JPS5981489A - Baking furnace - Google Patents

Baking furnace

Info

Publication number
JPS5981489A
JPS5981489A JP18973282A JP18973282A JPS5981489A JP S5981489 A JPS5981489 A JP S5981489A JP 18973282 A JP18973282 A JP 18973282A JP 18973282 A JP18973282 A JP 18973282A JP S5981489 A JPS5981489 A JP S5981489A
Authority
JP
Japan
Prior art keywords
furnace
temperature distribution
line
temperature
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18973282A
Other languages
Japanese (ja)
Other versions
JPS6324239B2 (en
Inventor
闊 瀬野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP18973282A priority Critical patent/JPS5981489A/en
Publication of JPS5981489A publication Critical patent/JPS5981489A/en
Publication of JPS6324239B2 publication Critical patent/JPS6324239B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は炉内の温度が均一で熱エネルギー効率のよい
バッチ式の焼成炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a batch-type firing furnace that has a uniform temperature inside the furnace and is highly efficient in thermal energy.

従来例にかかるバッチ式の焼成炉の代表的なものを第1
図および第2図に示した。
The first typical example of a conventional batch-type firing furnace is
and Fig. 2.

図にもとづい°〔その構造を説明すると、炉の本体1の
内壁に、その壁面に沿ってヒータ2が配設され”Cおり
、本体1の空間に被焼成品3を設置し°C焼成を行うよ
うに構成されている。
Based on the figure, the heater 2 is installed on the inner wall of the furnace main body 1 along the wall surface, and the product 3 to be fired is placed in the space of the main body 1 and fired at °C. is configured to do so.

したがって、被焼成品5はその周囲にあるヒータ2の熱
により加熱され、焼成されることになる。
Therefore, the product to be fired 5 is heated by the heat of the heater 2 around it and is fired.

ところが、ヒータ2が壁面に沿って配置される構造罠な
っていることから、本体1の空間を太きくすれば、それ
だけ被焼成品3に対する加熱温度のバラツキが生じるこ
とになる。また、多くの被焼成品3を空間に充填すると
、ヒータ2に近い被焼成品3のみが高温に曝されること
になる。一方、ヒータ2かも遠い位置、つまり空間の真
ん中に近い被焼成品3は焼成に十分な温度に加熱されな
くなシ、焼成のバラツキを発生させるととKなる。
However, since the heater 2 has a trap structure in which it is arranged along the wall surface, the wider the space in the main body 1, the more variation in heating temperature for the product to be fired 3 will occur. Moreover, if many products 3 to be fired are filled in the space, only the products 3 to be fired near the heater 2 will be exposed to high temperature. On the other hand, the article 3 to be fired at a position far from the heater 2, that is, close to the center of the space, will not be heated to a temperature sufficient for firing, which will cause variations in firing.

さらに1ヒータ2はその半分が炉壁に面しCいるため、
ヒータ2からの輻射熱の%は被焼成品3を加熱するため
に利用されず、熱エネルギーの利用効率の悪い構造とな
り゛〔いる。
Furthermore, half of heater 2 faces the furnace wall, so
% of the radiant heat from the heater 2 is not used to heat the product 3 to be fired, resulting in a structure with poor thermal energy utilization efficiency.

第6図に示す従来例のバッチ式焼成炉において、炉の本
体1の炉台4の上に被焼成品3を並べ、ヒータ2の温度
をf 30() cになるように制御したとき、第6図
中、各”H,b−bgおよびC−a線における炉の本体
1内の温度分布を調べたところ、−14図〜第6図のよ
うな温度分布を示すことが明らかとなった。
In the conventional batch-type firing furnace shown in FIG. When we investigated the temperature distribution inside the furnace main body 1 at each line "H, b-bg, and C-a in Figure 6, it became clear that the temperature distribution showed the temperature distribution as shown in Figures -14 to Figure 6. .

つまり、第4図〜第6図から明らかなように、a−a線
の平面における温度分布のバラツキは±5℃であシ、b
−b線の平面における温度分布のバラツキは±Z5″C
であシ、さらIc c −c lsの平面における温度
分布のバラツキは±12.5’Cであった。また炉壁近
傍が高温であり、1299〜130atの温度分布領域
に入るのはb−bmの平面よりやや上にあることが判明
した。
In other words, as is clear from Figures 4 to 6, the variation in temperature distribution on the a-a line plane is ±5°C, and b
-The variation in temperature distribution on the plane of line b is ±Z5″C
In addition, the variation in temperature distribution in the plane of Ic c - c ls was ±12.5'C. It was also found that the temperature near the furnace wall was high, and the temperature distribution region of 1299 to 130 at was slightly above the b-bm plane.

このように従来のバッチ式の焼成炉では炉内での温度分
布にバラツキが見られ、しかも炉内に各平面をとってみ
′Cも、その平面内での温度分布にバラツキが見られる
っ また、従来の焼成炉では、炉内の温度を1300でに設
定するため、つまり炉内の中心位置の温度を1 !00
 tとするために、時間当ルの消費電力は約42xwで
あシ、電力消費量も多いものであった。
In this way, in conventional batch-type firing furnaces, there are variations in the temperature distribution within the furnace, and even if you take each plane in the furnace, you can see variations in the temperature distribution within that plane. In addition, in conventional firing furnaces, the temperature inside the furnace is set at 1300°C, that is, the temperature at the center of the furnace is set at 1300°C. 00
t, the power consumption per hour was approximately 42xW, which was a large amount of power consumption.

したがって、この発明は炉内の温度分布が均一なバッチ
式の焼成炉を提供することを目的とする。
Therefore, an object of the present invention is to provide a batch-type firing furnace in which the temperature distribution inside the furnace is uniform.

また、この発明・よエネルギー効率がよく、熱損失の少
ないバッチ式つ焼成炉を提供することを目的とする。
Another object of the present invention is to provide a batch-type firing furnace that is highly energy efficient and has low heat loss.

すなわち、この発明の要旨とするところは、炉の本体内
に、焼成されるべき被焼成品が列単位ごとに配列され、
列単位間のスペースに発熱体が配置されることを特徴と
する焼成炉である。
That is, the gist of the present invention is that the products to be fired are arranged in rows within the main body of the furnace,
This firing furnace is characterized in that a heating element is arranged in a space between row units.

第7図、$8図はこの発明にかかるバッチ式の焼成炉の
一列を示したもので、第7図は焼成炉を上面からみたと
きの破断内部構造図、第8図は焼成炉を側面からみたと
きの破断内部構造図である。
Figures 7 and 8 show a row of batch-type firing furnaces according to the present invention. Figure 7 is a broken internal structure diagram when the firing furnace is viewed from above, and Figure 8 is a side view of the firing furnace. FIG. 3 is a diagram of a broken internal structure when viewed from above.

11は炉の本体を示すっこの本体11の内壁には、断熱
効果を有し、熱容量を少なくする断熱材たとえばセラミ
ックファイバーで作られたボードまたはブランケットが
配置される。炉の本体11内には複数条の発熱体12a
、 12b、 128.12(L、121!が空間を置
いて配置されCおり、各発熱体12&l 12bl 1
20112dl 12θ間の空間には被焼成品16が炉
台14の上に載せられて配置されている。この発熱体1
)a、 12b、 120゜12d、12θは炉の本体
11内を左右端方向にめぐらされ−〔騒る。発熱体12
’+ 12b+ 12C+12(1,12eはたとえば
炭化硅素、カンタル金属線、二硅化モリブデンなどから
なり、炭化硅素を用すれば1450′cの発熱温度が得
られ、カンタル金属線では1200で、二硅化モリブデ
ンでは1600rの発熱温度が得られる。炉台14とし
ては熱容量が小さく、°まだ断熱性のよい、たとえばア
ルミナシリカ系の断熱レンガが用いられる。この炉台1
4は第8図において矢印aで示すように、炉の本体11
内を上下移動するように構成されており、上方の位置が
焼成位置であシ、下方の位置が被焼成品13を取シ出す
位置となる。この上下の移動は手動または電動などにょ
っ′C行われる。また炉台14を上ドしたとき、発熱体
124.12tl。
Reference numeral 11 designates the main body of the furnace. On the inner wall of the main body 11, a board or blanket made of a heat insulating material, such as ceramic fiber, which has a heat insulating effect and reduces the heat capacity, is arranged. Inside the main body 11 of the furnace, there are a plurality of heating elements 12a.
, 12b, 128.12 (L, 121! are arranged with a space C, and each heating element 12&l 12bl 1
In the space between 20112dl and 12θ, the product 16 to be fired is placed on the furnace stand 14. This heating element 1
) a, 12b, 120°, 12d, and 12θ are wound around the left and right ends in the furnace main body 11. heating element 12
'+ 12b+ 12C+12 (1 and 12e are made of, for example, silicon carbide, Kanthal metal wire, molybdenum disilicide, etc. If silicon carbide is used, an exothermic temperature of 1450'c can be obtained, and with Kanthal metal wire, the exothermic temperature is 1200, and molybdenum disilicide In this case, an exothermic temperature of 1600 r is obtained.As the furnace stand 14, an insulating brick made of alumina-silica, which has a small heat capacity and good heat insulation properties, is used.
4 is the main body 11 of the furnace as shown by arrow a in FIG.
The upper position is the firing position, and the lower position is the position from which the product 13 to be fired is taken out. This vertical movement is performed manually or electrically. Also, when the furnace stand 14 is raised, the heating element 124.12 tl.

f2c、12d、12θと被焼成品15とが接触しない
ように、たとえば10〜50.1程度の隙間が両者の間
に作られる。また各発熱体12’+ 12bl 12e
112(1,12eにはそれぞれ通電が独立しC行われ
るようになっておL炉の本体11内の横方向の温度分布
にバラツキがないように制御される。4 tc炉の本体
11内では下方よシ上方が高@になりゃすいため、上下
の温度のバラツキを少なくするように、各発熱体121
9121)I 12c+ 12dT 128の下方の配
置密度を高くするように配置される。また各発熱体12
al 12b1120112d1128の下部側を上部
側にくらべ高温になるように独立して温度制御できるよ
うに結線しCもよい。また発熱体12a、12b、12
0.12d、128に通電するに当つ゛C1各発熱体を
直列または並列に結線ができるように、炉の本体11よ
り、たとえば50〜100m!!1程度各発熱体12a
、121)。12(!l 12d、 1213が露出さ
れる。
In order to prevent f2c, 12d, and 12θ from coming into contact with the product to be fired 15, a gap of, for example, about 10 to 50.1 mm is created between them. In addition, each heating element 12'+ 12bl 12e
112 (1, 12e) are energized independently and controlled so that there is no variation in the lateral temperature distribution within the main body 11 of the L furnace.4 In the main body 11 of the TC furnace, Since the lower part tends to be higher than the upper part, each heating element 121 is
9121) I 12c+ 12dT The arrangement density below 128 is increased. In addition, each heating element 12
Al 12b1120112d1128 C may be connected so that the temperature can be controlled independently so that the lower side of the lower side is higher than the upper side. Also, the heating elements 12a, 12b, 12
0.12d, 128, for example, 50 to 100 m from the furnace main body 11 so that the C1 heating elements can be connected in series or in parallel! ! 1 each heating element 12a
, 121). 12(!l 12d, 1213 is exposed.

このような構成よりなる焼成炉について、炉の本体内の
温度分布を調べた。温度分布の測定は第9図に示すよう
に、各a−a線、b−b線およびc−c線におい′C行
った。その結果を第10図〜第12図に示した。第10
図はa−a線における温度分布を示し、第11図はb−
b線における温度分布を示し、第12図はa−c線にお
ける温度分布を示したものである。
Regarding the firing furnace constructed as described above, the temperature distribution within the furnace body was investigated. As shown in FIG. 9, the temperature distribution was measured at each of the a-a line, the bb line, and the c-c line. The results are shown in FIGS. 10 to 12. 10th
The figure shows the temperature distribution on the a-a line, and Fig. 11 shows the temperature distribution on the a-a line.
The temperature distribution along the b-line is shown, and FIG. 12 shows the temperature distribution along the a-c line.

第9図において、各発熱体12ゑl 121)I 12
C+12(1,12θの温度が1300″Cとなるよう
に制御しあらかじめ炉の本体11内忙測定リングを配置
して温度分布を測定した。
In Figure 9, each heating element 12ゑl 121) I 12
The temperature at C+12 (1,12θ) was controlled to be 1300″C, and the temperature distribution was measured by placing a busy measurement ring in the furnace main body 11 in advance.

そし゛C1被焼成品13を4列並べ、1列が幅100目
、長さ400 y、高さlOm の大きさとした。また
各発熱体12a、 12t)、 120.12d。
Then, the C1 fired products 13 were arranged in four rows, each row having a width of 100 stitches, a length of 400 y, and a height of 1 Om. Also, each heating element 12a, 12t), 120.12d.

