒子が高分子粒子で均一に被覆された複
合体粒子の分散液をえた。
76 g of this positively charged latex and 10 g of the negatively charged latex described above are mixed and gently stirred to create a dispersion of composite particles in which polymer particles are uniformly coated with polymer particles. I got it.

えられた複合体粒子を電気泳動装置で測定すると正の電
位を有しており、顕微鏡では小さいラテックス粒子が大
きいラテックス粒子を充分均一に被覆しているのが観察
された。
When the resulting composite particles were measured using an electrophoresis device, they had a positive potential, and using a microscope, it was observed that the small latex particles were sufficiently uniformly covering the large latex particles.

実施例7 製造例1でえたシリカコロイド分散液を、水で5%に稀
釈し、その100gをとり塩酸でpHを7に調整した。
Example 7 The silica colloid dispersion obtained in Production Example 1 was diluted to 5% with water, 100 g of it was taken, and the pH was adjusted to 7 with hydrochloric acid.

この稀釈コロイド分散液は負に帯電していた。This diluted colloidal dispersion was negatively charged.

別に製造例5でえたラテックスを水で2%に稀釈し、水
酸化ナトリウムでpHを7に調整した。
Separately, the latex obtained in Production Example 5 was diluted to 2% with water, and the pH was adjusted to 7 with sodium hydroxide.

この稀釈ラテックスは正に帯電していた。この稀釈ラテ
ックス32.8gを前記の稀釈コロイド分散液に徐々に
加え、緩やかに撹拌して、無機質粒子が高分子粒子で均
一に被覆された複合体粒子の分散液をえた。このときの
粒子数比(R)はNの約200%に当る。
This diluted latex was positively charged. 32.8 g of this diluted latex was gradually added to the diluted colloidal dispersion and gently stirred to obtain a dispersion of composite particles in which inorganic particles were uniformly coated with polymer particles. The particle number ratio (R) at this time corresponds to about 200% of N.

え、られた複合体粒子を走査型電子顕微鏡で観察すると
、シリカ粒子表面がラテックス粒子で充分均一に被覆さ
れており、静置により沈降した複合体粒子は軽く振盪す
るだけで容易に再分散した。
When the composite particles were observed using a scanning electron microscope, the surfaces of the silica particles were sufficiently uniformly coated with latex particles, and the composite particles that had settled due to standing were easily redispersed by shaking lightly. .

比較例1 実施例1において、系のpHを9に調整した以外は、実
施例1と同様に行なった。このとき、シリカコロイドは
負に帯電しており、ラテックスも負に帯電していた。
Comparative Example 1 The same procedure as in Example 1 was conducted except that the pH of the system was adjusted to 9. At this time, the silica colloid was negatively charged, and the latex was also negatively charged.

混合液中には、シリカコロイド、ラテックスともにそれ
ぞれ個々に分散しており、シリカ粒子をラテックスで被
覆したものは見られなかった。
Both the silica colloid and the latex were individually dispersed in the mixed liquid, and no silica particles coated with latex were observed.

比較例2 実施例1において、稀釈ラテックスの添加量1.74g
を0.35gに変えた以外は、実施例1と同様に行なっ
た。この時の粒子数比(R)はNの約20%であった。
Comparative Example 2 In Example 1, the amount of diluted latex added was 1.74 g.
The same procedure as in Example 1 was carried out except that the amount was changed to 0.35 g. The particle number ratio (R) at this time was about 20% of N.

顕微鏡で観察すると、シリカコロイドとラテックスとが
凝集して大きい凝集塊が多く生成しており、シリカ粒子
をラテックス粒子で混合してコアものは殆んど見られな
かった。
When observed under a microscope, the silica colloid and latex aggregated to form many large aggregates, and the silica particles were mixed with latex particles, with almost no core particles observed.

比較例3 実施例7において、使用した稀釈ラテックス32、l1
gの代りに、製造例6でえたラテッスを水で2%に稀釈
し、水酸化ナトリウムでplを7に調整した稀釈ラテッ
クス57.8gに変えた以外は、実施例7と同様に行な
った。この時、シリカコロイドは負に、ラテックスは正
に帯電していた。
Comparative Example 3 Diluted latex 32, l1 used in Example 7
The same procedure as in Example 7 was carried out, except that instead of 57.8 g of the latex obtained in Production Example 6, the latex obtained in Production Example 6 was diluted to 2% with water and the PL was adjusted to 7 with sodium hydroxide. At this time, the silica colloid was negatively charged and the latex was positively charged.

