JPS5976597A - Biological treatment of waste water containing nitrogen compound and dithionic acid - Google Patents

Biological treatment of waste water containing nitrogen compound and dithionic acid

Info

Publication number
JPS5976597A
JPS5976597A JP18607882A JP18607882A JPS5976597A JP S5976597 A JPS5976597 A JP S5976597A JP 18607882 A JP18607882 A JP 18607882A JP 18607882 A JP18607882 A JP 18607882A JP S5976597 A JPS5976597 A JP S5976597A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
tank
denitrification
dithionic acid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18607882A
Other languages
Japanese (ja)
Other versions
JPS6349554B2 (en
Inventor
Takayuki Suzuki
隆幸 鈴木
Kaneaki Endo
銀朗 遠藤
Yoshitaka Matsuo
松尾 吉高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP18607882A priority Critical patent/JPS5976597A/en
Publication of JPS5976597A publication Critical patent/JPS5976597A/en
Publication of JPS6349554B2 publication Critical patent/JPS6349554B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To treat efficiently waste water contg. hardly decomposable COD and nitrogen compds. by adding org. substance to the waste water contg. nitrogen compds. and dithionic acid, removing hydrogen sulfide to treat anaerobically, and subjecting to a biological nitrification and denitrification treatment by introducing the aforesaid hydrogen sulfide to the treated liquid. CONSTITUTION:Waste water 1 contg. NH3 and dithionic acid is charged into an anaerobically decomposition tank 2, and after adding a proper amount of methanol or the like, gas is introduced to stirr. The dithionic acid is changed to hydrogen sulfide and the hydrogen sulfide is adsorbed to an absorbent in an absorber 5. The decomposed liquid 7 is introduced into the first anaerobical denitrification tank 10 with a returned sludge 8 and circulated nitrification liquid 9, reduced, and decomposed to N2 gas by denitfification bacteria using the hydrogen sulfide absorbent 11 from the absorber 5 as a reductant. The decomposed liquid is further oxidized to NOX in a nitrification tank 13, reduced, and decomposed to N2 gas using hydrogen sulfide absorbed in the hydrogen sulfide absorbent 11 in the second denitrification tank 14 as the reductant. The treated liquid is aerated in a reaeration tank 15, and separated to treated water 16' and surplus sludge 12 in a settling tank 16.

Description

【発明の詳細な説明】 本発明は、排煙脱硫排水のような難分解性CODと窒素
化合物を含む排水の生物学的処理法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a biological treatment method for wastewater containing persistent COD and nitrogen compounds, such as flue gas desulfurization wastewater.

化石燃料を用いたボイラーその他の燃焼装置から排出さ
れる排煙には、高濃度の硫黄酸化物や窒素酸化物が含寸
れている。これらを大気中に無処理で排出すればそれら
自体の有害性によって、まだ大気中での光化学反応でさ
らなる不害物質に変化することによって、環境保全上条
・ぐの弊害をもたら子。したがって、これらを含む排煙
は法的規制に基づき、脱硝脱硫処理された後に大気中へ
と鼎気されている。
Flue gas emitted from boilers and other combustion equipment that uses fossil fuels contains high concentrations of sulfur oxides and nitrogen oxides. If these substances are discharged into the atmosphere without treatment, they will cause harm to the environment due to their own toxicity and will be converted into even more harmful substances through photochemical reactions in the atmosphere. Therefore, in accordance with legal regulations, flue gas containing these substances is subjected to denitrification and desulfurization treatment before being released into the atmosphere.

今日、排煙の脱硝脱(1!f法として最もよく用しつら
れているものの一つに、排煙中の硫黄酸化物ば・・よび
9累酸化物をアルカリ液によって吸収除去する方法があ
る。この方法においては、硫黄酸化物の多くけイ1イ)
酸カル/ラム、硫酸マグネシウム等の硫酸塩として除去
されるが、ジチオン酸塩等の酸化分解されにくい化合物
も副生される。酸化分解し2にくい硫黄酸化物のうち特
にジチオン酸については、塩素による分解やオゾンによ
る分解によっても効果的な分解はなきれず、物理化学的
方法としてはほぼ湿式燃焼による方法に限定される。
Today, one of the most commonly used flue gas denitrification (1!f methods) is a method in which sulfur oxides and 9 cumulative oxides in flue gas are absorbed and removed using an alkaline solution. In this method, a large amount of sulfur oxide is
Although it is removed as a sulfate such as acid cal/rum and magnesium sulfate, compounds that are difficult to be decomposed by oxidation such as dithionate are also produced as by-products. Among sulfur oxides that are difficult to decompose by oxidation, dithionic acid in particular cannot be effectively decomposed by decomposition by chlorine or ozone, and physicochemical methods are mostly limited to wet combustion methods.

本発明は、このような現状に鑑みて上記硫黄酸化物であ
る難分解性COD成分を微生物のもつ生物性M能力を利
用して分解すると共に窒素化合物(以下、[NH3Jと
略する。)を効果的かつ合理的に生物学的に処理rる方
法を提供することを目的とするものである。
In view of the current situation, the present invention decomposes the persistent COD component, which is the sulfur oxide, by utilizing the biological M ability of microorganisms, and also decomposes nitrogen compounds (hereinafter abbreviated as [NH3J)]. The purpose is to provide an effective and rational biological treatment method.

本発明は、窒素化合物と硫黄酸化物として少なくともジ
チオン酸又はその塩を含有するゼ1水に有機物を添加し
、発生する硫化水素を吸収除去しながら嫌気性生物処理
したのち、該嫌気性生物処理液に前記硫化水素を吸収し
た吸収剤を添加して生物学的硝化脱窒床処理することを
特徴とする窒素化合物とジチオン酸含有排水の生物処理
方法である。
The present invention involves adding organic matter to water containing at least dithionic acid or its salt as a nitrogen compound and sulfur oxide, and performing anaerobic biological treatment while absorbing and removing generated hydrogen sulfide. This is a biological treatment method for wastewater containing nitrogen compounds and dithionic acid, which is characterized by adding an absorbent that has absorbed hydrogen sulfide to the liquid to perform biological nitrification and denitrification bed treatment.

以下に本発明の基本構成を、本発明に至った研究経緯を
踏まえて詳細に説明する。
The basic structure of the present invention will be explained in detail below based on the research history that led to the present invention.

硫黄酸化細菌(Thjobacjllus属等)や硫酸
還元菌(Desulfoviburic 属等)などが
ジチオン酸等を生物分解することはよく知られている。
It is well known that sulfur-oxidizing bacteria (such as the genus Thjobacjllus) and sulfur-reducing bacteria (such as the genus Desulfoviburic) biodegrade dithionic acid and the like.

本研究も、湿式燃焼法に代わるジチオン酸を含む硫黄酸
化物系の難分解性COD成分を分解せしめる省エネルギ
ー的処理法として、当初嫌気性細菌による単純な連続発
酵処理方式によって検討が開始された。供試排煙脱硫排
水は希釈もしくはイオン交換処理などの物理化学的処理
による濃縮によって、ジチオン酸濃度が100IV/7
asS206  + 300W/las 5206 +
 5001n?/1as8206 、1000+#/l
as 5206 の4段階になるように11’A整し、
さらに乳酸をBOD源としていずれも1ooomy/l
(乳酸)となるよう添加して用いた。
This research also began with a simple continuous fermentation treatment method using anaerobic bacteria as an energy-saving treatment method for decomposing persistent sulfur oxide-based COD components containing dithionic acid instead of the wet combustion method. The dithionic acid concentration of the sample flue gas desulfurization wastewater was reduced to 100 IV/7 by dilution or concentration through physicochemical treatment such as ion exchange treatment.
asS206 + 300W/las 5206 +
5001n? /1as8206, 1000+#/l
Adjust the 11'A so that it has 4 stages of as 5206,
Furthermore, using lactic acid as a BOD source, each case is 1ooomy/l.
(lactic acid).

用いた種菌は、下水汚泥の嫌気性消化槽より得だ消化汚
泥からジチオン酸す) IJウムを含む集積培地で培養
した混合細菌で、実験反応槽内濃度が3000m9/l
 −MLSSとなるように植種した。この結果、ジチオ
ン酸濃度が100 m9/lの供試排水の場合において
はジチオン酸の分解除去はほぼ完全に達成されたが、供
試排水中のジチオン酸濃度が300my/lではジチオ
ン酸の除去率は約60係に低下し、ジチオン酸溪7&’
、 500 my/を以上の場合ではジチオン酸の除去
はlEI数の経過に伴いほとんどなされない状態となっ
た。このジチオン酸の分解阻害因子を調べた結果、阻害
現象が見られた時点での処理水中の硫化水素濃度が供試
排水中のジチオン酸濃度によって第1表のように変化す
ることが知られた。
The inoculum used was a mixed bacterium cultured in an enrichment medium containing IJum obtained from an anaerobic digestion tank of sewage sludge (dithionic acid obtained from digested sludge), and the concentration in the experimental reaction tank was 3000 m9/l.
- Seeds were planted to become MLSS. As a result, in the case of the test wastewater with a dithionic acid concentration of 100 m9/l, the decomposition and removal of dithionic acid was almost completely achieved, but when the dithionic acid concentration in the test wastewater was 300 m9/l, the removal of dithionic acid was difficult. The rate decreased to about 60%, and the dithionate rate decreased to 7&'
, 500 my/ or more, dithionic acid was hardly removed as the number of lEI increased. As a result of investigating factors that inhibit the decomposition of dithionic acid, it was found that the hydrogen sulfide concentration in the treated water at the time when the inhibition phenomenon was observed changes depending on the dithionic acid concentration in the sample wastewater, as shown in Table 1. .

第  1  表 上記実験によシ、ジチオン酸の嫌気性生物分解は供試排
水中のジチオン酸濃度が100 m9/lを超える場合
には単純な嫌気性生物分解法では継続不可能であること
が判明し、阻害現象が生じた場合の反応液中の硫化水素
濃度は比較的高いことが知らレタ。+1、シf オン酸
濃度300 mt;r/l 、 500 m9A 。
Table 1 According to the above experiment, it was found that anaerobic biodegradation of dithionic acid cannot be continued by simple anaerobic biodegradation method when the concentration of dithionic acid in the test wastewater exceeds 100 m9/l. It is known that when the inhibition phenomenon occurs, the hydrogen sulfide concentration in the reaction solution is relatively high. +1, siphonic acid concentration 300 mt; r/l, 500 m9A.

1000 wv/lの排水について、反応液中の硫化水
素濃度を8 tny/を以下になるように脱硫しながら
同柳・な生物処理実験を行ったところ、いずれのジチオ
ン酸塩度の供試排水もほぼ完全なジチオン酸の分解処理
が達成できた。以上の結果から、ジチオン酸の嫌気性生
物分解処理においては、高濃度の硫化水素が生成されそ
れがジチオン酸の分解を阻害するととが知られ、これを
防止するだめに、反応液中の硫化水素を除去しながら分
解処理せしめることの有効性が明らかとなった。
When we conducted the same biological treatment experiment on wastewater with a concentration of 1000 wv/l while desulfurizing the hydrogen sulfide concentration in the reaction solution to below 8 tny/l, we found that the test wastewater with any dithionate concentration Almost complete decomposition of dithionic acid was also achieved. From the above results, it is known that in the anaerobic biodegradation treatment of dithionic acid, a high concentration of hydrogen sulfide is produced, which inhibits the decomposition of dithionic acid. The effectiveness of decomposition treatment while removing hydrogen has been demonstrated.

以上の知見に基づいて想到したプロセスについては、本
発明者等は既に完成ずみである(特願昭57−1268
11参照)。本発明者等はさらに改良すべく、嫌気性生
物処理では除去できないNH3の効果的な処理法につい
て検討した(Noよの1部は嫌気性生物処理において除
去される)。寸だ、水質の変動によって嫌気性反応槽か
らジチオン酸が漏出した場合を考虜して、生物学的硝化
脱窒素処理工程における好気的ジチオン酸分解法につい
ても検討した。
The process devised based on the above knowledge has already been completed by the present inventors (Japanese Patent Application No. 1268-1983).
(see 11). In order to make further improvements, the present inventors investigated an effective treatment method for NH3 that cannot be removed by anaerobic biological treatment (a portion of NH3 is removed by anaerobic biological treatment). Considering the case where dithionic acid leaks from an anaerobic reaction tank due to fluctuations in water quality, we also investigated an aerobic dithionic acid decomposition method in the biological nitrification and denitrification treatment process.

これらの検討を行った結果、■嫌気性生物処理に用いた
BOD源の残部が生物学的脱窒に有利に利用できること
、■嫌気性反応液から発生した硫化水素を吸収した吸収
液又は脱硫剤が脱窒の還元剤として利用できること、■
硫化水素吸収液又は脱硫剤を生物学的硝化脱窒素工程に
添加することKよって該工程がジチオン酸酸化能力を備
えることが判明し、本発明を完成したものである。
As a result of these studies, we found that: ■ The remainder of the BOD source used for anaerobic biological treatment can be advantageously used for biological denitrification; ■ Absorption liquid or desulfurization agent that absorbed hydrogen sulfide generated from the anaerobic reaction liquid can be used as a reducing agent for denitrification, ■
It has been found that adding a hydrogen sulfide absorbing solution or a desulfurizing agent to a biological nitrification and denitrification process provides the process with dithionate oxidation ability, thus completing the present invention.

次に、本発明の実施態様の一例を図面に基づいて詳細に
祝明する。
Next, an example of an embodiment of the present invention will be described in detail based on the drawings.

排煙説硝脱硫工程等から排出されるNH,とジチオン酸
を含有する排水は流入液1として嫌気性生物分解槽2(
以下、「分解槽」と略記する)に投入される。この際の
分解槽2のt1h1時間は、通常0.5〜10日の範囲
とされることが多く、この排水の滞留時間は分解槽2に
添加される有機物3の種類に応じて決定することができ
る。
Flue gas theory Wastewater containing NH and dithionic acid discharged from the nitrogen desulfurization process, etc. is passed through the anaerobic biolysis tank 2 (
(hereinafter abbreviated as "decomposition tank"). At this time, the t1h1 time of the decomposition tank 2 is often set in the range of 0.5 to 10 days, and the residence time of this wastewater is determined depending on the type of organic matter 3 added to the decomposition tank 2. I can do it.

メタノールを添加有機物とする場合においては、特に滞
留時間を短縮でき0.3〜20日の範囲とすることが可
能であり、一方下水汚泥、産業廃水汚泥。
When using methanol as the added organic substance, the residence time can be particularly shortened to a range of 0.3 to 20 days; on the other hand, sewage sludge and industrial wastewater sludge.

生し尿等を用いる場合には滞留時間を4日〜10日とや
や長めにとる必要がある。
If raw human urine or the like is used, it is necessary to allow a slightly longer residence time of 4 to 10 days.

ジチオン酸の分解に添加効果のあった有機性廃水として
は、これらの他に都市下水、ゴミ処理場でのピットゴミ
汁、下水汚泥または都市ゴミのコンポストプラントにて
排出される浸出汁、ゴミ埋立地の浸出水、豚舎および牛
舎からの家蓄糞尿を含む廐肥からの浸出水および厩舎清
掃廃水、製糖工場からの廃糖蜜、バルプ工場からの蒸気
ドレン類、醸造工場からの醸造廃水および蒸留廃水9食
品加工場からの工場廃水などを挙げることができ、これ
らを用いた場合の反応器滞留時間は0.8日〜50日と
、メタノールを添加有機物とする場合よシもやや長くと
る必要がある。
In addition to these organic wastewaters that have an additive effect on the decomposition of dithionic acid, there are municipal sewage, pit garbage juice at garbage treatment plants, sewage sludge or leachate discharged from municipal garbage composting plants, and garbage landfills. leachate from manure, including home-grown manure from pig pens and cow sheds, and stable cleaning wastewater, molasses from sugar factories, steam drains from pulp factories, brewing wastewater and distillation wastewater from brewing plants9 Examples include industrial wastewater from food processing plants, and when these are used, the residence time in the reactor is 0.8 to 50 days, which requires a slightly longer time than when methanol is used as the additive organic substance. .

またメタノール以外の市販有機物で添加効果のあったも
のは、アルコール類ではプロパツール。
In addition, the only commercially available organic substance other than methanol that has an additive effect is propatool among alcohols.

ブタノール、グリセロール、およびエタ1.ノールを挙
げることができるが、これらのうちエタノールはやや添
加効果が低かった。
Butanol, glycerol, and ethyl 1. Of these, ethanol had a rather low addition effect.

有機酸類ではギ酸、ピルビン酸、乳酸、プロピオン酸、
酪酸9.コハク酸、クエン酸および酢酸に添加効果が見
られた。特に酢酸の場合は他の有機酸との混合添加の場
合に添加効果が高かった。これらの有機酸の添加の場合
の反応器滞留時間は0.6〜4.0日程度にする必要が
あって、メタノール添加の場合よシもやや長くすること
が必要とされたが、前記各種廃汚泥や廃水を添加する場
合よりも短くてすむことが判明したC−!、たマルトー
ス。
Organic acids include formic acid, pyruvic acid, lactic acid, propionic acid,
Butyric acid9. Addition effects were seen for succinic acid, citric acid, and acetic acid. Particularly in the case of acetic acid, the addition effect was high when mixed with other organic acids. The residence time in the reactor when adding these organic acids needed to be about 0.6 to 4.0 days, and it was necessary to make it slightly longer than when adding methanol. C-!, which was found to be shorter than when adding waste sludge or wastewater! , maltose.

セロビオース、グルコース等のオリゴ糖、還元糖もほぼ
これと同程度の滞留時間を必要とした。
Oligosaccharides such as cellobiose and glucose, and reducing sugars also required approximately the same residence time.

有機物の添加邦は、処理すべき廃水中のジチオン酸(塩
)その他の難分解性COD物質の濃度に応じて、添加す
べき有機物の量がBODに換鏝してジチオン酸濃度と同
等から7倍となるように添加することが好ましい。添加
有機物の量がこれ以下の場合にはジチオン酸を充分に分
解することができず、未分解のジチオン酸が処理水中に
残留し、またこれ以上の有機物添加では処理水中での残
存BOD濃度が高まるが、これは脱窒の還元剤として利
用できるので、有機物の際加量は過剰な方がジチオン酸
の分解のうえからも好ましい。
The amount of organic matter added depends on the concentration of dithionic acid (salt) and other persistent COD substances in the wastewater to be treated, and the amount of organic matter to be added is equivalent to the concentration of dithionate in terms of BOD. It is preferable to add twice as much. If the amount of added organic matter is less than this, dithionic acid will not be fully decomposed and undecomposed dithionic acid will remain in the treated water, and if more organic matter is added, the residual BOD concentration in the treated water will increase. However, since it can be used as a reducing agent for denitrification, it is preferable to add an excessive amount of organic matter from the standpoint of decomposing dithionic acid.

なお、本発明においては添加有機物として、上記した有
機性廃水、有機性汚泥、アルコール類。
In addition, in the present invention, the above-mentioned organic wastewater, organic sludge, and alcohols are used as additive organic substances.

有機酸類、糖類を適宜に組み合わせて使用できることは
勿論である。
It goes without saying that organic acids and saccharides can be used in appropriate combinations.

以上のような添加栄養条件と滞留時間条件の丁で、投入
排水中のジチオン酸はほぼ完全に硫化水素へと還元分解
され、一部は槽内液中に溶存硫化水素として残存するが
残υは消化カス4中へ、と移行する。本発明なるジチオ
ン酸の分解槽2は、通常のメタン発酵に採用されている
温IW条件、即ち中温菌な利用しての分解では20℃〜
40℃、高温菌を利用しての分解では45℃〜70℃に
保だ几ることによってその効率を著しく高めることがで
き、特に45℃〜70℃での操作は溶存H2S濃度を低
下させるうえでより効果的であるが、分解効呉を問題と
しなくてすむ場合には渦層制御なし7の操作であっても
か址わない。
Under the above conditions of added nutrients and residence time, the dithionic acid in the input wastewater is almost completely reduced and decomposed to hydrogen sulfide, and some remains as dissolved hydrogen sulfide in the tank liquid, but the remaining υ is transferred to the digestive scum 4. The dithionic acid decomposition tank 2 of the present invention is operated under the warm IW conditions employed in normal methane fermentation, that is, when decomposition using mesophilic bacteria is performed at 20°C to
In the case of decomposition using thermophilic bacteria at 40°C, the efficiency can be significantly increased by keeping the temperature at 45°C to 70°C, and in particular, operation at 45°C to 70°C reduces the dissolved H2S concentration. However, if the decomposition effect does not have to be a problem, operation 7 without vortex layer control may be sufficient.

分解槽2内液中の硫化水素を除去するにはいろいろな方
法がとりうる。例えば消化ガス4中に集積した硫化水素
をガス循環経路を設け、これに吸収装置5を設けること
は、分解槽ヘッドスペースの気相を低濃度H2S雰囲気
とし、分解槽内液中に残留するH2Sを追い出すことを
目的としてなされる。この)12S吸収除去剤は苛性ソ
ーダ液、第一鉄液、炭酸カルシウム液9石灰液、アンモ
ニア液。
Various methods can be used to remove hydrogen sulfide from the liquid in the decomposition tank 2. For example, by providing a gas circulation path for the hydrogen sulfide accumulated in the digestion gas 4 and providing the absorption device 5 in this path, the gas phase in the head space of the decomposition tank is made into a low-concentration H2S atmosphere, and the H2S remaining in the liquid in the decomposition tank is It is done for the purpose of driving out. This) 12S absorption and removal agent is a caustic soda solution, a ferrous solution, a calcium carbonate solution, a lime solution, and an ammonia solution.

モノエタノールアミン等の液体吸収剤でもよく、酸化鉄
等の固体吸収剤であっても可能である。
A liquid absorbent such as monoethanolamine or a solid absorbent such as iron oxide may be used.

また、硫化水素除去のだめのガス循環経路は、必ずしも
図示した如くの方法のみに限らず、例えば第1図に示す
如くガス循環ボンゾロからの送気バイブを分解槽内液面
下に入れ、ガス攪拌と共用することによって、液中に溶
存する硫化水素濃度を゛\ノドスペースのみのガス循環
によるよりも、ストリッピング効果によってさらに低減
させることができて好捷しい。硫化水素除去には上記の
ガス吸収法のほかに、分解槽液中に鉄塩等の金鳥塩を添
加することによって、不溶性硫化物として除去する方法
もとりうる。
In addition, the gas circulation route for removing hydrogen sulfide is not necessarily limited to the method shown in the figure; for example, as shown in Figure 1, an air supply vibrator from a gas circulation Bonzoro is placed below the liquid level in the decomposition tank to stir the gas. It is preferable that the hydrogen sulfide concentration dissolved in the liquid can be further reduced by the stripping effect than by gas circulation only through the throat space. In addition to the above-mentioned gas absorption method, hydrogen sulfide can be removed by adding gold salt such as iron salt to the decomposition tank liquid to remove the hydrogen sulfide as an insoluble sulfide.

これらいずれの場合においても分解槽液中の硫化水素濃
度を20■/を以下とすることが好ましく、特に0〜8
my/lの範囲にとどめることが望まれる。
In any of these cases, it is preferable to keep the hydrogen sulfide concentration in the decomposition tank liquid at 20 μm or less, particularly from 0 to 8
It is desirable to keep it within the range of my/l.

分M槽内のpHが極端な変動を示す場合には、I)Hを
5.5〜7.5の範囲に調整することが好ましい。この
pH調整は、ジチオン酸の嫌気性生物分解反応を助長す
るのみならず、上記硫化水素のガス循環吸収除去を行う
うえでも効果がある。このことは特にpHを調節しない
方式で分解槽液中のpHが75を超えて上列する場合に
重要となる。即ち、75よシ高いp■1では値化71(
素の溶存量が著しく高くなるために、硫化水素のガス化
が充分に行われず液中の硫化水素の残存濃度を低く抑え
られなくなるからであδ。
If the pH within the M tank exhibits extreme fluctuations, it is preferable to adjust I)H to a range of 5.5 to 7.5. This pH adjustment is effective not only in promoting the anaerobic biodecomposition reaction of dithionic acid but also in removing the hydrogen sulfide through gas circulation and absorption. This becomes especially important when the pH in the decomposition tank liquid exceeds 75 in a system in which the pH is not adjusted. That is, for p■1 higher than 75, the value is 71 (
This is because the amount of dissolved hydrogen sulfide becomes extremely high, and hydrogen sulfide is not sufficiently gasified, making it impossible to keep the residual concentration of hydrogen sulfide in the liquid low.

上記実施態様のほかに、本発明による排煙脱硝脱硫排水
の嫌気性生物処理装置の形態として従来よシ知られてい
る嫌気性消化装置である半回分式接触消化法、上自流嫌
気件ろ床法、流動庁式嫌り9性反応器法、上向流嫌気性
汚泥ブシ・ソケット法などに属する装置のほとんどが利
用できるAli、処理すべき排煙脱硝脱硫排水の水質お
よび添加有機物の種類に応じて最も効率の高い装置を洸
成するうえで選択範囲をよシ広くできる利点としてあげ
ることができる。
In addition to the above-mentioned embodiments, the present invention also includes a semi-batch contact digestion method, which is a conventionally known anaerobic digestion device, as a form of an anaerobic biological treatment device for flue gas denitrification and desulfurization wastewater, and an upflow anaerobic filter bed. Most of the equipment that belongs to the method, flow control reactor method, upflow anaerobic sludge bush-and-socket method, etc. can be used. This can be cited as an advantage of widening the range of selection when designing the most efficient device.

次Vこ、分解液7は返送汚泥8.循環硝化液9とともに
嫌気的条件にある第1脱窒槽1oに流入し、循環硝化液
9中のNOよけ分解液7中に残留するBOD成分、硫化
水素吸収液11あるいは外部から添加する有機物3を還
元剤として脱窒菌によってN2ガスに還元分解される。
Next, the decomposition liquid 7 is returned as sludge 8. The BOD components flowing into the first denitrification tank 1o under anaerobic conditions together with the circulating nitrifying solution 9 and remaining in the NO-protecting decomposition solution 7 in the circulating nitrifying solution 9, the hydrogen sulfide absorbing solution 11, or the organic matter 3 added from the outside. is reduced and decomposed into N2 gas by denitrifying bacteria using it as a reducing agent.

残留BOD、有機物3を用いる脱窒菌の種類は多いが、
硫化水素を利用して脱窒する菌ばTh1obacill
us 。
There are many types of denitrifying bacteria that use residual BOD and organic matter3,
Th1obacill, a bacterium that denitrifies using hydrogen sulfide
us.

Deni trif 1cansの如く限られた種で、
NO:c中の結合酸素を用いて硫化水素を硫酸にまで酸
化する。第l脱窒槽10に添加する還元剤の量は、残留
BOD成分で足りていれば、通常有価である有機物3を
敢えて注入する必要はない。
It is a limited species like Deni trif 1cans,
Hydrogen sulfide is oxidized to sulfuric acid using the bound oxygen in NO:c. As long as the amount of reducing agent added to the first denitrification tank 10 is the residual BOD component, there is no need to intentionally inject the organic matter 3, which is normally valuable.

循環硝化液9のNO,cが脱窒されたのち、分解液7中
のNH,け次段の好気的条件に維持されている硝化槽1
3でNoえに酸化され、その大部分は第1脱窒槽10に
循環され、残部は第2脱窒槽14に流入し、有機物3あ
るいは硫化水素吸収液11中の硫化水素を還元剤として
N2にまで還元分解きれる。
After the NO and c in the circulating nitrification solution 9 are denitrified, the NH in the decomposition solution 7 is removed, and the nitrification tank 1 is maintained under aerobic conditions.
3, most of it is circulated to the first denitrification tank 10, and the remainder flows into the second denitrification tank 14, where it is converted to N2 using organic matter 3 or hydrogen sulfide in the hydrogen sulfide absorption liquid 11 as a reducing agent. It can be decomposed by reduction.

第2脱窒槽14に使用する還元剤にNH3が含有されて
いると処理水16′にNH5が残留し窒素除去率が低下
するので、還元剤として利用する有機物3゜硫化水素吸
収液11はNH3を含まないものが望ましい。したがっ
て、分解槽2の有機物として含NH3有機物を利用する
場合には、脱窒の還元剤としては第1脱紫檀10にしか
使用できないので、第2脱窒槽14にはNH3を含有し
ない有機物を別個に添加することが好″!、1〜い。硫
化水素吸収液11についても同様であり、N’H3を含
む硫化水素吸収液11は第1脱窒槽10のみ、Nl−1
3を含まない硫化水素吸収液1】は第1脱窒槽10.第
2脱窒槽14のいずれにも使用することができる。
If the reducing agent used in the second denitrification tank 14 contains NH3, NH5 will remain in the treated water 16' and the nitrogen removal rate will decrease. It is desirable that it does not contain. Therefore, when using NH3-containing organic matter as the organic matter in the decomposition tank 2, since only the first denitrifying rosewood 10 can be used as a reducing agent for denitrification, the organic matter not containing NH3 can be separately stored in the second denitrification tank 14. The same goes for the hydrogen sulfide absorption liquid 11, and the hydrogen sulfide absorption liquid 11 containing N'H3 is added only to the first denitrification tank 10, Nl-1
The hydrogen sulfide absorbing liquid 1 which does not contain 3] is transferred to the first denitrification tank 10. It can be used in any of the second denitrification tanks 14.

第2脱窒槽14流出液は次段の再はっ気槽15で残留有
機物の酸化、液中のN2ガスのばっ気放散が行われ/こ
のち、沈殿槽J6に流入して固液分離され、上澄水は処
理水16′之して放流され、汚泥は返送汚泥8どして大
部分第1脱窒槽10に返送され、残部は余剰汚泥12と
して分解槽2に流入してジチオン酸を分解する有機物と
して利用されるか、あるいは余剰汚泥処理工程17で処
理・処分される。
The effluent from the second denitrification tank 14 is oxidized in the next stage re-aeration tank 15, where residual organic matter is oxidized and N2 gas in the liquid is aerated, and then it flows into the settling tank J6 where it is separated into solid and liquid. The supernatant water is discharged as treated water 16', most of the sludge is returned to the first denitrification tank 10 as return sludge 8, and the remainder flows into the decomposition tank 2 as excess sludge 12 to decompose dithionic acid. Either the sludge is used as organic matter, or it is treated and disposed of in the surplus sludge treatment step 17.

以上のように本発明では、水質の変動により分解液7中
にジチオン酸が残留する場合でも、ジチオン酸は主に好
気的条件にある硝化槽13で速やかに酸化することがで
きる。元来、ジチオン酸酸化能力を有する菌は、ジチオ
ン酸のみの酸化では充分な増殖エネルギーを穫得するこ
とができないため、水質変動あるいは定常的な残留によ
って生物学的硝化脱窒素工程にジチオン酸が流入しても
、該工程のみではジチオン酸分解菌が発生せず、したが
ってジチオン酸は除去されない。一方、吸収液中のイオ
ウ分の酸化によって生ずるエネルギーは充分ジチオン酸
酸化菌の増殖エネルギーとして利用される。ジチオン酸
酸化菌はイオウ分を酸化するに際し、分子状酸素、 N
O工中の結合酸素のいずれの酸素も利用できるので、イ
オウ分を含有する吸収液は脱窒槽に注入しで脱窒の還元
剤、ジチオン酸酸化菌の増殖エネルギー源として兼用す
るようKしたものである。もちろん硫化水素吸収液11
を硝化槽13に注入しても充分ジチオン酸酸化菌を増殖
することができる。
As described above, in the present invention, even if dithionic acid remains in the decomposition liquid 7 due to fluctuations in water quality, the dithionic acid can be quickly oxidized in the nitrification tank 13 under mainly aerobic conditions. Bacteria that originally have the ability to oxidize dithionic acid cannot obtain sufficient growth energy by oxidizing dithionic acid alone, so dithionic acid flows into the biological nitrification and denitrification process due to changes in water quality or constant residue. However, this step alone does not generate dithionic acid-degrading bacteria, and therefore dithionic acid is not removed. On the other hand, the energy generated by the oxidation of sulfur in the absorption liquid is fully utilized as energy for the growth of dithionate-oxidizing bacteria. When dithionate oxidizing bacteria oxidizes sulfur, it releases molecular oxygen, N
Since any of the combined oxygen in the O process can be used, the sulfur-containing absorption liquid is injected into the denitrification tank and is heated so that it doubles as a reducing agent for denitrification and an energy source for the growth of dithionate oxidizing bacteria. It is. Of course hydrogen sulfide absorption liquid 11
Even if it is injected into the nitrification tank 13, dithionate oxidizing bacteria can be sufficiently grown.

第1図は活性汚泥法で示したが硝化槽13.第1脱窒槽
10.第2脱窒槽14.再ばっ気槽15は粒状あるいは
板状の生物付着媒体を用いてもよい。ただしこの場合、
各種の微生物相は流入する基質にょって異なってくるの
で、ジチオン酸の酸化を行うためには、価、化水素吸収
液の一部あるい1・よ全てを好気槽である?il′I化
槽13及び/又は再ばつ気槽15に注入することが必要
である。
Although Fig. 1 shows the activated sludge method, the nitrification tank 13. First denitrification tank 10. Second denitrification tank 14. The re-aeration tank 15 may use a granular or plate-shaped biofouling medium. However, in this case,
Since each type of microbial flora differs depending on the inflowing substrate, in order to oxidize dithionic acid, it is necessary to store some or all of the hydrogen oxide absorption liquid in an aerobic tank. It is necessary to inject into the il'I conversion tank 13 and/or the re-aeration tank 15.

なお第1図中18は有機物貯槽、]9は余剰ガスである
In FIG. 1, 18 is an organic matter storage tank, and ]9 is surplus gas.

本発明は、脱硝脱硫排水には多量のNH3力は含有され
ているので、特に有効に適用し得るものであるが、窒素
含有量の少ないジチオン酸含有排水でも分解槽2の有機
物としてNH3の多いし尿、あるいは嫌気性分解に際し
NH5を溶出する有機性汚泥を利用する場合にも、放流
水の窒素濃度を低減するうえで有効である。
The present invention can be particularly effectively applied to denitrification and desulfurization wastewater since it contains a large amount of NH3, but even in dithionic acid-containing wastewater with a low nitrogen content, there is a large amount of NH3 as organic matter in the decomposition tank 2. The use of human waste or organic sludge that elutes NH5 during anaerobic decomposition is also effective in reducing the nitrogen concentration of effluent water.

寸だ硫化水素吸収液はアルカリ性吸収液を用いることが
推奨される。これはイオウ分の酸化に際して生成する硫
酸によるpH低下を防止するアルカリ剤の一部として使
用できるからである。
It is recommended that an alkaline absorption liquid be used as the hydrogen sulfide absorption liquid. This is because it can be used as part of an alkaline agent that prevents the pH from decreasing due to sulfuric acid produced during oxidation of sulfur.

次に本発明の実i>fM例を第1図のフローに基づいて
行った結果に一ついて述べる。嫌気性反応装置(第1M
1符号2に該当する)は第2図に示したものを用いた。
Next, the results of an actual i>fM example of the present invention based on the flow shown in FIG. 1 will be described. Anaerobic reactor (1st M
1 (corresponding to code 2) shown in FIG. 2 was used.

なお、第2図中20は嫌気性生物処理液の沈殿槽、21
は返送汚泥、22は水封槽である。
In addition, 20 in Fig. 2 is a sedimentation tank for the anaerobic biological treatment liquid, and 21
2 is the return sludge, and 22 is the water seal tank.

実施・条件は第2表、第3表のとおりである。The implementation and conditions are shown in Tables 2 and 3.

第  3  表 注)*−IS20乏−一ジチオン酸イオン*−2T−N
  :NH3−N+NOよ−N第3表の実施番号CとD
とを比較すると、5206が高濃度になると硫化水素吸
収液無添加のDではS2Oニーが大量に残留しているこ
とがわかる。
Table 3 Note) *-IS20 oligo-monodithionate ion *-2T-N
:NH3-N+NO-N Implementation numbers C and D in Table 3
Comparing the above, it can be seen that when the concentration of 5206 becomes high, a large amount of S2O remains in D without the addition of hydrogen sulfide absorption liquid.

また第2表の実施条件に示しだ処理装置を用い、7日で
、有機物としてし尿、下水汚泥を、硝化脱窒処理装置の
余剰汚泥としてメタノールをそれぞれ用いて処理を行っ
たところ、高率のジチオン酸。
In addition, using the treatment equipment shown in Table 2 under the operating conditions, we treated human waste and sewage sludge as organic matter and methanol as surplus sludge from the nitrification and denitrification treatment equipment over a period of 7 days. Dithionic acid.

窒素除去を行うことができた。ただし、第2脱窒槽の有
機物1(はメタノールを用いた。
Nitrogen removal was possible. However, methanol was used for organic matter 1 (in the second denitrification tank).

以上のように本発明によって、以下に列挙する多大の効
果をあげることができる。
As described above, the present invention can bring about many effects listed below.

■ ジチオン酸流入量の変動に対応するため、嫌気性生
物処理槽に過剰の有機物を添加しても、次段の生物学的
脱窒に有効に利用できる。
■ Even if excess organic matter is added to the anaerobic biological treatment tank to accommodate fluctuations in the amount of dithionate inflow, it can be effectively used for the next stage of biological denitrification.

■ 嫌気性生物処理槽で発生した硫化水素を吸収した吸
収剤を脱窒の還元剤として利用するため、外部から添加
する有機物量を節減でき、同時に該吸収剤も処理できる
■ Since the absorbent that has absorbed hydrogen sulfide generated in the anaerobic biological treatment tank is used as a reducing agent for denitrification, the amount of organic matter added from the outside can be reduced and the absorbent can be treated at the same time.

■ イオウ分を硝化脱窒素工程に注入することにより、
該工程内にジチオン酸酸化能力を有する微生物を増殖で
きるので、前段の嫌気性生物処理工程と合せて、極めて
安定したジチオン酸の生物処理を行うことができる。
■ By injecting sulfur into the nitrification and denitrification process,
Since microorganisms capable of oxidizing dithionic acid can be grown in this process, extremely stable biological treatment of dithionic acid can be performed in combination with the preceding anaerobic biological treatment process.

■ 硝化脱窒素工程で発生する余剰汚泥をジチオン酸の
還元分解に利用できるので、プロセス全体の汚泥発生茄
・が少なくなり、汚泥処理費用が軽減される。
■ Excess sludge generated in the nitrification and denitrification process can be used for the reductive decomposition of dithionic acid, reducing the amount of sludge generated in the entire process and reducing sludge treatment costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様を示すフローシート、第2
図は本発明の実施例に使用した嫌気性反応装置を示すフ
ローシートである。 ]・・・流入液、2・・・分解槽、3・・・有機物、4
・・・消化ガス、5・・・吸収装置、6・・・ガス循環
ポンプ、7・・・分解液、8・・・返送汚泥、9・−・
循環硝化液、10・・・第1脱窒槽、11・・・硫化水
素吸収液、12・・・余剰汚泥、13・・・硝化槽、1
4・・・第2脱法槽、15・・阿ばっ気槽、16・・・
沈殿4’L 16’・・・処理水、17・・・余剰汚泥
処理工程、18・・・有機物貯槽、19・・・余剰ガス
、20・・・沈殿槽、21・・返送汚泥、22・・・水
封槽。 特許出1jifi人 荏原インフィルコ株式会社代到1
人弁理士 千  1)    稔(j穐手続補正書 昭和58年8月 5日 特許庁長官 若杉和夫殿 ■、 事イ!1の表示 昭和57年特 許 願第186078号3、 補正をす
る者 ・1沖(との1口糸    特許出願人イIi・斤(+
、+i1−斤) 氏6(名調)    (040)荏原インフィルコ株式
会社4、代Jll!lj人 6、補正により増加する発明の数 補     正     舎 本願明細書中 1、 第12負、第4行の「必ずしも図示・・・・・・
・・・限らず、」を削除する。 2、第16頁、第19行〜第17頁、第4行の「ただし
この場合、・・・・・山注入することが必要である。J
を削除する。 以上
FIG. 1 is a flow sheet showing one embodiment of the present invention;
The figure is a flow sheet showing an anaerobic reactor used in Examples of the present invention. ]... Inflow liquid, 2... Decomposition tank, 3... Organic matter, 4
...Digestion gas, 5.Absorption device, 6.Gas circulation pump, 7.Decomposition liquid, 8.Return sludge, 9.--
Circulating nitrification liquid, 10... First denitrification tank, 11... Hydrogen sulfide absorption liquid, 12... Excess sludge, 13... Nitrification tank, 1
4...Second aeration tank, 15...Aeration tank, 16...
Sedimentation 4'L 16'... Treated water, 17... Surplus sludge treatment process, 18... Organic matter storage tank, 19... Surplus gas, 20... Sedimentation tank, 21... Return sludge, 22.・Water seal tank. Patent issued 1jifi person Ebara Infilco Co., Ltd. Dairyu 1
1) Minoru (j.Akuri Procedural Amendment Letter dated August 5, 1980, Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office■, Indication of 1986 Patent Application No. 186078, 3) 1 oki (with 1 word patent applicant Ii 斤(+
, +i1-cat) Mr. 6 (Meicho) (040) Ebara Infilco Co., Ltd. 4, Dai Jll! 6. Correction of the number of inventions due to the amendment 1, 12th negative line, 4th line of the specification of the present application: ``Not necessarily illustrated...''
. . . without limitation," should be deleted. 2, page 16, line 19 to page 17, line 4, ``However, in this case...it is necessary to inject a mountain.J
Delete. that's all

Claims (1)

【特許請求の範囲】 1 窒素化合物と硫黄酸化物として少なくともジチオン
酸又はその塩を含有する排水に有機物を添加し、発生す
る硫化水素を吸収除去しながら嫌気性生物処理したのち
、該嫌気性生物処理液に前記硫化水素を吸収した吸収剤
を疾加して生物学的硝化脱窒素処理することを特徴とす
る窒素化合物とジチオン酸含有排水の生物処理方法。 2、 前記嫌気性生物処理を、生物反応液の硫化水素濃
度を20■/を以下、好ましくは8rv/l−以下に保
って行う特許請求の範囲第1項記載の方法。 乙 前記硫化水素を吸収した吸収剤を前記生物学的硝化
脱窒素工程の脱窒素工程に添加する特許請求の範囲第1
項又は第2項記載の方法。 4 前記硫化水素を吸収した吸収剤を前記生物学的硝化
脱窒素工程の硝化工程に添加する特許請求の範囲第1項
又は第2項記載の方法。 5、 前記有機物としてメタノール、エタノール。 酢酸などの窒素を含有しない物質を使用する特許請求の
範囲第1項記載の方法。 6 前記有機物として前記生物学的硝化脱窒素工程で得
られる余剰汚泥を使用する特許請求の範囲第1項記載の
方法。
[Claims] 1. Organic matter is added to wastewater containing at least dithionic acid or its salt as a nitrogen compound and sulfur oxide, and after anaerobic biological treatment while absorbing and removing generated hydrogen sulfide, the anaerobic organism A biological treatment method for wastewater containing nitrogen compounds and dithionic acid, characterized in that biological nitrification and denitrification treatment is carried out by adding an absorbent that has absorbed the hydrogen sulfide to the treatment liquid. 2. The method according to claim 1, wherein the anaerobic biological treatment is carried out while maintaining the hydrogen sulfide concentration of the biological reaction liquid at 20 rv/l or less, preferably 8 rv/l or less. B. Claim 1, in which the absorbent that has absorbed the hydrogen sulfide is added to the denitrification process of the biological nitrification and denitrification process.
or the method described in paragraph 2. 4. The method according to claim 1 or 2, wherein the absorbent that has absorbed hydrogen sulfide is added to the nitrification step of the biological nitrification and denitrification step. 5. Methanol and ethanol as the organic substance. 2. A method according to claim 1, wherein a nitrogen-free substance such as acetic acid is used. 6. The method according to claim 1, wherein excess sludge obtained in the biological nitrification and denitrification step is used as the organic matter.
JP18607882A 1982-10-25 1982-10-25 Biological treatment of waste water containing nitrogen compound and dithionic acid Granted JPS5976597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18607882A JPS5976597A (en) 1982-10-25 1982-10-25 Biological treatment of waste water containing nitrogen compound and dithionic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18607882A JPS5976597A (en) 1982-10-25 1982-10-25 Biological treatment of waste water containing nitrogen compound and dithionic acid

Publications (2)

Publication Number Publication Date
JPS5976597A true JPS5976597A (en) 1984-05-01
JPS6349554B2 JPS6349554B2 (en) 1988-10-05

Family

ID=16181992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18607882A Granted JPS5976597A (en) 1982-10-25 1982-10-25 Biological treatment of waste water containing nitrogen compound and dithionic acid

Country Status (1)

Country Link
JP (1) JPS5976597A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839052A (en) * 1987-03-10 1989-06-13 Council For Scientific And Industrial Research Biological treatment of water
EP0769479A1 (en) * 1995-10-18 1997-04-23 N.V. Kema Process for cleaning a waste water stream or the like
JP2005288371A (en) * 2004-04-01 2005-10-20 Sumitomo Heavy Ind Ltd Wastewater treatment method
JP2013192965A (en) * 2012-03-15 2013-09-30 Swing Corp Treatment method and treatment apparatus of organic wastewater and organic waste
JP2020099873A (en) * 2018-12-21 2020-07-02 水ing株式会社 Water treatment method and water treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224207A (en) * 1988-10-03 1993-06-29 Xerox Corporation Improved remote programming using display screen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839052A (en) * 1987-03-10 1989-06-13 Council For Scientific And Industrial Research Biological treatment of water
EP0769479A1 (en) * 1995-10-18 1997-04-23 N.V. Kema Process for cleaning a waste water stream or the like
JP2005288371A (en) * 2004-04-01 2005-10-20 Sumitomo Heavy Ind Ltd Wastewater treatment method
JP2013192965A (en) * 2012-03-15 2013-09-30 Swing Corp Treatment method and treatment apparatus of organic wastewater and organic waste
JP2020099873A (en) * 2018-12-21 2020-07-02 水ing株式会社 Water treatment method and water treatment apparatus

Also Published As

Publication number Publication date
JPS6349554B2 (en) 1988-10-05

Similar Documents

Publication Publication Date Title
KR100643775B1 (en) Treatment hybrid process for remove nutrient using floating microorganism
CN205442947U (en) Coking wastewater treatment system
KR0149978B1 (en) Advanced waste water treatment process by noxn removal from return activated sludge
JPS5976597A (en) Biological treatment of waste water containing nitrogen compound and dithionic acid
KR20090080594A (en) The system and method of removing BOD, N, and P removal from an animal wastewater
JP2000189995A (en) Method and device for removing nitrogen in waste water
KR101045975B1 (en) Method for removing nitrogen from anaerobic digested waste water
KR20100046936A (en) Combined sulfur autotrophic denitrification and bioelectrochemical denitrification system
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
KR101179049B1 (en) Nitrite removal processes from waters using sulfur-oxidizing denitrifying bacteria
JPS585118B2 (en) Yuukiseihaisuino
KR100375413B1 (en) Removal Methods of Nitrogen and phosphorus in wastewater using external carbon source
JP2004305980A (en) Biological denitrification treatment method
JPH05228493A (en) Method for treating waste water using sulfur bacterium and apparatus therefor
JPS6117559B2 (en)
KR100438323B1 (en) High intergated Biological Nutrient Removal System
KR101306805B1 (en) The method and Treatment process of Wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater
KR100300820B1 (en) Advanced Treatment Method for Sewage or Industrial Waste Water
KR20010076873A (en) Organic and nitrogen compound removal methods from landfill leachate using an anaerobic-aerobic-anoxic system
KR20110045812A (en) Apparatus and method for removing nitrogen from anaerobic digested waste water
JP3345873B2 (en) Ammonia-containing wastewater treatment equipment
KR100325722B1 (en) A treatment method of sewage and wastewater using ozone and oxygen
JP3837760B2 (en) Treatment method of flue gas desulfurization waste water
JPS5919594A (en) Treatment of dithionic acid-contg. waste water
KR100202066B1 (en) Wastewater treatment method using biological 3 step digestion process in one reactor