JPS5981143A - Methyl methacrylate based resin bulk-buffering small foamed body and manufacture thereof - Google Patents

Methyl methacrylate based resin bulk-buffering small foamed body and manufacture thereof

Info

Publication number
JPS5981143A
JPS5981143A JP57192079A JP19207982A JPS5981143A JP S5981143 A JPS5981143 A JP S5981143A JP 57192079 A JP57192079 A JP 57192079A JP 19207982 A JP19207982 A JP 19207982A JP S5981143 A JPS5981143 A JP S5981143A
Authority
JP
Japan
Prior art keywords
foam
small
resin
density
methyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57192079A
Other languages
Japanese (ja)
Inventor
Noboru Takeda
武田 登
Masayuki Hashimoto
公志 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57192079A priority Critical patent/JPS5981143A/en
Publication of JPS5981143A publication Critical patent/JPS5981143A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0027Cutting off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To form a foamed body useful as a buffer material displaying a excellent shear buffering performance when a methyl methacrylate based resin is assembled giving the density, the breakage wear reduction and compression recovery rate within a specified range of values by melt extrusion of the resin under a specified condition. CONSTITUTION:A volatile organic foaming agent is contained in a methyl methacrylate (hereinafter MMA) based resin by kneading and then, the mixture is extruded and cooled quickly below 40 deg.C to form a small body of foaming MMA based resin. Then, the small body is relaxed in the stress in a warm water of 65-80 deg.C for 5-60min and filled into a sealed container. After the humidity is conditioned to 0.5-1.8wt% in the water content, the body is heated above the deformation temperature of the resin to foam whereby a foam body is produced with the density of 10-60kg/m<3>, breakage wear reduction of 15-50% and compression recovery rate of 10-60% while having such a configuration structure as enabling the formation of a bulky assembly. The foam thus obtained is used for buffer packing material to protect the contents absorbing an external stress working thereon.

Description

【発明の詳細な説明】 本発明はメチルメタクリレート(以下MMAと略す)系
樹脂バラ状緩衝性小形発泡体及びその製造方法に関し、
さらに詳しくは密度、破損減耗度及び圧縮回復率が特定
範囲の値てらって、集金させたとき優れたずり緩衝性能
を発揮しうるMMA系樹脂バラ状緩衝性小形発泡体及び
その製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a methyl methacrylate (hereinafter abbreviated as MMA) resin bulk cushioning small foam and a method for producing the same.
More specifically, the present invention relates to a small MMA-based resin bulk cushioning foam that has density, breakage loss, and compression recovery rate within a specific range and exhibits excellent shear cushioning performance when collected, and a method for manufacturing the same. be.

従来、内容物にかかる外応力を合成樹脂発泡体のもつ緩
衝能で吸収(−で内容物の保護を図る緩衝包装としては
、例えば外応力をそれぞれ発泡体の破壊変形で吸収する
破壊緩衝、発泡体の弾性変形で吸収する弾性緩衝、発泡
体相互のずシ変形で吸収するバラ状緩衝の方法などが知
られている。これらの方法は、吸収しだい外応力の大き
さや内容物の性質、あるいは用いる発泡体の特性などに
よって適宜選択され、緩衝設計が行われている。
Conventionally, shock absorbing packaging that protects the contents by absorbing external stress applied to the contents by using the buffering capacity of synthetic resin foam has been used, for example, rupture cushioning, which absorbs external stress by the destructive deformation of the foam, and foam packaging. Methods such as elastic cushioning, which is absorbed by the elastic deformation of the body, and bulk cushioning, which is absorbed by the mutual deformation of foam, are known.These methods depend on the size of the external stress, the nature of the contents, or The cushioning design is appropriately selected depending on the characteristics of the foam used.

前記の緩衝方法の中のバラ状緩衝方法においては−例え
ば三次元に湾曲したひも状のポリスチレン小形発泡体を
外箱と内容物の間にバラ状の1ま詰め込んだとき、ひも
状発泡体は互いにからまり合って大きな空間をもつ見掛
かさ容積の大きい保持部を形成し、それにかかる外応力
は保持部を構成する発泡体相互のすり変形によって吸収
するとい、つた緩衝能を発揮する(特公昭42−45’
12号公報)。この緩衝方法の特色は、一定形状に成形
された′成形品を用いる方法と異なり、小形発泡体をバ
ラ状の個々のまま内容物の外形に合わせて筺用し、かさ
容積の大きな保持部を形成することにあって、経済的な
緩衝方法としても知られている。
Among the above-mentioned cushioning methods, in the loose cushioning method, for example, when a three-dimensionally curved string-shaped small polystyrene foam is stuffed between the outer box and the contents, the string-like foam They are entangled with each other to form a holding part with a large apparent volume and a large space, and the external stress applied to it is absorbed by the mutual sliding deformation of the foams that make up the holding part, which exhibits a special buffering capacity. Kosho 42-45'
Publication No. 12). The feature of this buffering method is that, unlike the method of using molded products molded into a fixed shape, small foams are used as individual pieces to fit the outer shape of the contents, and a holding part with a large bulk volume is used. It is also known as an economical buffering method.

このバラ状緩衝方法に利用される、ひも状以外の形状を
有する発泡体としては、例えば縦、横、厚みの三軸方向
の断面のいずれかが、S、O,Y、H,T、8、白字状
などの形状を有する小形発泡体などが広く知られている
(特公昭47−30102号公報、゛特開昭54−14
9580号公報)。
For example, the foam having a shape other than a string shape used in this bulk cushioning method has a cross section in the three axes of length, width, and thickness of S, O, Y, H, T, 8 , small foams having shapes such as white letters are widely known (Japanese Patent Publication No. 47-30102, Japanese Patent Publication No. 54-14
9580).

これらの小形発泡体として、ポリスチレンを密度約10
〜60Kg/nlに発泡した硬質発泡体が、表面の平滑
性や剛性的強じん性などの面で優れていることから多用
されている。
These small foams are made of polystyrene with a density of about 10
Rigid foams foamed to ~60 kg/nl are often used because they are excellent in terms of surface smoothness, rigidity, and toughness.

しかしながら、近年、ポリスチレン発泡体を焼却すると
きに生じる多量の煤煙を嫌うことから、燃焼時の煤煙の
少ないMMA系樹脂を発泡させて、これに代替させよう
とすることが試みられている。
However, in recent years, since the large amount of soot generated when polystyrene foam is incinerated is disliked, attempts have been made to replace it by foaming MMA-based resin, which generates less soot when burned.

例えばMMA系樹脂のもつ発泡の困難性を緩和するため
に、MMA系樹脂内にスチレン系樹脂成分を共存させて
発泡体を得る方法が提案されている(特公昭51−24
307号公報、特公昭51−27264号公報)。
For example, in order to alleviate the difficulty of foaming of MMA resin, a method has been proposed in which a styrene resin component is made to coexist in MMA resin to obtain a foam (Japanese Patent Publication No. 51-24
307, Japanese Patent Publication No. 51-27264).

しかしながら、この技術をそのまま利用して小形発泡体
を作成し、これをずシ緩衝包装に用いて運搬、輸送に供
するとき、廃泡体にかかる内容物の衝撃荷重や〈9返し
の震動衝撃によりで、発泡体の折損や破損が多発しそ荷
動きが生じ、目標どおりのすり緩衝能を発揮することが
できず、この小形発泡体は実用に供するには十分に満足
しうるものではない。この現象は小形発泡体の形状がひ
も状である場合、特に著しい。
However, when using this technology as is to create small foams and using them in waste cushioning packaging for transportation, the impact load of the contents on the waste foams and the As a result, the foam frequently breaks or breaks, causing load movement, and is unable to exhibit the desired abrasion-absorbing ability, so that this small foam is not fully satisfactory for practical use. This phenomenon is particularly noticeable when the small foam has a string-like shape.

本発明者らは、前記の現象は発泡適性の悪い樹脂を無理
な状態で発泡させるときに生じる気泡構造の内部ひずみ
や表面状態によるものであり、またその現象はMMA系
樹脂発泡体全般の問題であると考え、M′MA系樹脂の
本質に合った新しい発泡方法を開発することによって、
従来、発泡剤を含有することが困難とされ、また発泡剤
とともに押出しても良質彦発泡体が得られないとされて
いたM’MA系樹脂から成る、実用的に優れたバラ状緩
衝性を発揮しつる小形発泡体を提供すべく鋭意研究を重
ねた結果、発泡前の樹脂の含水率が発泡に影#全与える
こと、また密度、破損減耗度及び圧縮回復率が特定範囲
の値であるMMAMM系樹脂う状小形発泡体がその目的
を達成しうることを見出し、この知見に基づいて本発明
を完成するに至った。
The present inventors believe that the above phenomenon is due to the internal strain and surface condition of the cell structure that occurs when a resin with poor foamability is forced to foam, and that this phenomenon is a general problem for MMA resin foams. By developing a new foaming method that suits the essence of M'MA resin,
Conventionally, it was difficult to contain foaming agents, and it was said that good quality Hiko foam could not be obtained even when extruded with foaming agents.It is made of M'MA resin, which has excellent practical bulk cushioning properties. As a result of extensive research in order to provide a small foam with excellent performance, we have found that the moisture content of the resin before foaming has a full effect on foaming, and that the density, breakage loss, and compression recovery rate are within specific ranges. It was discovered that a small MMAMM-based resin foam can achieve the objective, and based on this knowledge, the present invention was completed.