混合後の粒子を走査型電子顕微鏡で観察すると、シリカ
粒子表面をラテックス粒子が10〜2Qa程度覆ってい
るものも見られたが、殆んどのシリカ粒子には数個のラ
テックスが被覆しているにすぎなかった。
When the mixed particles were observed with a scanning electron microscope, some latex particles were seen covering the surface of the silica particles by about 10 to 2 Qa, but most silica particles were covered with several pieces of latex. It was nothing more than

実施例および比較例について、製造諸元と結果をまとめ
ると第2表の通りである。
Table 2 summarizes the manufacturing specifications and results for Examples and Comparative Examples.

[以下余白][Margin below]

【図面の簡単な説明】 第1図と第2図は、コア粒子1ケの表面を最密に被覆す
るに要する満足する割合で、分散液状態の数Nの算出を
説明する図面であるが、第1図の点線が1回転した面積
がPであり、第2図は満足する割合で、分散液状態1ヶ
当りの占める面積Qを示す。 第3図は、均一に被覆された複合体粒子の模型図であり
、第4図は、疎らに被覆された複合体粒子の凝集状態を
示す。 なお、図面において用いられている符号において、1は
コア粒子であり、2は満足する割合で、分散液状態であ
る。又、■は正電荷を示し、eは負電荷を示す。
[Brief explanation of the drawings] Figures 1 and 2 are diagrams illustrating the calculation of the number N of dispersion liquid states at a satisfactory ratio required to cover the surface of one core particle most densely. , the area of one rotation of the dotted line in FIG. 1 is P, and FIG. 2 shows the area Q occupied by one dispersion state at a satisfactory rate. FIG. 3 is a schematic diagram of uniformly coated composite particles, and FIG. 4 shows an agglomerated state of sparsely coated composite particles. In addition, in the symbols used in the drawings, 1 is a core particle, and 2 is a dispersion state at a satisfactory ratio. Further, ■ indicates a positive charge, and e indicates a negative charge.

Claims (1)

【特許請求の範囲】 1 (A)荷電した無機質粒子又は高分子粒子からなる
コア粒子と、 (B)コア粒子より小さく、かつ反対に荷電した無機質
粒子又は高分子粒子からなるシェル形成用粒子を、シェ
ル形成用粒子の数をコア粒子の数で割った粒子数比(R
)が (R)>(4π(a+b)^2)/(2√3b^2)×
0.5〔a=コア粒子の平均半径〕 〔b=シェル形成用粒子の平均半径〕 を満足する割合で、分散液状態で混合することを特徴と
するコア粒子をシェル形成用粒子で均一に被覆された複
合体粒子の製造方法。 2  I (A)荷電した無機質粒子又は高分子粒子から
なるコア粒子と、 (B)コア粒子より小さく、かつ反対に荷電した無機質
粒子又は高分子粒子からなるシェル形成用粒子を、シェ
ル形成用粒子の数をコア粒子の数で割った粒子数比(R
)が (R)>(4π(a+b)^2)/(2√3b^2)×
0.5〔a=コア粒子の平均半径〕 〔b=シェル形成用粒子の平均半径〕 を満足する割合で、分散液状態で混合してコア粒子をシ
ェル形成用粒子で均一に被覆した粒子とし、この粒子を
2次コア粒子として、II2次コア粒子より小さく、かつ
反対に荷電した無機質粒子又は高分子粒子からなる2次
シェル形成用粒子を、2次シェル形成用粒子の数を2次
コア粒子の数で割った粒子数比 (R′)が (R′)>(4π(a′+b′)^2)/(2√3b′
^2)×0.5〔a′=2次コア粒子の平均半径〕 〔b′=2次シェル形成用粒子の平均半径〕を満足する
割合で、分散液状態で混合することを1回以上繰り返す
ことを特徴とする2次コア粒子を2次シェル形成用粒子
で均一に被覆された複合体粒子の製造方法。 3 高分子粒子がソープフリー製法によってえたもので
ある特許請求の範囲第1項又は第2項記載の複合体粒子
の製造方法。
[Scope of Claims] 1. (A) A core particle consisting of a charged inorganic particle or a polymer particle; (B) A shell-forming particle consisting of an inorganic particle or a polymer particle smaller than the core particle and oppositely charged. , the particle number ratio (R
) is (R)>(4π(a+b)^2)/(2√3b^2)×
0.5 [a = average radius of core particles] [b = average radius of shell-forming particles] The core particles are uniformly mixed with shell-forming particles in a dispersion state. Method of manufacturing coated composite particles. 2 I (A) Core particles consisting of charged inorganic particles or polymer particles; (B) Shell-forming particles consisting of inorganic particles or polymer particles smaller than the core particles and oppositely charged; Particle number ratio (R
) is (R)>(4π(a+b)^2)/(2√3b^2)×
0.5 [a = average radius of core particles] [b = average radius of shell-forming particles] The core particles are mixed in a dispersion state at a ratio that satisfies the following: core particles are uniformly coated with shell-forming particles. , with this particle as the secondary core particle, the secondary shell-forming particles consisting of inorganic particles or polymer particles smaller than the II secondary core particle and oppositely charged, and the number of secondary shell-forming particles as the secondary core particle. The particle number ratio (R') divided by the number of particles is (R')>(4π(a'+b')^2)/(2√3b'
^2) x 0.5 [a' = average radius of secondary core particles] [b' = average radius of secondary shell forming particles] Mixing in a dispersion state at least once A method for producing composite particles in which secondary core particles are uniformly coated with secondary shell-forming particles, the method comprising repeating the steps. 3. The method for producing composite particles according to claim 1 or 2, wherein the polymer particles are obtained by a soap-free production method.
JP61057806A 1986-03-14 1986-03-14 Method for producing uniformly coated composite particles Expired - Fee Related JPH0640951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61057806A JPH0640951B2 (en) 1986-03-14 1986-03-14 Method for producing uniformly coated composite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61057806A JPH0640951B2 (en) 1986-03-14 1986-03-14 Method for producing uniformly coated composite particles