126は発熱長500 +uのものを用い、これを高さ
4501の炉の本体内に6本縦に並べ、これを被焼成品
13の間に5列並べた。
126 having a heat generation length of 500 + u were used, and six of these were vertically arranged in the main body of the furnace with a height of 4501, and five rows of these were arranged between the products 13 to be fired.

第10図〜第12図75為ら明らかなように、a−a線
では温度のバラツキは±3r以内であシ、b−b線では
温度のバラツキは±5t−以内、c−c線では温度のバ
ラツキは±5υ以内であることが確認できた。
As is clear from Figures 10 to 12, the temperature variation for the a-a line is within ±3r, the temperature variation for the bb line is within ±5t-, and the temperature variation for the c-c line is within ±5t-. It was confirmed that the temperature variation was within ±5υ.

また本体11の上面から28oWuIまでの温度分布の
バラツキは±51:以内、っま!り1290で〜130
0υの範囲では広範囲の均熱帯を得ることができた。
Also, the variation in temperature distribution from the top surface of the main body 11 to 28oWuI is within ±51:! ri1290~130
In the range of 0υ, we were able to obtain a wide range of soaking zones.

またこのときの時間当シの電力消費量は約28KWであ
った。
Also, the hourly power consumption at this time was about 28 KW.

第13図、第14図はこの発明にか、かるバッチ式の焼
成炉の他の実施例を示したもので、第13図は焼成炉を
上面73)らみたときの破断内部構造図、第14図は焼
成炉を側面からみたときの破断内部構造図である。
13 and 14 show other embodiments of the batch-type firing furnace according to the present invention. FIG. 14 is a broken internal structure diagram of the firing furnace viewed from the side.

この実施例の特徴点について説明すると、炉本体11の
上面から発熱体12!L、+2b、12(!。
To explain the features of this embodiment, the heating element 12! L, +2b, 12 (!.

12a、12・を+7/かわ吊り下げ°Cおき、また第
13図におい”C明らかなように、壁面の一部を開閉自
在となる扉15として構成し、本体11の側虱から炉台
14を矢印すで示すように出し入れできるようにし′C
いる。その他の構成については、第7図、第8図のもの
と同一であるので同一番号を付して詳細な説明を省略す
る。
12a and 12. are suspended at +7/°C, and as is clear in FIG. Make it possible to take it in and take it out as shown by the arrow.'C
There is. The other configurations are the same as those in FIGS. 7 and 8, so the same numbers are given and detailed explanations are omitted.

このような構成よシなる焼成炉につX、−>て、炉の本
体内の温度分布を調べた。温度分布の測定は第15図に
示すように、各巳−a線、kl−bsおよびc−c線に
おい“0行つだ。その結果を第16図〜第18図に示し
た。第16図はa−a線における温度分布を示し、第1
7図はb−b線に1?ける温度分布を示し、第18図?
j: c −c線における温2度分布を示したものであ
る。
For a firing furnace having such a configuration, the temperature distribution within the main body of the furnace was investigated. As shown in Fig. 15, the temperature distribution was measured in 0 rows for each line - a, kl - bs, and c - c. The results are shown in Figs. 16 to 18. The figure shows the temperature distribution on the a-a line, and the first
Figure 7 shows 1 on the bb line? Figure 18 shows the temperature distribution.
j: This shows the temperature distribution on the c-c line.

第15図にオイーC,各発熱体12a112b112(
!、 12(L、 12’3の温度が1300t’にな
るように制御し、あらかじめ炉の本体11内に測定リン
グを配置し゛C温度分布を測定した。
Fig. 15 shows Oee C, each heating element 12a112b112 (
! , 12(L, 12'3) was controlled to be 1300 t', and a measurement ring was placed in advance in the furnace body 11 to measure the temperature distribution.

そし゛C1被焼成品13を4列並べ、1列が幅100、
、!11.長さ400」、高さ500 、uの大きさと
した。また各発熱体12a、 121)、 120.1
2di2eは発熱長800預のU字型のものを用い、こ
れを高さ500Mの炉の本体11内に5本吊り下げC並
べた。
Then, 4 rows of C1 fired products 13 are arranged, each row has a width of 100 mm,
,! 11. The length was 400", the height was 500", and the size was U. In addition, each heating element 12a, 121), 120.1
The 2di2e used was a U-shaped one with a heat generation length of 800 m, and five of them were hung and lined up in the main body 11 of the furnace with a height of 500 m.

第16図〜第18図から明らかなように、−−a線では
温度のバラツキは±6υ以内、b−bsでは温度のバラ
ツキは±5′c以内、c−c線では温度のバラツキは1
15℃であることが確認できた。
As is clear from Figures 16 to 18, the temperature variation for the -a line is within ±6υ, the temperature variation for the b-bs is within ±5'c, and the temperature variation for the c-c line is 1
It was confirmed that the temperature was 15°C.

また本体11の上面から400 # iでの温度分布の
バラツキは±5″C以内、っiシ129o′c〜130
0Y:の範囲で広範囲の均熱帯を得ることができた。
Also, the variation in temperature distribution at 400°C from the top surface of the main body 11 is within ±5"C, from 129°C to 130°C.
It was possible to obtain a wide soaking zone within the range of 0Y:.

またこのときの時間当りの電力消費、匿は約4゜KWで
あった。
Also, the power consumption per hour at this time was approximately 4°KW.

上記した各実施例から明らかなように、この発明にかか
る焼成炉によれば、炉の本体内に、焼成されるべき被焼
成品が列単位ごとに配列され、列単位間のスペースに発
熱体が配置された構成からなるだめ、被焼成品は発熱体
に近接した状態で焼成されることになり、エネルギー効
率が良好であるとともに熱損失の少ない焼成炉であると
いうことができる。また炉の本体内に発熱体が分散して
配置された構造であり、炉内の温度分布が均一な焼成炉
が得られる。
As is clear from the above-mentioned embodiments, according to the firing furnace of the present invention, the products to be fired are arranged in rows in the main body of the furnace, and the heating elements are arranged in the spaces between the rows. Since the firing furnace is configured such that the fired product is fired in close proximity to the heating element, it can be said that the firing furnace has good energy efficiency and low heat loss. Moreover, the structure has heating elements dispersedly arranged within the furnace main body, and a firing furnace with uniform temperature distribution within the furnace can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はバッチ式の焼成炉の従来例を示す断面
図、第3図は同じ〈従来例のバッチ式の焼成炉を示す断
面図、第4図は第6図のa −a線における温度分布を
示す図、第5図は第3図のb−す線における温度分布を
示す図、第6図は第3図のC−C線における温度分布を
示す図、第7図、第8図はこの発明にかかるバッチ式の
焼成炉の一例を示す破断内部構造図をそれぞれ示したも
ので、第7図は上面からみたときのもの、第8図は側面
・からみたときのもの、第9図〜第12図は温度分布の
測定結果を示す図であり、第9図は測定位置を示す断面
図、第10図は第9図のa−a線における温度分布を示
す図、第11図は第9図のb −b@における温度分布
を示す図、第12図は第9図のQ−C#における温度分
布を示す図、第13図、第14図はこの発明にかかるバ
ッチ式の焼成炉の他の例を示す破断内部構造図をそれぞ
れ示したもので、第16図は上面からみたときのもの、
第14図は側面からみたときのもの、第15図〜第18
図は温度分布の測定結果を示す図であシ、第15図は測
定位置を示す断面図、第16図は第15図のa−a線に
おける温度分布を示す図、第17図は第15図のb−b
線における温度分布を示す図、第18図は第15図のc
−c#における温度分布を示す図である。 11・・・・・・炉の本体、12’L、 12b、 1
2Q、 12L128・・−・・−発熱体、16・・・
・・・被焼成品、14・−・炉台。 特許出願人 株式会社村田製作所 簾1 図 繰20 ijl!1 第4図 集り図 環7圀 属8図 廃10圀 第11図 滉1z図 第13図 萬II4.図 4 為15図
Figures 1 and 2 are cross-sectional views showing a conventional example of a batch-type firing furnace, Figure 3 is a cross-sectional view showing the same conventional batch-type firing furnace, and Figure 4 is a-a in Figure 6. FIG. 5 is a diagram showing the temperature distribution on the line a, FIG. 5 is a diagram showing the temperature distribution on the b-line in FIG. 3, FIG. 6 is a diagram showing the temperature distribution on the C-C line in FIG. 3, and FIG. , FIG. 8 shows a broken internal structure diagram showing an example of the batch type firing furnace according to the present invention, FIG. 7 is a view when viewed from the top, and FIG. 8 is a view when viewed from the side. Figures 9 to 12 are diagrams showing the measurement results of temperature distribution, with Figure 9 being a cross-sectional view showing the measurement position, and Figure 10 being a diagram showing the temperature distribution along line a-a in Figure 9. , FIG. 11 is a diagram showing the temperature distribution at b-b@ in FIG. 9, FIG. 12 is a diagram showing the temperature distribution at Q-C# in FIG. 9, and FIGS. Fig. 16 shows broken internal structure diagrams showing other examples of such batch-type firing furnaces, and Fig. 16 is a view when viewed from the top;
Figure 14 is when viewed from the side, Figures 15 to 18
15 is a cross-sectional view showing the measurement position, FIG. 16 is a diagram showing the temperature distribution along the a-a line in FIG. 15, and FIG. 17 is a diagram showing the temperature distribution measurement results. Figure b-b
A diagram showing the temperature distribution along the line, Figure 18 is c of Figure 15.
It is a figure showing temperature distribution in -c#. 11... Main body of furnace, 12'L, 12b, 1
2Q, 12L128...-Heating element, 16...
... Item to be fired, 14... Furnace stand. Patent Applicant Murata Manufacturing Co., Ltd. Blind 1 Illustration 20 ijl! 1 Figure collection 4 Figure circle 7 area 8 figure scrapped 10 area 11 figure 1z figure 13 figure 11 II 4. Figure 4 Figure 15

Claims (1)

【特許請求の範囲】[Claims] 炉の本体内如、焼成されるべき被焼成品が列学位ととに
配列され、列単位間のスペースに発熱体が配置されるこ
とを特徴とする焼成炉。
A firing furnace characterized in that products to be fired are arranged in rows within the main body of the furnace, and a heating element is arranged in the space between the rows.
JP18973282A 1982-10-27 1982-10-27 Baking furnace Granted JPS5981489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18973282A JPS5981489A (en) 1982-10-27 1982-10-27 Baking furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18973282A JPS5981489A (en) 1982-10-27 1982-10-27 Baking furnace

Publications (2)

Publication Number Publication Date
JPS5981489A true JPS5981489A (en) 1984-05-11
JPS6324239B2 JPS6324239B2 (en) 1988-05-19

Family

ID=16246256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18973282A Granted JPS5981489A (en) 1982-10-27 1982-10-27 Baking furnace

Country Status (1)

Country Link
JP (1) JPS5981489A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153555A (en) * 1989-11-13 1991-07-01 Natl House Ind Co Ltd Reinforced porous ceramic plate
JP3196261B2 (en) * 1991-11-20 2001-08-06 株式会社村田製作所 Furnace heater and heat treatment furnace having the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545851U (en) * 1977-06-16 1979-01-16

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797093A (en) * 1972-10-30 1974-03-19 Rowe International Inc Improved semi-automatic component sequencing machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545851U (en) * 1977-06-16 1979-01-16

Also Published As

Publication number Publication date
JPS6324239B2 (en) 1988-05-19

Similar Documents

Publication Publication Date Title
US4088825A (en) Electric furnace wall construction
KR100972500B1 (en) Heating structure for electric furnace
JPS5981489A (en) Baking furnace
RU196899U1 (en) Vermiculite Electric Roasting Furnace
US3729570A (en) Modular heater furnace
US2621218A (en) Electric graphitizing furnace
US3589694A (en) Supporting plate for objects to be subjected to a thermal treatment
US1842972A (en) Electrical furnace resistor
CA1077113A (en) Heat exchanger for convector heater
JP2500206B2 (en) Method of firing ceramic products
US3743753A (en) Electrical ceiling heating in tunnel kilns
US3638930A (en) Refractory metal boat for heat treating coils
JP3056522U (en) Flexible planar infrared heater
US1719888A (en) Electric furnace
KR101394325B1 (en) Heater and method for manufacturing the same
US1661842A (en) Electric furnace
US1997622A (en) Electric furnace and method of operating the same
US1633967A (en) Electric furnace
US2644020A (en) Graphitization of carbon articles
US1762701A (en) Heating-element-mounting means
US20230189403A1 (en) Electrically Isolating Support Element
CN215217155U (en) Smelting electric furnace for smelting metal lithium and alloy thereof
CN219103711U (en) Protective net cover
JPS6120018Y2 (en)
US1731166A (en) Best available cop