すなわち、本発明は、密度10〜60 Kg / tr
?、破損減耗度15〜50%及び圧縮回復率10〜60
%の範囲の値を有し、かつかさ高集合体を形成しうる形
状構造を有するMMA系樹脂バラ′$緩衝性小形発泡体
、及び該小形発泡体を製造するに当知まず溶融押出工程
においてMMA系樹脂に揮発性有機発泡剤を混線含有さ
せたのち、この混線物を押し出し可及的速やかに40℃
以下の温度に冷却して発泡性MM’AMMA系樹脂体を
形成させ、次いでこの小形体を65〜80℃の温度をM
する温水中において、5〜60分間応力緩和を行い、続
いて該小形体を密封容器内に充填してその含水率を0.
5〜1.8重量%の範囲に調湿したのち、基材樹脂の変
形温度以上の温度に加熱して発泡させることを特徴とす
るMM’A糸樹脂バラ状緩衝性小形元泡体の製造方法を
提供するものである0本発明において用いられるMMA
系樹脂としては、好1しくはメタンIJ [メチル単位
85重量%以上を含有するホモポリマー、コポリマー、
ターポリマー及び混合ポリマーなどが挙げられる。寸だ
、MMA系樹脂に15重量%以下の量で含有しうる他の
単量体単位としては、例えばメタクリル酸エチル、メタ
クリル酸ブチルなどのメタクリル酸アルキルエステル単
位、アクリル酸メチル、アクリル酸エチル、アクリル酸
ブチルなどのアクリル酸アルキルエステル単位、スチレ
ン、α−メチルスチレンなどのビニル芳香族炭化水素単
位などが挙けられる。
That is, the present invention has a density of 10 to 60 Kg/tr
? , damage loss rate 15-50% and compression recovery rate 10-60
% and has a shape structure capable of forming a bulky aggregate, and to produce the small foam, the MMA is first melt-extruded in a melt extrusion process. After adding a volatile organic blowing agent to the resin, extrude the mixed material and heat the mixture to 40°C as soon as possible.
A foamable MM'AMMA resin body is formed by cooling to the following temperature, and then the small body is cooled to a temperature of 65-80°C.
Stress relaxation is performed for 5 to 60 minutes in warm water, and then the small body is packed into a sealed container to reduce its water content to 0.
Production of a small cushioning foam made of MM'A yarn resin, which is characterized by adjusting the humidity to a range of 5 to 1.8% by weight and then foaming it by heating it to a temperature higher than the deformation temperature of the base resin. MMA used in the present invention which provides a method
The system resin is preferably methane IJ [homopolymer, copolymer containing 85% by weight or more of methyl units,
Examples include terpolymers and mixed polymers. Other monomer units that can be contained in the MMA resin in an amount of 15% by weight or less include, for example, methacrylic acid alkyl ester units such as ethyl methacrylate and butyl methacrylate, methyl acrylate, ethyl acrylate, Examples include acrylic acid alkyl ester units such as butyl acrylate, and vinyl aromatic hydrocarbon units such as styrene and α-methylstyrene.

これらのMMA系樹脂の中で、特にメタクリル酸メチル
とアクリル咳アルキルエステルとの共重合体が、機械的
強度や血・j候性などに優れていることから亀本発明の
発泡体用の基材樹脂として好ましい。
Among these MMA-based resins, a copolymer of methyl methacrylate and acrylic alkyl ester is particularly suitable as a base material for the foam of the present invention because it has excellent mechanical strength and resistance to blood and dirt. Preferred as a resin.

また、本発明において用いられる揮発性有慎発泡剤は、
常圧における沸点が一30〜100℃の範囲内にある炭
化水素類が好ましく、このようなものとしては、例えば
プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、石
油エーテルなどの脂肪族炭化水素、シクロペンタン、ジ
シクロヘキザンなどの環状脂肪族炭化水素、塩化メチル
、塩化エチル、臭化メチル、ジクロロジフルオロメタン
、1.2−ジクロロテトラフルオロエタン、モノクロロ
トリフルオロエタンなどのハロゲン化炭化水素が挙げら
れる。
In addition, the volatile conservative blowing agent used in the present invention is
Hydrocarbons having a boiling point in the range of 130 to 100°C at normal pressure are preferred, such as aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, petroleum ether, and cyclopentane. , cyclic aliphatic hydrocarbons such as dicyclohexane, halogenated hydrocarbons such as methyl chloride, ethyl chloride, methyl bromide, dichlorodifluoromethane, 1,2-dichlorotetrafluoroethane, and monochlorotrifluoroethane.

次に1本発明の製造方法の詳細について、添附図面に従
って説明する。
Next, details of the manufacturing method of the present invention will be explained with reference to the accompanying drawings.

第1図は本発明の製造工程図であって、この図に示すと
おり、まず前記のMMA系樹脂を所定量の核剤や滑剤と
ともに押出機に供給し、との押出機系内で前記の発泡剤
と混株混合して調温後系外へ押し出す。このように発泡
剤の樹脂への含浸を押出機系内で行うのは、樹脂中に発
泡剤を均質含浸させるためであシ、これによって従来発
泡剤の含浸が実質的に不能といわれていたPMMAMM
A系樹脂も0]′能である。この際混線効果のよい押出
機を用いて系内に滞留時間を比較的長く設定することか
望ましく、また、基材樹脂の吸水率を0.2%以下に調
整しておく゛ことが、気泡分布を均一に揃えるだめの発
泡剤の分散をよくする上で望ましい。さらに押し出は、
樹脂の発泡や発泡剤の逸散が極力少なくなるような条件
下で行うことが望ましい。
FIG. 1 is a manufacturing process diagram of the present invention, and as shown in this figure, first, the above-mentioned MMA-based resin is supplied to an extruder together with a predetermined amount of a nucleating agent and a lubricant. Mix the mixture with the foaming agent and extrude it out of the system after adjusting the temperature. The reason why the blowing agent is impregnated into the resin in the extruder system is to homogeneously impregnate the blowing agent into the resin, which was previously said to be virtually impossible. PMMAMM
A-based resin also has 0]' ability. At this time, it is desirable to use an extruder with good crosstalk effect and set the residence time in the system to be relatively long, and also to adjust the water absorption rate of the base resin to 0.2% or less. This is desirable in order to improve the dispersion of the blowing agent so that the distribution is uniform. Furthermore, extrusion is
It is desirable to carry out the process under conditions that minimize foaming of the resin and diffusion of the foaming agent.

次に、このようにして押し出された発泡剤含有4I/1
脂は冷却槽へ導いて可及的速やかに40℃以下の温度に
冷却固化したのち、小形に切断して発泡性MMA系樹脂
の小形体を形成させる。通常、MMA系樹脂においては
押出系で発泡剤と混練した樹脂をその−1ま押出発泡さ
せると気泡径が大きくかつ不(iijいなものになるの
で、本発明においてはいったん冷却固化して発泡性樹脂
小形体する。
Next, the blowing agent-containing 4I/1 thus extruded
The fat is led to a cooling tank, where it is cooled and solidified as quickly as possible to a temperature of 40° C. or lower, and then cut into small pieces to form small bodies of foamable MMA resin. Normally, in the case of MMA resin, if the resin is kneaded with a foaming agent in an extrusion system and then extruded and foamed, the cell diameter becomes large and unsatisfactory. Small resin body.

この際、冷却は40℃以下の冷水を用いて速やかに行い
、樹脂小形体を発泡させないようにすること力i重要で
ある。まだ、小形体への切断は、必要に応じ冷却前又は
冷却中に行うことも、できる。
At this time, it is important to quickly cool the resin using cold water of 40° C. or lower to prevent foaming of the small resin body. However, cutting into small bodies can also be carried out before or during cooling, if desired.

g 2− (a)図は、従来の押出発泡法で得られたM
MA系樹脂発泡体断面の電子顕微鏡写真であって蔦この
図から分るように押出発泡法で得られたMMA系樹脂発
泡体は、平均気泡径が大きく、かつ不揃いでボイド部分
の発生も認められる。この現象は、樹脂の流動的粘弾特
性が気泡成長条件に適しておらず、MMA系樹脂は従来
の押出発泡法では均質な発泡が行われ難いことを示して
いる。
g2-(a) Figure shows M obtained by conventional extrusion foaming method.
This is an electron micrograph of a cross section of an MA resin foam.As can be seen from this figure, the MMA resin foam obtained by the extrusion foaming method has a large average cell diameter, is irregular, and has some voids. It will be done. This phenomenon indicates that the fluid viscoelastic properties of the resin are not suitable for the cell growth conditions, and that it is difficult for MMA-based resins to be homogeneously foamed using the conventional extrusion foaming method.

次に、前記で得られた発泡性MMA系樹脂の小形体を温
水槽に導き、65〜80℃の温度を有する温水中におい
て、押出−冷却過程に生じたひずみ応力を緩和させる(
アニール工程)。この処理は樹脂小形体が無拘束な状態
で行われ、該樹脂小形体に十分な水分を与えるために6
5〜80℃の温水中で行われる。
Next, the small bodies of expandable MMA-based resin obtained above are introduced into a hot water bath, and the strain stress generated during the extrusion-cooling process is relaxed in hot water having a temperature of 65 to 80°C.
annealing process). This treatment is carried out with the small resin bodies unrestrained, and in order to provide sufficient moisture to the small resin bodies,
It is carried out in warm water at 5-80°C.

このようにして温水中で応力緩和処理された発泡性MM
A系樹脂小形体を調湿槽の密封容器内に充填してその含
水率を0.5〜1.8重量%の範囲に調湿する0この操
作は水分を樹脂中に均質に分散させ、かつ含水率が一定
範囲内になるように調湿するためのもので、小径気泡の
揃った低WV発泡体を得る上で必女な操作でめる。
Expandable MM subjected to stress relaxation treatment in warm water in this way
Fill the A-based resin small bodies into a sealed container of a humidity conditioning tank and control the moisture content to a range of 0.5 to 1.8% by weight. This operation homogeneously disperses moisture in the resin. It is also used to control humidity so that the moisture content is within a certain range, and is necessary for obtaining a low WV foam with uniform small-diameter cells.

第3図は、基材樹脂として85℃の熱変形温度を有する
、メタクリル酸メチル単位88重量%とアクリル酸メチ
ル単位12重量%を含有した共重合体を、発泡剤として
n−ペンタンを用いた場合の発泡性樹脂の含水率と得ら
れた発泡体の気泡径及び密度との関係を示すグラフであ
る。この図から判るように含水率が0.5重量%未7両
では発泡体の気泡径は大きくなりすき1一方]、8重量
%を超えると発泡体の密度が犬きくなシすぎて、本発明
の目的とする元?包1本が得られない。
Figure 3 shows a copolymer containing 88% by weight of methyl methacrylate units and 12% by weight of methyl acrylate units and having a heat distortion temperature of 85°C as the base resin, and using n-pentane as the blowing agent. It is a graph showing the relationship between the water content of the foamable resin and the cell diameter and density of the obtained foam. As can be seen from this figure, if the moisture content is less than 0.5% by weight, the cell diameter of the foam will become large (1), but if it exceeds 8% by weight, the density of the foam will be too low, and What is the purpose of the invention? I can't get one package.

この調湿操作は)密封容器内に充填した発泡性樹脂小形
体に調湿、調温した気体を循環させることによって行わ
れ、その最適条件は使用する基材樹脂の棟団や発泡剤の
種類により左右されるが、温度を而めすさると発泡剤の
逸散量が増すので、常温に近い低温で2〜3日間といっ
た長時間で行うことが望ましい。また、この操作をバリ
ヤ性小袋の中で行って、貯厭工程の一部とすることもで
きる。
This humidity control operation is performed by circulating controlled humidity and temperature gas through a small foamable resin filled in a sealed container, and the optimum conditions are the base resin used and the type of blowing agent. Although it depends on the temperature, the amount of foaming agent dissipated increases as the temperature is lowered, so it is desirable to carry out the process at a low temperature close to room temperature for a long period of time, such as 2 to 3 days. This operation can also be done in a barrier pouch and become part of the storage process.

次に、前記のづ閑作で調湿された発泡性樹脂小形体を、
水蒸気又は熱風によって基材樹脂の変形温度以上の温度
に加熱して発泡させ、目的とするバラ状緩衝性小形発泡
体を得る。得られた発泡体の気泡径や密度は発泡温度に
よってがなり左右され、小径気泡を有する低密度発泡体
を得るためには、85〜110℃の範囲の加熱温度が好
ましく、特に、この範囲内においてより高温で短時間加
熱することか車首しい。
Next, the foamable resin small body whose humidity was adjusted in the above-mentioned Nozuhansaku,
The foam is heated by steam or hot air to a temperature higher than the deformation temperature of the base resin to obtain the intended small cushioning foam. The cell diameter and density of the obtained foam depend on the foaming temperature, and in order to obtain a low-density foam having small-diameter cells, a heating temperature in the range of 85 to 110°C is preferable, and in particular, heating temperature within this range is preferred. The head of the vehicle should be heated at a higher temperature for a shorter period of time.

第4図は、発泡温度、時間と得られた発泡体の密度との
関係を示すグラフであり、ポリスチレンの場合と対比し
て示している。第4図がら刊るようにポリスチレンの場
合はある程度加熱を継続しても、低密度捷で発泡が進み
安定するのに対し、MMp、予樹脂の場合は、加熱の継
続がたちまち収縮現象につながるので、発泡体の密度の
調節は加熱温度を変えることによって行うことが望まし
い。
FIG. 4 is a graph showing the relationship between the foaming temperature and time and the density of the obtained foam, and is shown in comparison with the case of polystyrene. As shown in Figure 4, in the case of polystyrene, even if heating is continued to a certain extent, foaming progresses and stabilizes due to low density sintering, whereas in the case of MMp and pre-resin, continued heating immediately leads to shrinkage. Therefore, it is desirable to adjust the density of the foam by changing the heating temperature.

このような本発明の製造方法を用いることによって、目
的とする密度10〜60 Ky / n? 、破損減耗
度15〜50%及び圧縮回復率10〜6o免を有し、か
つかさ商業合体を形成しうる形状構造を有するMMA系
、i#f脂バラ状緩衝性小形発泡体を得ることができる
By using the manufacturing method of the present invention, the desired density of 10 to 60 Ky/n? It is possible to obtain an MMA-based i#f oily bulk cushioning small foam having a breakage loss rate of 15 to 50%, a compression recovery rate of 10 to 6 degrees, and a shape structure capable of forming a commercial umbrella. can.

第2−(b)図は本発明方法によって得られた発泡体断
面の電子顕微説写真、第2−(c)図は本発明方法にお
いて調湿操作を行わずに得た発泡体のそれであって、こ
れらの図から分るように、本発明方法によって得られた
発泡体は、前記の直接押出発泡して得た発泡体(第2−
(a)図)や調湿操作を行わずに得た発泡体と比戟して
その表面構造及び気泡壁の内部構造が相違している。
Figure 2-(b) is an electron micrograph of a cross-section of a foam obtained by the method of the present invention, and Figure 2-(c) is a photograph of a foam obtained by the method of the present invention without humidity control. As can be seen from these figures, the foam obtained by the method of the present invention is different from the foam obtained by the above-mentioned direct extrusion foaming (second-
The surface structure and the internal structure of the cell walls are different from those obtained in Figure (a) and the foam obtained without humidity control.

例えは、第2−(b)図の発泡体表面は、押しつぶされ
た形の比較的厚い気泡J模でな9、発泡体内部の1固々
の気/fM INもしっかりとこれを支えるように形成
されているのに対し、第2−(C)図の発泡体表面の気
泡j模は薄く、そhを支える内部気泡膜の個々にも屈曲
がみられる0 −本発明者らは、このような発泡体の構造を適確に示す
指標について棟々検討した結果、発泡体の構造は密IW
、平均気泡径の他に、気泡分布、独立気泡率1気泡形状
1気泡膜のしわ一気泡膜の厚み1気泡内圧1表面部気泡
の膜厚などの1事々の状態が存在し、かつこれらが組合
わさって発泡体の特性を司っており、これらすべての計
測化や正確な文章表現が困難であるので、別の構造指標
として破損減耗度及び圧縮回復率を採用することにしだ
For example, the surface of the foam shown in Figure 2-(b) is made up of relatively thick compressed air bubbles, and the solid air/fM IN inside the foam is also firmly supported. In contrast, the bubbles on the surface of the foam shown in Figure 2-(C) are thin, and the individual internal bubble membranes that support them are also bent. As a result of extensive investigation into indicators that accurately indicate the structure of such foam, the structure of the foam is dense IW.
In addition to the average bubble diameter, there are other conditions such as bubble distribution, closed cell ratio, bubble shape, wrinkles in the bubble membrane, thickness of the bubble membrane, bubble internal pressure, bubble thickness at the surface, and these conditions. The combination of these factors controls the properties of the foam, and since it is difficult to measure all of these and express them accurately in words, we decided to use the degree of loss at breakage and the compression recovery rate as other structural indicators.

ここでいう破損減耗度は、動的緩衝特性(’JISZ−
0235)試験機を用い、15X15x、15crnの
箱に厚さ6tMで詰込かさ密度となるように試料を入れ
て、60ctnの而きから51/cr/rの応力を1分
間隔で連続5回落下したのちの破損した試料重量を測゛
定し、次に示す式で求めた値である。
The degree of damage and abrasion referred to here is based on the dynamic buffer characteristics ('JISZ-
0235) Using a testing machine, place a sample in a 15x15x, 15 crn box with a thickness of 6 tM and a packing density of 60 ctn, then apply a stress of 51/cr/r five times at 1-minute intervals. This value was obtained by measuring the weight of the broken sample after dropping it, and using the formula shown below.

壕だ、圧縮回復率は、JISZ−0234−A法に準じ
15X15x15t1nの圧縮箱に詰込かさ密度の数値
となるように試料を入れ、圧縮速度12±3mm/M#
で50%圧縮佼の残留ひずみ量(8%)を測定し、次に
示す式で求めた値である。
The compression recovery rate is determined by placing the sample in a compression box of 15 x 15 x 15 t1n to the value of the bulk density according to the JISZ-0234-A method, and compressing at a speed of 12 ± 3 mm/M#.
The amount of residual strain (8%) of the 50% compressed case was measured and the value was calculated using the following formula.

本発明のMMA系樹脂バラ状緩衝性小形発泡体は、密度
10〜60Kp/m’、破損減耗度15〜50%及び圧
縮回復率10〜60%を有し、かつかさ高集合体を形成
しうる形状構造を有するものであって、このような特性
を有するバラ状小形発泡体は、第1表に示すように良好
なずシ緩衝性能を有している。
The MMA-based resin bulk cushioning small foam of the present invention has a density of 10 to 60 Kp/m', a breakage loss rate of 15 to 50%, and a compression recovery rate of 10 to 60%, and forms a bulky aggregate. As shown in Table 1, small rose-shaped foams having a transparent shape structure and such characteristics have good tear cushioning performance.

第1表は、本発明の小形発泡体をすり緩衝の実用に供し
たときの緩衝性能を比較品と対比して示すものである。
Table 1 shows the shock absorbing performance of the small foam of the present invention when it is used for practical use as a shock absorber, in comparison with a comparative product.

第    1    表 第1表から分るように、緩衝材として採用される発泡体
の密度がlθ〜60Kg/n?であっても、破損減耗度
が15係未満では内容物の表面に傷が付きやすく、また
破損減耗度が50係を超えると緩衝能が低下して内容物
の破損率が高くなる。
Table 1 As can be seen from Table 1, the density of the foam used as a cushioning material is lθ~60Kg/n? However, if the degree of loss at breakage is less than 15, the surface of the contents is likely to be damaged, and if the degree of loss at breakage exceeds 50, the buffering capacity will decrease and the breakage rate of the contents will increase.

また、密度がlO〜60Kg/lri、破損減耗度が1
5〜50係の範囲内にあっても、圧縮回復率が10〜6
0係の範囲外では緩衝性能が悪く内容物の破損率が高く
なる。
In addition, the density is 1O~60Kg/lri, and the degree of wear and tear is 1
Even if it is within the range of 5 to 50, the compression recovery rate is 10 to 6.
Outside the 0 coefficient range, the buffering performance is poor and the damage rate of the contents increases.

本発明の小形発泡体は、かさ高集合体を形成しつる形状
構造を有するものであシ、特に単位空間に対する樹脂量
を最小限にする観点からはひも形状のものが、包装時の
充填の容易性を重視する観点からはS形、C形、8字形
などの形状を有するものが好ましい。
The small foam of the present invention has a vine-shaped structure that forms a bulky aggregate.In particular, from the viewpoint of minimizing the amount of resin per unit space, a string-shaped foam is recommended for filling during packaging. From the viewpoint of emphasizing ease of use, those having shapes such as S-shape, C-shape, and 8-shape are preferable.

本発明のMMA系樹脂バラ状緩衝性小形発泡体は、密度
、破損減耗度及び圧縮回復率が特定範囲の値であり、か
つかさ高集合体を形成しうる形状構造を有していて、そ
れを集合させたとき良好なすり緩衝能を発揮し、緩衝材
として優れたものである。また、本発明の発泡体は基材
樹脂としてMMA系樹脂を用いているため、ポリスチレ
ン発泡体と異なp焼却時における煤煙の発生量が少ない
。゛ 次に実施例によって本発明をさらに詳細に説明する。
The small MMA-based resin bulk cushioning foam of the present invention has a density, a loss rate at breakage, and a compression recovery rate within a specific range, and has a shape structure capable of forming a bulky aggregate. It exhibits good abrasion-absorbing ability when aggregated, making it an excellent cushioning material. Furthermore, since the foam of the present invention uses an MMA resin as the base resin, it generates less soot and smoke when incinerated, unlike polystyrene foam.゛Next, the present invention will be explained in more detail with reference to Examples.

なお、例中における発泡体密度、平均気泡径、詰込かさ
密度の測定、及び緩衝材としての実用試験の評価は次の
方法に従った。
In addition, the following methods were used to measure the foam density, average cell diameter, and packed bulk density, and to evaluate the practical test as a cushioning material.

(1)発泡体密度 重量W(Kq)を測定した発泡体の体積■(−)をピ□
クツメーターで測定し、次式により求めた。
(1) Volume of the foam whose density weight W (Kq) was measured ■ (-)
It was measured with a shoemeter and calculated using the following formula.

発泡体密度(Kg/i)=  □ ■ (2)平均気泡径 発泡体の一方向と、それと直行する同一平面上における
縦方向及び横方向の3方向のある長さt(胴)当りの気
泡の数を読み、次式により求めた。
Foam density (Kg/i) = □ ■ (2) Average cell diameter Cells per length t (body) in one direction of the foam and three directions, vertical and horizontal, on the same plane perpendicular to that direction It was calculated using the following formula.

ただし、小数点以下2桁を四捨五入する。However, round off to two decimal places.

tは2咽以上とする。t should be 2 or more throats.

(3)詰込かさ密度 内寸30X30X30crnの容器に試料を入れて29
.6 X 29..6crnの上蓋をのせ、1.7?/
lriに相当する静荷重下で厚さが30crnとなるよ
うに満たしたときの試料の重量W (Kg)を測定し、
次式により求めた。
(3) Put the sample into a container with packing density of 30 x 30 x 30 crn.
.. 6 x 29. .. Place the 6crn top lid on, 1.7? /
Measure the weight W (Kg) of the sample when it is filled to a thickness of 30 crn under a static load equivalent to lri,
It was calculated using the following formula.

(4)緩衝材としての実用試験評価方法■ 被包装物 壁かけ電池時11(s社製、外枠は合板木調仕上げスチ
ロール樹脂、総重量1.9Kg、大きさ30×40×5
0、許容加速度−落下高さ60crnで50G) @ 梱包形態 A式ダンボール箱(AフルートK 220、内寸45 
X 55 X 15 cm )の中央に被包装物を位置
させてかさ密度に相当する緩衝材を詰込み、該被包装物
を個装した。完成断面図を第5図に示す。
(4) Practical test evaluation method for use as a cushioning material■ Item to be packaged: wall-mounted battery 11 (manufactured by S company, outer frame is made of plywood wood-like finish styrene resin, total weight 1.9 kg, size 30 x 40 x 5
0, allowable acceleration - 50G at fall height 60 crn) @ Packing form A type cardboard box (A flute K 220, inner size 45
The object to be packaged was placed in the center of the box (x 55 x 15 cm), and a cushioning material corresponding to the bulk density was packed, and the object was individually packaged. A completed sectional view is shown in Figure 5.

θ 輸送方法 各緩衝材ごとに10個の前記梱包物を用意し、トラック
便で鈴鹿〜東京間を往復し、た。荷の積み降しは鈴鹿及
び東京で一度づつ行った。(鈴鹿〜岡崎は国道1号線を
、岡崎〜東京は東名高速を走路とした) O評価方法及び基準 ・被包装物の傷つきは外枠のすシ傷の発生及び表面状態
の変化を観察して評価した。
θ Transportation Method Ten packages were prepared for each cushioning material and transported back and forth between Suzuka and Tokyo by truck. Loading and unloading was carried out once in Suzuka and once in Tokyo. (National Route 1 was used as the route from Suzuka to Okazaki, and Tomei Expressway was used as the route between Okazaki and Tokyo.) O evaluation method and criteria - Damage to the packaged items was determined by observing the occurrence of scratches on the outer frame and changes in the surface condition. evaluated.

・変形破損はガラス部のひび割れ、針の曲シ、外枠の角
及び稜などの変形破損を検査して評価した。
- Deformation damage was evaluated by inspecting cracks in the glass part, bent needles, corners and edges of the outer frame, etc.

実施例1 熱風循環式の乾燥機を用いて70℃で24時間乾燥シた
MMA系樹脂ペレット(メタクリル酸メチル単位92重
量係及びアクリル酸メチル単位8重量係を含有した共重
合体、熱変形温度87℃、吸水率0.08 % )を、
滑剤であるステアリン酸カルシウム0.2重量%ととも
に230℃に調整された押出機に自動供給して熱可塑化
したのち、押出機に接続され160℃に調整された混合
機に圧送し、一方MMA系樹脂100重量部に対して1
0重量部のn−ペンタン発泡剤をこの混合機に圧入して
MMA系樹脂と発泡剤とを混練する。次いでこの混線物
を混合機に接続した細ノズルから押し出し、30℃の水
で急冷しながら引き取り、細断して径1+am、長さ5
0mmの細ひも状の発泡性小形体を得た。次にこの小形
体を80℃の温水中で5分間アニールしたのち、10℃
で100係の湿度を有する密封容器内に充填し、72時
間調湿した。この調湿発泡性小形体の含水率は0.5重
量%であった。
Example 1 MMA resin pellets (copolymer containing 92 weight units of methyl methacrylate units and 8 weight units of methyl acrylate units, heat distortion temperature) dried at 70°C for 24 hours using a hot air circulation dryer 87℃, water absorption rate 0.08%),
0.2% by weight of calcium stearate, a lubricant, was automatically supplied to an extruder adjusted to 230°C for thermoplasticization, and then fed under pressure to a mixer connected to the extruder and adjusted to 160°C. 1 per 100 parts by weight of resin
0 parts by weight of n-pentane blowing agent is press-fitted into this mixer to knead the MMA resin and the blowing agent. Next, this mixed material is extruded through a fine nozzle connected to a mixer, taken out while rapidly cooling with 30°C water, and cut into pieces with a diameter of 1+am and a length of 5mm.
A small foamed body in the form of a thin string of 0 mm was obtained. Next, this small body was annealed in warm water at 80°C for 5 minutes, and then heated at 10°C.
The mixture was filled into a sealed container with a humidity of 100 parts, and the humidity was controlled for 72 hours. The moisture content of this humidity-controlled foamable small body was 0.5% by weight.

これを95℃の温水中で20秒間加熱した。得られた小
形発泡体は密度60.に9/iで0.3mmφの均一な
気泡を有するものであシ、そのm1面の電子顕微鏡写真
を第2− (b)図に示す。
This was heated in warm water at 95°C for 20 seconds. The resulting small foam has a density of 60. Figure 2-(b) shows an electron micrograph of the m1 surface of the specimen, which has uniform bubbles of 9/i and 0.3 mmφ.

この小形発泡体の構造指標は、詰込かさ密度12 Kg
 / tt?にあって、圧縮回復率10係、破損減耗度
15%を示しだ。この小形発泡体を用い、詰込か′さ密
度12Kg/iに揃えて前記の実用緩衝評価試験を行っ
たところ、被包装物の傷つきや変形破損をまったく与え
ない良好な緩衝性能を発揮した。
The structural index of this small foam is a packed bulk density of 12 Kg.
/tt? It shows a compression recovery rate of 10% and a damage loss rate of 15%. When the above-mentioned practical cushioning evaluation test was carried out using this small foam at a packed density of 12 kg/i, it exhibited good cushioning performance without causing any damage or deformation to the packaged items.

比較例1 実施例1におけるアニール工程、調湿工程を省略し、発
泡条件をioo℃のスチームで1分間加熱に変更する以
外は、実施例1とまったく同様の方法を用いて小形発泡
体を得た。
Comparative Example 1 A small foam was obtained using exactly the same method as in Example 1, except that the annealing step and humidity control step in Example 1 were omitted, and the foaming conditions were changed to heating with steam at 10°C for 1 minute. Ta.

得られた小形発泡体は密度60Kg/m’で平均気泡径
0.8mmφの不均一な気泡であシ、その断面の電子顕
微鏡写真を第2−(c)図に示す。
The obtained small foam had non-uniform cells with a density of 60 kg/m' and an average cell diameter of 0.8 mm, and an electron micrograph of its cross section is shown in Figure 2-(c).

この小形発泡体の構造指標は詰込かさ密度13Kq/m
’にあって、圧縮回復率7係、破損減耗度18%であっ
た。この小形発泡体を用い前記の実    ゛用緩衝評
価試験を行ったところ、被包装物の外枠にすシ傷が生じ
たもの1個、ガラス部にひび割れが発生したものが2個
あり、このものは不満足な緩衝性能を示す発泡体であっ
た。
The structural index of this small foam is a packing density of 13Kq/m
', the compression recovery rate was 7% and the damage loss rate was 18%. When we conducted the above-mentioned practical buffer evaluation test using these small foams, we found that one item had scratches on the outer frame of the packaged item, and two items had cracks on the glass part. The material was a foam exhibiting unsatisfactory cushioning performance.

実施例2 実施例1で得た小形発泡体を20℃で3日間熟成したの
ち、95℃の温水中で20秒間加熱して2次発泡を行っ
た。
Example 2 The small foam obtained in Example 1 was aged at 20°C for 3 days, and then heated in warm water at 95°C for 20 seconds to perform secondary foaming.

得られた発泡体は密度19Kg/lrlで0.5叫φの
均一な気泡を有するものであった。このものの構造指標
は、詰込かさ密度7に27−にあって、圧縮回復率15
係、破損減耗度43係であった。この小形発泡体を用い
て前記の実用緩衝評価試験を行ったとζろ、1個の段ボ
ール箱の被包装物が中央から隅にl crn移動してい
たが、いずれも被包装物の傷つきや変形破損を与えない
良好なものであった。
The resulting foam had a density of 19 kg/lrl and uniform bubbles with a diameter of 0.5 mm. The structural index of this product is a packing density of 7 to 27-, and a compression recovery rate of 15.
The damage and wear and tear rating was 43. When we conducted the above-mentioned practical buffer evaluation test using this small foam, we found that the packaged items in one cardboard box moved l crn from the center to the corners, but in both cases the packaged items were damaged or deformed. It was in good condition with no damage.

比較例2 比較例1で得た小形発泡体を20℃で3日間熟成したの
ち、ioo℃のスチームで1分間加熱して二次発泡を行
った。
Comparative Example 2 The small foam obtained in Comparative Example 1 was aged at 20° C. for 3 days, and then heated with steam at io0° C. for 1 minute to perform secondary foaming.

得られた発泡体は密度20kg/n?で平均気泡径1.
0咽φの不均一な気泡であった。このものの構造指標は
詰込かさ密度9に9/dにあって、圧縮回復率10襲、
破損減耗度58チであった。この小形発泡体を用いて実
用緩衝性評価試験を行ったところ、2個の段ボール箱中
の被包装物が中央から隅に3〜5m移動しておシ、外枠
の角、稜のつぶれたものが2個、そのうちガラスのひび
割れが1個あり、他に外枠のすり傷の発生したものが3
個あって、このものは内容物保護に適さないものであっ
た。
The density of the obtained foam is 20 kg/n? The average bubble diameter is 1.
The bubbles were non-uniform and had a diameter of 0. The structural index of this product is packing density 9 to 9/d, compression recovery rate 10 times,
The damage and wear rate was 58chi. When we conducted a practical cushioning property evaluation test using this small foam, we found that the packaged items in the two cardboard boxes moved 3 to 5 meters from the center to the corners, causing the corners of the boxes, corners of the outer frame, and edges to collapse. There are two items, of which one has cracked glass, and three others have scratches on the outer frame.
However, this product was not suitable for protecting the contents.

実施例3 実施例1におけるアニール工程を65℃の温水中で1時
間及び調湿工程を25℃で100チの湿度において48
時間行うことに変更する以外は、実施例1と同様にして
含水率14重量係の調湿発泡性小形体を得た。この小形
体を100℃のスチームで20秒間加熱した。得られた
小形発泡体は密度40 kg/ iで0.1 ynmφ
の均一な微細気泡を有し、その構造指標は詰込かさ密度
10 kg/ rn’にあって、圧縮回復率55%、破
損減耗度20%であった。
Example 3 The annealing process in Example 1 was performed in warm water at 65°C for 1 hour, and the humidity conditioning process was performed at 25°C and a humidity of 100°C for 48 hours.
A humidity-controlled foamable small body with a moisture content of 14% by weight was obtained in the same manner as in Example 1, except that the experiment was carried out for a certain period of time. The small bodies were heated with steam at 100° C. for 20 seconds. The obtained small foam has a density of 40 kg/i and a diameter of 0.1 ynmφ.
It had uniform microcells, its structural index was a packed bulk density of 10 kg/rn', a compression recovery rate of 55%, and a loss rate at breakage of 20%.

この小形発泡体を用いて前記の実用緩衝性評価試験を行
ったところ、被包装物に傷つきや変形破損を与えない良
好な緩衝性能を示した。
When the above-mentioned practical cushioning performance evaluation test was conducted using this small foam, it showed good cushioning performance that did not cause damage or deformation damage to the packaged items.

実施例4 実施例3で得た小形発泡体を20℃で3日間熟成したの
ち、100℃のスチームで20秒間加熱して2次発泡を
行った。
Example 4 The small foam obtained in Example 3 was aged at 20° C. for 3 days, and then heated with steam at 100° C. for 20 seconds to perform secondary foaming.

得られた発泡体は密度ttky/++?で0.25II
IIllφの均−表気泡を有しており、このものの構造
指標は詰込かさ密度6kf/I11’にあって、圧縮回
復率60%、破損減耗度50チであった。
The resulting foam has a density ttky/++? at 0.25 II
It had a uniform surface cell size of IIllφ, and its structural index was a packing density of 6 kf/I11', a compression recovery rate of 60%, and a wear rate at breakage of 50 inches.

この小形発泡体を用いて前記の実用緩衝性評価試験を行
ったところ、被包装物に傷つきや変形破損を与えない良
好な緩衝性能を示した。
When the above-mentioned practical cushioning performance evaluation test was conducted using this small foam, it showed good cushioning performance that did not cause damage or deformation damage to the packaged items.

比較例3 実施例1におけるアニール工程、調湿工程を省略するこ
とと、及び発泡条件を100℃のスチームで1分30秒
間加熱することに変更する以外は、実施例1と同様にし
て小形発泡体を得だ。この小形発泡体を20℃で3日間
熟成したのち、95℃の温水で1分30秒間加熱して2
次発泡を行った。
Comparative Example 3 Small foam was produced in the same manner as in Example 1, except that the annealing step and humidity control step in Example 1 were omitted, and the foaming conditions were changed to heating with 100° C. steam for 1 minute and 30 seconds. Get a body. After aging this small foam at 20°C for 3 days, it was heated in hot water at 95°C for 1 minute and 30 seconds.
Next foaming was performed.

得られた発泡体は密度121y/rr/で平均気泡径1
.3闘φの不均一な気泡であり、その構造指標は詰内か
さ密度7kg/Jにあって、圧縮回復率」5チ、破損減
耗度65チであった。
The resulting foam had a density of 121y/rr/ and an average cell diameter of 1
.. It was a non-uniform bubble with a diameter of 3 mm, and its structural index was an internal bulk density of 7 kg/J, a compression recovery rate of 5 cm, and a breakage loss rate of 65 cm.

この小形発泡体を用いて前記の実用緩衝性評価試験を行
ったところ、4個のダンボール箱中の被包i物が中央か
ら隅に3〜5crn移動しておシ、外枠の角、稜のつぶ
れ発生が3個、そのうち2個はガラスにひびが発生して
いた。その他外枠のすり傷の発生したものが4個あった
When we conducted the above-mentioned practical cushioning performance evaluation test using this small foam, we found that the wrapped items in the four cardboard boxes moved 3 to 5 crn from the center to the corners, the corners of the outer frame, and the edges. There were three cases where the glass was crushed, two of which had cracks on the glass. There were also four other items with scratches on the outer frame.

比較例4 実施例1におけるアニール工程を75℃の温水中で10
分間に、調湿工程を20℃で1(10%の湿度において
48時間に、発泡条件を90℃の温水中で1分間にそれ
ぞれ変更する以外は、実施例1とまったく同様にして小
形発泡体を得た。発泡前の調湿発泡性小形体の含水率は
1.3重量%であり、得られた小形発泡体は密度85 
k7/m’で0.1閣φの均一微細な気泡を有するもの
であった。この小形発泡体の構造指標は詰込かさ密度2
’ Okr/ +r/にあって、圧縮回復率68%、破
損減耗度12%を示しだ。
Comparative Example 4 The annealing process in Example 1 was performed in hot water at 75°C for 10
A small foam was produced in exactly the same manner as in Example 1, except that the humidity conditioning step was changed to 48 hours at 20°C (10% humidity) and the foaming conditions were changed to 1 minute in warm water at 90°C. The moisture content of the humidity control foamable small body before foaming was 1.3% by weight, and the obtained small foam had a density of 85.
It had uniform fine bubbles of k7/m' and 0.1 mm diameter. The structural index of this small foam is packed density 2
'Okr/ +r/ shows a compression recovery rate of 68% and a damage loss rate of 12%.

この小形発泡体を用い詰込かさ密度17 ky / m
’に揃えて前記の実用緩衝性評価試験を行ったところ、
被包装物の外枠にすり傷が生じたものが2個あり、この
ものは不満足な緩衝性能を示す発泡体でちった。
Using this small foam, the packing density is 17 ky/m
When we conducted the above-mentioned practical cushioning property evaluation test,
There were two items with scratches on the outer frame of the packaged items, which were made of foam with unsatisfactory cushioning performance.

実施例5 実施[9す1におけるMMA系基材樹脂をスチレン単位
10重量%、MMA単位90重量%を含有した共重合1
41:(熱変形温度90℃)に、アニール工程を75℃
の温水中で10分間に、調湿工程を20℃で100チの
湿度において48時間に、発泡条件を100℃のスチー
ムで20秒間にそれぞれ変更する以外は、実施例1と同
様にして小形発泡体を得た。
Example 5 Copolymerization 1 containing 10% by weight of styrene units and 90% by weight of MMA units in the MMA-based base resin in Example 9-1
41: (Heat distortion temperature 90℃), annealing process at 75℃
A small foam was produced in the same manner as in Example 1, except that the humidity conditioning step was changed to 20° C. and 100° C. humidity for 48 hours, and the foaming conditions were changed to 100° C. steam for 20 seconds. I got a body.

発泡前の調湿発泡性小形体の含水率は1.2重量%であ
り、得られた小形発泡体は密度45に7/lrI″で0
.1mmφの均一微細な気泡を有していた。この小形発
泡体の構造指標は詰込かさ密度10 kg/ rn’に
おって、圧縮回復率30係破損減耗度17%を示しだ。
The moisture content of the humidity control foamable small body before foaming is 1.2% by weight, and the obtained small foam has a density of 45 and 7/lrI'' and 0.
.. It had uniform fine bubbles with a diameter of 1 mm. The structural parameters of this small foam showed a compression recovery rate of 30 and a loss at failure rate of 17% at a packed bulk density of 10 kg/rn'.

この小形発泡体を用いて前記の実用緩衝性評価試験を行
ったところ、被包装物に傷つきや変形破損を与えない良
好な緩衝材であった。
When the above-mentioned practical cushioning property evaluation test was conducted using this small foam, it was found to be a good cushioning material that did not cause damage or deformation damage to the packaged items.

実施例6 実施例1における発泡性小形体の形状をS字状(長さ8
 M、1] 4 +mn、厚み2問)に、アニール工程
を70℃の温水中で30分間に、調湿工程を20℃で1
00チの湿度において55時間に、発泡条件を100℃
のスチームで20秒間にそれぞれ変     ・更する
以外は実施例1とまったく同様にして小形発泡体を得た
。発泡前の調湿発泡性小形体の含水率は1.2重量%で
あり、得られた小形発泡体は密度40ky/y1/で0
.1閣φの微細な気泡を有していた。この小形発泡体を
20℃で3日間熟成したのち、100℃のスチュムで2
0秒間加熱して2次発泡を行った。得られた発泡体は密
度20に9/♂でo、ammφの気泡を有していた。こ
の小形発泡体の構造指標は詰込かさ密度12+y/rn
’にあって、圧縮回復率40係、破損減耗度28係を示
した。
Example 6 The shape of the foamable small body in Example 1 was changed to an S-shape (length 8
M, 1] 4 + mn, thickness 2 questions), the annealing process was performed in warm water at 70°C for 30 minutes, and the humidity conditioning process was performed at 20°C for 1 time.
Foaming conditions at 100°C for 55 hours at a humidity of 0.00°C
A small foam was obtained in exactly the same manner as in Example 1, except that the steam was used for 20 seconds. The moisture content of the humidity control foamable small body before foaming is 1.2% by weight, and the obtained small foam has a density of 40ky/y1/0.
.. It had minute air bubbles of 1 diameter. After aging this small foam at 20℃ for 3 days,
Secondary foaming was performed by heating for 0 seconds. The obtained foam had a density of 20 to 9/♂ and had cells of o, ammφ. The structural index of this small foam is packed density 12+y/rn
', it showed a compression recovery rate of 40 and a damage loss rate of 28.

この小形発泡体を用いて前記の実用緩衝性評価試験を行
ったところ、傷つきや変形破損を与えない良好な緩衝性
能を示した。
When the above-mentioned practical cushioning performance evaluation test was conducted using this small foam, it showed good cushioning performance without causing scratches or deformation damage.

比較ρIJ 5 熱風循環式の乾燥機において70℃で24時間′乾燥し
たMMA系闇脂ペレット(スチレン単位10重暇チ、メ
タクリル酸メチル単位90重量係を含有する共重合体、
熱変形温度90℃、吸水率0.08%)を滑剤であるス
テアリン酸カルシウム0.2重量係と核剤であるタルク
1重量%とともに、230℃に調整された押出機に供給
して熱可塑化したのち、押出機如接続され160℃に調
整された混合機に圧送する。一方MMA系樹脂100重
量部に対して20重量部のペンタンをこの混合機に圧入
してMMA系樹脂とペンタンとを混練し、この混線物を
混合機に接続した細ノズルから押し出して発泡させたの
ち、切断して径5順、長さ100鴫の発泡体を得た。
Comparison ρIJ 5 MMA-based dark fat pellets (copolymer containing 10 weight units of styrene units and 90 weight units of methyl methacrylate units) dried at 70°C for 24 hours in a hot air circulation dryer.
Heat deformation temperature: 90°C, water absorption: 0.08%), together with 0.2% by weight of calcium stearate as a lubricant and 1% by weight of talc as a nucleating agent, are fed into an extruder adjusted to 230°C to thermoplasticize. Thereafter, the mixture is fed under pressure to a mixer connected to an extruder and adjusted to 160°C. On the other hand, 20 parts by weight of pentane per 100 parts by weight of MMA resin was forced into this mixer to knead the MMA resin and pentane, and this mixture was extruded through a fine nozzle connected to the mixer to cause foaming. Thereafter, it was cut to obtain a foam having a diameter of 5 mm and a length of 100 mm.

得られた発泡体は密度50ky/+T1′で平均気泡径
13.5mmφの不均一な気泡であった。この発泡体断
面の電子顕微鏡写真を第2−(a)図に示す。
The obtained foam had non-uniform cells with a density of 50ky/+T1' and an average cell diameter of 13.5mmφ. An electron micrograph of a cross section of this foam is shown in FIG. 2-(a).

寸だ、この小形発泡体の構造指標は、詰込かさ密度20
ky/n?にあって、圧縮回復率15チ、破損減耗度6
1係であった。この小形発泡体を用いて前記の実用緩衝
性評価試験を行ったところ、被包装物の外枠にすシ傷が
発生したものが2個、外枠の角のへこんだものが1個あ
り、この小形発泡体は内容物保護に適さないものであっ
た。
The structural index of this small foam is a packed bulk density of 20
ky/n? , compression recovery rate is 15chi, breakage wear rate is 6
I was in charge 1. When we conducted the above-mentioned practical cushioning property evaluation test using this small foam, there were two cases where the outer frame of the packaged items had scratches, and one case where the corner of the outer frame was dented. This small foam was not suitable for protecting the contents.

実施例 熱風循環式乾燥機において、70℃で24時間乾燥した
MMA系樹脂(メタクリル酸メチル単位88重量%、ア
クリル酸メチル単位12重量−を含有する共重合体、熱
変形温度85℃、吸水率(1,08%)を滑剤のステア
リン酸カルシウム0.2重量%とともに、230℃に調
整された押出機に自動供給して熱可塑化したのち、押出
機に接続され160℃に調整された混合機に圧送する。
Example MMA resin (copolymer containing 88% by weight of methyl methacrylate units and 12% by weight of methyl acrylate units, heat distortion temperature of 85°C, water absorption rate) dried at 70°C for 24 hours in a hot air circulation dryer. (1.08%) was automatically fed together with 0.2% by weight of calcium stearate as a lubricant to an extruder adjusted to 230°C to thermoplasticize it, and then a mixer connected to the extruder and adjusted to 160°C. to be pumped to.

一方MMA系樹脂100重量部に対して10重量部のn
−ペンタン発泡剤をこの混合機に圧入してMMA系樹脂
と発泡剤とを混練する。次にこの混線物を混合機に接続
した細ノズルから押し出し、30℃の水で急冷しながら
引き取り、細断して径1間、長さ10mmの細ひも状の
発泡性小形体を得だ。
On the other hand, 10 parts by weight of n for 100 parts by weight of MMA resin
- A pentane blowing agent is forced into the mixer to knead the MMA resin and the blowing agent. Next, this mixed material was extruded through a narrow nozzle connected to a mixer, taken out while being rapidly cooled with water at 30°C, and shredded to obtain a thin string-like foamable small body with a diameter of 1 inch and a length of 10 mm.

次いでこの小形体を65℃の温水中で30分間アニール
したのち、0.3.0.5.0.8.1.0.1.2.
1.5.1.8.1.9重量%の含水率に調湿した発泡
性小形体をそれぞれ得た。
This small body was then annealed in hot water at 65° C. for 30 minutes, and then 0.3.0.5.0.8.1.0.1.2.
Foamable small bodies each having a moisture content of 1.5, 1.8, and 1.9% by weight were obtained.

これらの調湿発泡性小形体それぞれを、100℃のスチ
ームで25秒間加熱して発泡させた。発泡性樹脂の含水
率と得られた発泡体の密度及びその気泡径との関係を第
3図に示す。
Each of these humidity-controlled foamable small bodies was foamed by heating with steam at 100° C. for 25 seconds. FIG. 3 shows the relationship between the water content of the foamable resin, the density of the obtained foam, and the cell diameter.

次いで、含水率1.0重量%の調湿発泡性小形体を、発
泡温度及び発泡時間を種々変えた発泡条件(100℃の
スチームで15.20.30秒、95℃の温水で15.
25.40.50秒、90℃の温水で1.1.5.2.
3分)で加熱発泡させた。
Next, the humidity-controlled foamable small bodies with a water content of 1.0% by weight were foamed under various foaming conditions (100°C steam for 15,20,30 seconds, 95°C hot water for 15 seconds).
25.40.50 seconds with 90°C hot water 1.1.5.2.
3 minutes) for heating and foaming.

発泡温度、時間と得られた発泡体密度との関係を第4図
に示す。
FIG. 4 shows the relationship between the foaming temperature and time and the foam density obtained.

実施例 ポリスチレン(熱変形温度85℃、吸水率0.03%)
を滑剤のステアリン酸カルシウム0.2重量%とともに
、200℃に調整されだ押出機に自動供給して熱可塑化
したのち、押出機に接続され150℃に調整された混合
機に圧入し、一方ポリスチレン100重量部に対し10
重量部のn−ペンタン発泡剤をこの混合機に圧入してポ
リスチレンと発泡剤とを混練する。次にこの混練物を混
合機に接続した細ノズルから押し出し、30℃の水で急
冷しながら引き取り、細断して径1fi、長さ10mm
の細ひも状の発泡性小形体を得た。次いでこの小形体を
65℃の温水中で30分間アニールしたのち、100℃
のスチームで0.5.111.5.2.3.5分間加熱
発泡させた。発泡温度、時間と得られた発泡体密度との
関係を第4図に示す。
Example polystyrene (heat distortion temperature 85°C, water absorption rate 0.03%)
The polystyrene and 0.2% by weight of calcium stearate as a lubricant were automatically supplied to an extruder adjusted to 200°C for thermoplasticization, and then press-fitted into a mixer connected to the extruder and adjusted to 150°C. 10 per 100 parts by weight
Parts by weight of the n-pentane blowing agent are forced into this mixer to knead the polystyrene and the blowing agent. Next, this kneaded material is extruded through a fine nozzle connected to a mixer, taken out while rapidly cooling with 30°C water, and cut into pieces with a diameter of 1fi and a length of 10mm.
A small, thin string-like foamable body was obtained. This small body was then annealed in warm water at 65°C for 30 minutes, and then heated at 100°C.
It was heated and foamed with steam for 0.5, 111, 5, 2, 3, 5 minutes. FIG. 4 shows the relationship between the foaming temperature and time and the foam density obtained.

第3図から明らかに、MMA系樹脂の適正発泡にとって
、発泡前の含水率の調整が如可に必要であるかが判る。
It is clearly seen from FIG. 3 how necessary the water content adjustment before foaming is for proper foaming of the MMA resin.

また、第4図から判るように、ポリスチレンめ場合は加
熱を継続すると、低密度まで発泡が進み安定するのに対
し、MMA系樹脂の場合は、加熱の継続はただちに収縮
現象につながるので、発泡体の密度の調節は加熱温度に
よって行う必要がある。
Furthermore, as can be seen from Figure 4, when polystyrene resin is continued to be heated, foaming progresses to a low density and becomes stable, whereas in the case of MMA resin, continued heating immediately leads to shrinkage, so foaming Body density must be adjusted by heating temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施の態様を示す工程説明図、第2図
は発泡体断面の電子顕微鏡写真であって、第2−(a)
図は比較例5における従来の押出発泡方法で得られたM
MA系樹脂発泡体、第24 (b)図は実施91J 1
における本発明方法で得られたMMA系樹脂発泡体及び
第2−(c)図は比較例1で得られたMMA系樹脂発泡
体におけるそれぞれの断面の電子顕微鏡写真である。 第3図は実験例1における発泡性樹脂の含水率と得られ
た発泡体の気泡径及び密度との関係ケ示・、□ 、、、
・、        ′すグラン1.第4図ば声、′験
例″′1及び2における発泡温度、時、間六□得ちれた
憚轡体密度との関係を示す、′、′ グラフであ、る。  /′、゛ 第5図は夾施例及び比較例で用いた被包装物の梱包物の
断面図であって、符号1は被包装物、2はバラ状小形発
泡体である。 、・・、・ 、・ ″ :1  ′   □ 、 特許出願人  旭化成工業株式会社1111 、、、岱、埋入 阿 形 明 置    ・ □ □ □ 1 ゛。 □ □ □ 薯11襄 第4図 カロ愁時間(分) 第5図
FIG. 1 is a process explanatory diagram showing an embodiment of the present invention, and FIG. 2 is an electron micrograph of a cross section of the foam, and FIG. 2-(a)
The figure shows M obtained by the conventional extrusion foaming method in Comparative Example 5.
MA resin foam, Figure 24 (b) is Example 91J 1
2-(c) is an electron micrograph of each cross-section of the MMA-based resin foam obtained in Comparative Example 1. Figure 3 shows the relationship between the water content of the foamable resin and the cell diameter and density of the foam obtained in Experimental Example 1.
・, 'S Grand 1. Figure 4 is a graph showing the relationship between the foaming temperature, time, and the obtained fiber density in Experimental Examples 1 and 2. Fig. 5 is a cross-sectional view of the packaged items used in the Examples and Comparative Examples, where 1 is the item to be packaged, and 2 is the small, loose foam. ″: 1 ′ □ , Patent applicant Asahi Kasei Kogyo Co., Ltd. 1111. □ □ □ 薯11襄Figure 4 Time (minutes) Figure 5

Claims (1)

【特許請求の範囲】 1 密度10〜60にり/−1破損減耗度15〜50係
及び圧縮回復率10〜60%の範囲の値を有し、かつか
さ高集合体を形成しうる形状構造を有するメチルメタク
リレート系樹脂バラ状緩衝性小形発泡体。 2 メチルメタクリレート系樹脂バラ状小形発泡体を製
造するに当シ、まず溶融押出工程においてメチルメタク
リレート系樹脂に揮発性有機発泡剤を混線含有させたの
ち、この混線物を押1出し可及的速やかに40℃以下の
温度に冷却して発泡性メチルメタクリレート系樹脂の小
形体を形成させ、次いでこの小形体を65〜80℃の温
度を有する温水中において、5〜60分間応力緩和を行
い、続いて該小形体を密封容器内に充てんしてその含水
率を0.5〜1.8重量%の範囲に調湿したのち、基材
樹脂の変形温度以上の温度に加熱して発泡させることを
特徴とする、密度10〜60F4/ゴ、破損減耗度15
〜50%iび圧縮回復率lO〜60%の範囲の値を有し
、かつかさ高集合体を形成しうる形状構造を有するメチ
ルメタクリレート系樹脂バラ状緩衝性小形発泡体の製造
方法。
[Claims] 1. A shape structure having a density of 10 to 60/-1, a degree of loss at breakage of 15 to 50, and a compression recovery rate of 10 to 60%, and capable of forming a bulky aggregate. A small cushioning foam made of methyl methacrylate resin. 2. In order to produce small methyl methacrylate resin foams, first, a volatile organic blowing agent is added to the methyl methacrylate resin in the melt extrusion process, and then the mixed material is extruded as soon as possible. is cooled to a temperature of 40°C or less to form a small body of expandable methyl methacrylate resin, and then the small body is subjected to stress relaxation in hot water having a temperature of 65 to 80°C for 5 to 60 minutes, and then After filling the small body into a sealed container and adjusting the moisture content to a range of 0.5 to 1.8% by weight, the small body is heated to a temperature higher than the deformation temperature of the base resin to cause foaming. Features: Density 10-60F4/G, breakage wear rate 15
1. A method for producing a small cushioning foam made of a methyl methacrylate resin, which has a compression recovery rate of 10% to 50% and a compression recovery rate of 10 to 60%, and has a shape structure capable of forming a bulky aggregate.
JP57192079A 1982-11-01 1982-11-01 Methyl methacrylate based resin bulk-buffering small foamed body and manufacture thereof Pending JPS5981143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57192079A JPS5981143A (en) 1982-11-01 1982-11-01 Methyl methacrylate based resin bulk-buffering small foamed body and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57192079A JPS5981143A (en) 1982-11-01 1982-11-01 Methyl methacrylate based resin bulk-buffering small foamed body and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5981143A true JPS5981143A (en) 1984-05-10

Family

ID=16285283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57192079A Pending JPS5981143A (en) 1982-11-01 1982-11-01 Methyl methacrylate based resin bulk-buffering small foamed body and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5981143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701603A (en) * 1994-04-28 1997-12-23 Nec Corporation Radio apparatus having a plurality of antennas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124307A (en) * 1974-07-24 1976-02-27 Fuji Photo Film Co Ltd KANKOSEI INSATSUBANNO SEIZOHO
JPS5127264A (en) * 1974-08-30 1976-03-06 Hitachi Ltd BUHINNOKEWATASHIHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124307A (en) * 1974-07-24 1976-02-27 Fuji Photo Film Co Ltd KANKOSEI INSATSUBANNO SEIZOHO
JPS5127264A (en) * 1974-08-30 1976-03-06 Hitachi Ltd BUHINNOKEWATASHIHOHO

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701603A (en) * 1994-04-28 1997-12-23 Nec Corporation Radio apparatus having a plurality of antennas

Similar Documents

Publication Publication Date Title
WO1996031558A1 (en) Foamed particles of propylene homopolymer and moldings of said particles
JPH0381346A (en) Polystyrene foam manufactured using only carbon dioxide as foam- ing agent and its manufacture
EP0075897A2 (en) Process for producing pre-foamed particles of polyolefin resin
US4695593A (en) Prefoamed propylene polymer-base particles, expansion-molded article produced from said particles and production process of said article
JP4442777B2 (en) Energy absorber for automobiles made of molded polycarbonate resin particles
JPS5981143A (en) Methyl methacrylate based resin bulk-buffering small foamed body and manufacture thereof
JPS6010047B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles and method for producing the same
US6593382B2 (en) Polyolefin resin pre-expanded particles and process for preparing the same
JPH03152136A (en) Polypropylene resin preliminarily foamed bead and preparation thereof
JPS6042433A (en) Expanded synthetic resin in-mold molding and its production
US6066393A (en) Polyolefin/ionomer blend for improved properties in extruded foam products
JP2021001255A (en) Polypropylene resin foam particles and polypropylene resin foam particle compact
JPH07258455A (en) Foamed particle molding of polypropylene based resin
JP7329639B1 (en) Expanded polypropylene resin particles, method for producing expanded polypropylene resin particles, and cushioning material for distribution
US20230407035A1 (en) Method for producing polyamide-based resin multi-stage-expanded beads
JP4001669B2 (en) Olefinic resin foamable particles and method for producing the same
JP5234169B2 (en) Thermoplastic resin foam molding and method for producing the same
EP4234223A1 (en) Method for manufacturing laminate
JP5151020B2 (en) Thermoplastic resin in-mold foam molding
JPH05179050A (en) Polyolefin-based resin foam particle
JP3126449B2 (en) Polyolefin resin foam particles
JPH04272940A (en) Foamable particle and foamed particle
JP5510510B2 (en) Method for producing foamed molded article in thermoplastic resin mold
JPH0367106B2 (en)
JPS6311974B2 (en)