Publications (2)

Publication Number Publication Date
JPS62213839A true JPS62213839A (en) 1987-09-19
JPH0640951B2 JPH0640951B2 (en) 1994-06-01

Family

ID=13066162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61057806A Expired - Fee Related JPH0640951B2 (en) 1986-03-14 1986-03-14 Method for producing uniformly coated composite particles

Country Status (1)

Country Link
JP (1) JPH0640951B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240937A (en) * 1986-10-27 1988-10-06 Japan Synthetic Rubber Co Ltd Microencapsulated fine particle and production thereof
JPH0724306A (en) * 1993-07-07 1995-01-27 Agency Of Ind Science & Technol Production of composite ultra-fine particle
JP2001323070A (en) * 2000-03-08 2001-11-20 Catalysts & Chem Ind Co Ltd Spherical composite particle and cosmetic blended with the same
EP1160300A2 (en) * 2000-05-18 2001-12-05 JSR Corporation Aqueous dispersion for chemical mechanical polishing
JP2002506719A (en) * 1998-03-19 2002-03-05 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Fabrication of nanocapsules and microcapsules by layered polyelectrolyte self-assembly
JP2002520151A (en) * 1998-07-15 2002-07-09 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Polyelectrolytes on biological templates
EP1243611A1 (en) * 1999-11-22 2002-09-25 JSR Corporation Composited particles and aqueous dispersions for chemical mechanical polishing
JP2003522621A (en) * 1998-03-19 2003-07-29 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Fabrication of multilayer coated particles and hollow shells by electrostatic self-assembly of nanocomposite multilayers on degradable colloid prototypes
WO2007094271A1 (en) * 2006-02-17 2007-08-23 Kaneka Corporation Process for producing polymer powder with excellent nonblocking property
JP2008255318A (en) * 2007-02-19 2008-10-23 Sanyo Chem Ind Ltd Method for manufacturing multilayer-structural resin particle
JP2009030000A (en) * 2007-07-30 2009-02-12 Sanyo Chem Ind Ltd Method for producing nonaqueous resin dispersion
JP2010525930A (en) * 2006-10-25 2010-07-29 ウィリアム エム. カーティー, Controlled distribution of chemicals in ceramic systems.
US8092836B2 (en) 1998-03-19 2012-01-10 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly
WO2012133696A1 (en) * 2011-03-31 2012-10-04 国立大学法人豊橋技術科学大学 Device for producing composite particles and process for producing composite particles
WO2018060649A1 (en) * 2016-09-30 2018-04-05 Compagnie Generale Des Etablissements Michelin Method for obtaining a coagulum and a masterbatch of elastomer and polymer filler
CN114276642A (en) * 2021-12-09 2022-04-05 浙江邦德管业有限公司 Silicon core pipe resistant to environmental stress cracking and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145250A (en) * 1984-08-09 1986-03-05 Toshiba Corp Microencapsulated electrophotographic toner and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145250A (en) * 1984-08-09 1986-03-05 Toshiba Corp Microencapsulated electrophotographic toner and its preparation

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240937A (en) * 1986-10-27 1988-10-06 Japan Synthetic Rubber Co Ltd Microencapsulated fine particle and production thereof
JPH0724306A (en) * 1993-07-07 1995-01-27 Agency Of Ind Science & Technol Production of composite ultra-fine particle
JP2003522621A (en) * 1998-03-19 2003-07-29 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Fabrication of multilayer coated particles and hollow shells by electrostatic self-assembly of nanocomposite multilayers on degradable colloid prototypes
US8168226B2 (en) * 1998-03-19 2012-05-01 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly
US8092836B2 (en) 1998-03-19 2012-01-10 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly
JP2002506719A (en) * 1998-03-19 2002-03-05 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Fabrication of nanocapsules and microcapsules by layered polyelectrolyte self-assembly
JP2002520151A (en) * 1998-07-15 2002-07-09 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Polyelectrolytes on biological templates
JP4650976B2 (en) * 1998-07-15 2011-03-16 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Polyelectrolytes on biological templates
EP1243611A1 (en) * 1999-11-22 2002-09-25 JSR Corporation Composited particles and aqueous dispersions for chemical mechanical polishing
JP2001323070A (en) * 2000-03-08 2001-11-20 Catalysts & Chem Ind Co Ltd Spherical composite particle and cosmetic blended with the same
EP1160300A2 (en) * 2000-05-18 2001-12-05 JSR Corporation Aqueous dispersion for chemical mechanical polishing
EP1160300A3 (en) * 2000-05-18 2003-11-26 JSR Corporation Aqueous dispersion for chemical mechanical polishing
WO2007094271A1 (en) * 2006-02-17 2007-08-23 Kaneka Corporation Process for producing polymer powder with excellent nonblocking property
JP2010525930A (en) * 2006-10-25 2010-07-29 ウィリアム エム. カーティー, Controlled distribution of chemicals in ceramic systems.
JP2008255318A (en) * 2007-02-19 2008-10-23 Sanyo Chem Ind Ltd Method for manufacturing multilayer-structural resin particle
JP2009030000A (en) * 2007-07-30 2009-02-12 Sanyo Chem Ind Ltd Method for producing nonaqueous resin dispersion
WO2012133696A1 (en) * 2011-03-31 2012-10-04 国立大学法人豊橋技術科学大学 Device for producing composite particles and process for producing composite particles
JP6083610B2 (en) * 2011-03-31 2017-02-22 国立大学法人豊橋技術科学大学 Composite particle manufacturing apparatus and composite particle manufacturing method
WO2018060649A1 (en) * 2016-09-30 2018-04-05 Compagnie Generale Des Etablissements Michelin Method for obtaining a coagulum and a masterbatch of elastomer and polymer filler
FR3056984A1 (en) * 2016-09-30 2018-04-06 Compagnie Generale Des Etablissements Michelin PROCESS FOR OBTAINING A COAGULUM AND A MASTER MIXTURE OF ELASTOMER AND POLYMERIC LOAD
CN114276642A (en) * 2021-12-09 2022-04-05 浙江邦德管业有限公司 Silicon core pipe resistant to environmental stress cracking and preparation method thereof
CN114276642B (en) * 2021-12-09 2024-03-22 浙江邦德管业有限公司 Silicon core tube resistant to environmental stress cracking and preparation method thereof

Also Published As

Publication number Publication date
JPH0640951B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
JPS62213839A (en) Preparation of composite particle coated uniformly
JP4947288B2 (en) Magnetic particle, method for producing the same, and carrier for biochemistry
JPH06142491A (en) Composite particle, hollow particle and their production
JP2004205481A (en) Method for manufacturing particle for diagnostic product
JPH08176212A (en) Method of surface-modifying magnetic particle
US4231919A (en) Suspension polymerization of styrene monomers in the presence of carbon black
JP3219914B2 (en) Anti-blocking synthetic resin emulsion powder
JP4548598B2 (en) Magnetic particle, method for producing the same, and carrier for biochemistry
JPS59221302A (en) Preparation of magnetic polymer particle
JP2581120B2 (en) Method for producing microencapsulated fine particles
JPH0114582B2 (en)
JPH0234602A (en) Manufacture of composite polymer particle
JPH08176461A (en) Fine monodisperse particle and its production
JP3401851B2 (en) Method for microencapsulation of solid particles
JPS6228178B2 (en)
JP4614064B2 (en) Method for producing magnetic particles and biochemical carrier
JPS6261632A (en) Preparation of colored polymer particles
JP3256046B2 (en) Blocking resistant vinyl synthetic resin emulsion powder
JPH0251164A (en) Polymer toner and its production
JP4513463B2 (en) Magnetic particles and method for producing the same
JP3421869B2 (en) Polymer fine particles for electrophotographic developers
JP2006070063A (en) Magnetic substance composite particle and method for producing the same
JPS6134902A (en) Manufacture of coated magnetic polymer grains
JPH0260902A (en) Production of spherical polymer particle
JPH03190934A (en) Production of conjugate particle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees