JPS5970760A - Film forming device - Google Patents

Film forming device

Info

Publication number
JPS5970760A
JPS5970760A JP57179747A JP17974782A JPS5970760A JP S5970760 A JPS5970760 A JP S5970760A JP 57179747 A JP57179747 A JP 57179747A JP 17974782 A JP17974782 A JP 17974782A JP S5970760 A JPS5970760 A JP S5970760A
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
raw material
film
ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57179747A
Other languages
Japanese (ja)
Inventor
Wataru Mitani
渉 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57179747A priority Critical patent/JPS5970760A/en
Publication of JPS5970760A publication Critical patent/JPS5970760A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To provide a titled device which enables the uniform stagnation of the gas in a reaction chamber and the formation of a film having good quality by the constitution wherein a base body in the reaction chamber is enclosed with plural introducing ports for gaseous raw material and a tubular member provided with a gas discharging port having the total area larger than the total area of said introducing ports. CONSTITUTION:A film forming device 1 decomposes a gaseous raw material and forms the film thereof on the surface of a drumlike base body 7 which is rotated by a motor 9 and is mounted to a holder 5 contg. a heater 6 in a reaction chamber 4 formed of a casing 2 provided on a base 1. The gaseous raw material in such device is introduced through a gas introducing pipe 15, a valve 12b and an introducing pipe 12a into the side part 11e of a tubular member 11 enclosing the body 7, is ejected from plural gas introducing parts 11a into the chamber 4 and is discharged through plural gas releasing ports 11b provided to the member 11 and through a releasing pipe 13a to the outside by an evacuation system 13. The total area of the above-mentioned port 11a is formed to the area smaller than the total area of the ports 11b to make the stagnating gas in the chamber 4 uniform and to permit easy maintenance of the low pressure in the evacuation. The film having a uniform thickness is thus formed in a short time.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は低圧Fにおいて原料ガスを放電により分解させ
、この原料ガス中の元素を含む薄膜を基体表面に形成す
る膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a film forming apparatus that decomposes a source gas by electric discharge at low pressure F and forms a thin film containing elements in the source gas on the surface of a substrate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の膜形成装置は真空状態の反応室内に原料ガスを導
入するとともにガス排気系を調節して一定圧力に保持し
、反応室内の対向電極間に高周波電力全供給して、反応
室内の原料ガスを放電分解することによりプラズマ状態
を生じさせ、反応室内の底部に垂直に載置された基体表
面に原料ガス中の元素を含む膜を形成するものである。
Conventional film forming equipment introduces raw material gas into a reaction chamber in a vacuum state, adjusts the gas exhaust system to maintain a constant pressure, and fully supplies high-frequency power between opposing electrodes in the reaction chamber to remove the raw material gas in the reaction chamber. A plasma state is generated by discharging and decomposing the gas, and a film containing the elements in the source gas is formed on the surface of a substrate placed vertically at the bottom of the reaction chamber.

しかしこのような膜形成装置においては一般に前記ガス
排気系が反応罠の底部に設けられているため、成膜中の
ガス滞留時間が反応室の上下方向の位置によって不均一
になり、基体表面に形成される膜の上下方向に、膜厚及
び膜特性上の不拘−金生ずるという問題点をイイし7て
いる。
However, in such a film forming apparatus, the gas exhaust system is generally installed at the bottom of the reaction trap, so the gas residence time during film formation becomes uneven depending on the vertical position of the reaction chamber, and the gas exhaust system is installed at the bottom of the reaction trap. This solves the problem of inconsistencies in film thickness and film properties in the vertical direction of the formed film.

を得るために、すなわち成膜速度をできるだけはやくす
ゐために反応室と原料ガス導入系との圧力差に比べて反
応室とガス排気系との圧力差が小さくなっており、これ
により反応室内の低)E維持、大流量排気の維持が困難
となることから膜t1.¥−性等に悪影響を与えるとい
う問題も生じる。また史には長時間に亘る成膜において
はガス排気系の目づまりが頻繁に発生する。
In order to increase the film formation rate as much as possible, the pressure difference between the reaction chamber and the gas exhaust system is smaller than the pressure difference between the reaction chamber and the source gas introduction system. Since it becomes difficult to maintain low E of t1. There is also the problem of having a negative impact on people's sexuality, etc. Furthermore, in the past, gas exhaust systems often become clogged during film formation over a long period of time.

〔発明の目的] 本発明は以上述べた問題点を除去するために成されたも
ので排気系による大流量排気、反応だ基体表]mに均一
な膜厚及び膜特性の膜形成を行なうことかで@る膜形成
装置を提供することを目的とする。
[Objective of the Invention] The present invention has been made to eliminate the above-mentioned problems, and is to form a film with uniform thickness and film properties over the reaction substrate surface by exhausting a large amount of gas using an exhaust system. The purpose of the present invention is to provide a film forming apparatus that can perform the following steps.

〔発明の概要〕[Summary of the invention]

本発明は、内壁に複数の原料用ガス導入口と、この総面
積よりも総面積の大きな複数のガス排気口とが配設され
た管状部材で反応室内に載置された膜形成用基体表面を
囲み、反応室内におけるガスの滞留を均一にするととも
に、反応室内の低圧維持、大流量排気を容易にしたもの
である。
The present invention is a tubular member having a plurality of raw material gas inlets and a plurality of gas exhaust ports having a total area larger than the total area of the raw material gas inlet and the surface of the film forming substrate placed in the reaction chamber. This structure ensures uniform gas retention within the reaction chamber, maintains low pressure within the reaction chamber, and facilitates high-flow exhaust.

〔発明の実Mli例〕[Examples of actual Mli inventions]

次に本発明を図に示した実施例を参照して説明する。 Next, the present invention will be explained with reference to embodiments shown in the drawings.

第1図は本発明の一実施例を示す概略縦断面図である。FIG. 1 is a schematic vertical sectional view showing an embodiment of the present invention.

膜形成装置(1)I″i例えばステンレスからなる円筒
状のケーシング(2)及び、これを担持する基台(3)
により密閉状態に形成された反応室(4)を備えている
。この反応室(4)内には保持体(5)が設けられてお
り、保持体(5)上にはシースヒータ(6)が固定され
、さらにこのシースヒータ(6)を囲むように例えばア
ルミ製のドラム状基体(力が載置されているつまん保持
体f5) Fiその下部が基台(3)に設けられたψI
II受(8)によシ回転自在支持されるとともに、反応
室(4)外においてギヤ(5a)(5b)を介してモー
タ(9)に接続されており、モータ(9)の、駆動によ
って、シースヒータ(6)及び基体(7)ヲJu持した
状yaで回転するように構成されている。
Film forming device (1) I''i A cylindrical casing (2) made of, for example, stainless steel, and a base (3) that supports it
A reaction chamber (4) formed in a sealed state is provided. A holder (5) is provided in the reaction chamber (4), a sheath heater (6) is fixed on the holder (5), and a sheath heater (6), for example, made of aluminum is provided so as to surround the sheath heater (6). Drum-shaped base (pink holder f5 on which the force is placed) Fi, whose lower part is provided on the base (3) ψI
It is rotatably supported by the II receiver (8) and is connected to the motor (9) via gears (5a) and (5b) outside the reaction chamber (4), and is driven by the motor (9). , the sheath heater (6), and the base (7) are rotated in a state where they are held together.

また反応室(4)には更に高周波電源(10)K接続さ
れている管状部材01)がその内壁を基体(7)に対向
させて設けられており、保持体(5)を介して接地され
る基体(力との間で対向電極を構成する。第2図d:管
状部材01)を示す斜視図であり、第3図そのX’  
Y 所rtn図である1、管状部材(11)は外壁(i
 J C)と内壁C11(1)とから成る中空の側部(
lle)を4了し、かつその内壁(tl、d)に基体(
7)表向に対向するように複像の原料ガス尋人口(ll
a)と上方部及びト一方部を除く中間部の外壁(Hc)
と内壁(llcl)とを−はく複数のガス排気口(」1
b)が交互に配設されている。導入口(ha)はその総
面積が排気[」(月1〕)の総面積よりも小さく、管状
部材(10の下方部においてその側部(lie)内と通
ずる原料ガス導入管(12a)どバルブ(+2b)を介
して反応室(4)外に設けられた原料貯蔵用ボンベ(図
示せず)と通ずる導入管(1乃と連通されている。
Furthermore, in the reaction chamber (4), a tubular member 01) connected to a high frequency power source (10) is provided with its inner wall facing the base (7), and is grounded via a holder (5). FIG.
1, the tubular member (11) has an outer wall (i
JC) and an inner wall C11(1).
lle) is completed 4 times, and the inner wall (tl, d) is coated with the substrate (
7) Double-image raw material gas volume (ll
a) and the outer wall of the middle part excluding the upper part and one part (Hc)
and the inner wall (llcl) - a plurality of gas exhaust ports (1)
b) are arranged alternately. The total area of the inlet (ha) is smaller than the total area of the exhaust ['' (month 1)], and the raw material gas inlet pipe (12a) which communicates with the inside of the side part (lie) of the tubular member (10) at the lower part of the tubular member (10). It communicates with an inlet pipe (1) that communicates with a raw material storage cylinder (not shown) provided outside the reaction chamber (4) via a valve (+2b).

またケーシング(2)は第4図に示すように、その側壁
に反応室(4)内と通ずる2個のガス排気管(1:33
)が連結されている。排出管(13a)は、ダストトラ
ップ(13b)、メカニカルブースターポンプ(13C
)、口・−タリーポンプ(13d)及び反応室(4)内
を真空状態に引くための油拡散ポンプ(図示せず)等か
ら成るガス排気糸θ3)と連通されている。ガス排気系
(131は図示しない流量制御装置によりその排気力が
制御される。従って原料ガスは導入費(12)→バルブ
(、+2b)→導入管(12a)の順に流入して管状部
材種)の側部(lle)内に導入され、導入口(J、l
 a )から反応室(4)内に噴出される。そしてその
排ガスは排気系((3)の排気力により排気口(llb
)を通って管状部材(111外へ排出され、さらに排気
管(13a)を通って反応室(4)外へ排気される。な
おダストトラップ(13b)内にはメツシュ(13e)
がはりめぐらされており、成膜中に生ずる粉塵を捕獲す
るようになっている。
Furthermore, as shown in Figure 4, the casing (2) has two gas exhaust pipes (1:33
) are connected. The discharge pipe (13a) includes a dust trap (13b) and a mechanical booster pump (13C).
), a port-tally pump (13d), an oil diffusion pump (not shown) for drawing the inside of the reaction chamber (4) into a vacuum state, etc. are connected to a gas exhaust line θ3). The exhaust force of the gas exhaust system (131 is controlled by a flow rate control device (not shown). Therefore, the raw material gas flows in the order of introduction cost (12) → valve (, +2b) → introduction pipe (12a) (tubular member type) is introduced into the side (lle) of the inlet (J, l).
a) into the reaction chamber (4). The exhaust gas is then discharged from the exhaust port (llb) by the exhaust force of the exhaust system ((3).
) through the tubular member (111), and further through the exhaust pipe (13a) to the outside of the reaction chamber (4).In addition, there is a mesh (13e) inside the dust trap (13b).
It is designed to capture dust generated during film formation.

また基体(力表面と管状部材αl)側部(lie)及び
ケて、基体(力表面に例えばアモルファシリコン膜光体
を成膜する場合の作用を説明する。
In addition, the effect when forming, for example, an amorphous silicon film on the sides (lie) of the base body (force surface and tubular member αl) and the base body (force surface) will be explained.

まず初期状態においてパルプ(12b)は閉じた状態に
あり、まだモータ(9)、シースヒータ(6)及び排気
系(1階はオフされている。そしてこの状態で排気糸0
3)の油拡散ポンプ等を用いて反応室(4)内が10’
torrの真空に引かれる。この時シースヒータ(6)
及びモータ(9)がオンされる3、従って基体(力はシ
ースヒータ(6)によ、9180°Cに加熱されるとと
もに、モータ(9)により回転され、その表面の円周方
向の温度分布が均一に保たれる。次いで排気系(+3)
がメカニカルブースターポンプ(1:3C)とロータリ
ーポンプ(13d)に切シ換えられ、これと同時にパル
プ(12b)が開かれる。従って原料ガス貯蔵用ボンベ
内の珪素を含む原料ガス例えば5ir14が■8o S
CCMの流量で前述し人される1、マた排気系(1漕に
よって反応室(4)内の圧力が0.4tnrrになるよ
うに排気される。この後管状部材CI+)に電源(1(
Dから1.3.56MH,のラジオフリークエンシ・−
パワーが50W印加される。
First, in the initial state, the pulp (12b) is in a closed state, and the motor (9), sheath heater (6), and exhaust system (first floor are still turned off.And in this state, the exhaust thread 0
3) Using the oil diffusion pump etc., the inside of the reaction chamber (4) is heated to 10'.
It is drawn to the vacuum of torr. At this time, the sheath heater (6)
3, and the motor (9) is turned on, so the base body (force is heated to 9180°C by the sheath heater (6) and rotated by the motor (9), so that the temperature distribution in the circumferential direction on its surface is Maintained uniformity.Next is the exhaust system (+3)
is switched to a mechanical booster pump (1:3C) and a rotary pump (13d), and at the same time the pulp (12b) is opened. Therefore, the raw material gas containing silicon in the raw material gas storage cylinder, for example, 5ir14, is
The pressure inside the reaction chamber (4) is evacuated to 0.4 tnrr by the exhaust system (1 tank) as described above at the flow rate of the CCM. After this, the tubular member CI+ is connected to the power source (1 (
Radio frequency of 1.3.56MH from D -
Power is applied at 50W.

このため基体(力と管状部材(11)との間にプラズマ
状態が発生し2て原料ガスが分解され、基体(7)表面
に珪素を含むアモルファスシリコン膜の成膜が開始され
る。
Therefore, a plasma state is generated between the base body (force) and the tubular member (11), the source gas is decomposed, and the formation of an amorphous silicon film containing silicon on the surface of the base body (7) is started.

一方原料ガスの反応室(4)への導入及び排気系(3)
による反応室(4)外へのガス排気は、成膜中も行なわ
れている。この原料ガスの導入は、前述したように基体
(力衣面に対向する導入口(lta)から行なわれ、ガ
ス排気は排気口(l lb)を通して行なわれる。この
ため反応室(4)の特に管状部材(!υによって囲まれ
た空間においては、基体(力の表面に対してガスが垂直
に流入出し、ガスの滞留時間が基体(力表面の上下方向
で均一に保たれる。
On the other hand, the introduction of raw material gas into the reaction chamber (4) and the exhaust system (3)
Gas exhaust to the outside of the reaction chamber (4) is also performed during film formation. As described above, this raw material gas is introduced through the inlet (lta) facing the substrate (the surface of the material), and the gas is exhausted through the exhaust port (llb). In the space surrounded by the tubular member (!υ), gas flows in and out perpendicularly to the surface of the base (force surface), and the residence time of the gas is kept uniform in the vertical direction of the base surface (force surface).

そして前述したように、すなわち原料ガス流−iJ、 
1s o Sc c M、 、il!:体温度180 
”C1成膜中の反応室(4)内圧力0.4torr、電
力50Wなる条件下で5時間の成膜を行ったところ、所
望の膜特性をイアするアモルファスシリコン膜が基体(
力表面に膜厚μ[11(誤差範囲±3%)で形成された
And as mentioned above, i.e., the raw material gas flow −iJ,
1s o Sc M, ,il! :Body temperature 180
``During C1 film formation, the film was formed for 5 hours under the conditions of 0.4 torr in the internal pressure of the reaction chamber (4) and 50 W of power.
The film was formed on the surface with a film thickness μ[11 (error range ±3%)].

△ またこの成膜実験を繰り返し行った結果、同様の膜厚膜
特性を有するアモルファスシリコン膜が基体(力表面に
形成された。しかもこの際排気系(13)が目づ!、り
等の弊害を起すことがなかった。
△ Also, as a result of repeating this film formation experiment, an amorphous silicon film with similar film thickness and film characteristics was formed on the substrate (surface).Moreover, at this time, the exhaust system (13) caused problems such as conspicuousness and rips. I never woke up.

まだ本実施例においては、ガス排気口(llb)の総量
「1面積をガス導入口(ha)の総開口面積よりも大き
くしである。従って原料ガスの導入流量を多くして膜形
成速度をはやめても、換言すれば反応室(4)とガス導
入系(ガス導入管(1カ)との圧力差に比べて、反応室
(4)とガス排気系03)との圧力差が小情<シても、
排気系α騰による大流量排気が可能であり反応室(4)
内を十分所望の低圧力に維持することができる。例えば
ガス排気口(J、lb)の総量]コ面積をガス導入口(
tXa)の総開口面積の10倍とすると、従来の装置に
おいて原料ガス流量300SCCM で排気能力を最大
としでも、反応室内の出力をl torrに維持するこ
とが限度であったのに対し、本実施例では原料ガス流量
500SCCM でも成膜中の反応室(4)の圧力を0
.05torrに維持することができた。
In this example, the total area of the gas exhaust ports (llb) is set to be larger than the total opening area of the gas inlet ports (ha). Therefore, the rate of film formation is increased by increasing the flow rate of the raw material gas introduced. In other words, the pressure difference between the reaction chamber (4) and the gas exhaust system 03 is smaller than the pressure difference between the reaction chamber (4) and the gas introduction system (gas introduction pipe (1)). <But,
It is possible to exhaust a large amount of air by increasing the α of the exhaust system, and the reaction chamber (4)
The internal pressure can be maintained at a sufficiently low pressure. For example, the total area of the gas exhaust ports (J, lb) is calculated from the area of the gas inlets (
If the total opening area of tXa) is 10 times, even if the exhaust capacity is maximized with a raw material gas flow rate of 300 SCCM in a conventional device, the output inside the reaction chamber could only be maintained at 1 torr. In the example, even if the raw material gas flow rate is 500 SCCM, the pressure in the reaction chamber (4) during film formation is reduced to 0.
.. It was possible to maintain the pressure at 0.05 torr.

このように本実施例によれば原料ガスの導入流量を多く
しても、排気系の排気値を大きく保1・ 持が容易であり、また反応室・・内のガスの滞留を△ 均一にすることができ、従来装置に比べて短時間にか一
7フ正確に均一な膜厚11iネ特性を有する膜を基体表
闇に形成することができる。
In this way, according to this example, even if the flow rate of raw material gas introduced is increased, it is easy to maintain a large exhaust value in the exhaust system, and the retention of gas in the reaction chamber can be made uniform. This makes it possible to form a film with a uniform thickness of 11 mm on the surface of the substrate in a shorter time than with conventional apparatuses.

なお本実施例においてはガス排気’M (1a a )
がケーシング(2)の側部に連結されたが、反応室(4
)の底部すなわち基台(3)を介して反応室(4)内と
連通させてもよい。しかし本実施例のようにガス排気管
(13a)をケーシング(2)の側壁に連結させた方が
より反応室内におけるガスの滞留を均一(′こすること
ができる。また本実施例のガス排出口(JIL+)の形
状は本発明に限られるものではなく、例えば個々のガス
排出口(、[lb)の長手方向の両端8b分を全て切り
欠いた形状等イ事々の変形が考えられる。ただしガス排
気口(llb)の長手方向の両端部分を全て切り欠いた
場合には本実施例における複数の導入口(Ha)が設け
られている4個の部分の各々対して、ガス導入’1Q2
)とへ 連通ずるガスji−+人管(+2a)が必要となり構造
上複雑になる。また本発明ηよその他の部分についても
、その主旨を変えない範囲で変形がr=l能である。
In this embodiment, the gas exhaust 'M (1a a)
was connected to the side of the casing (2), while the reaction chamber (4)
), that is, the base (3), may be communicated with the inside of the reaction chamber (4). However, if the gas exhaust pipe (13a) is connected to the side wall of the casing (2) as in this embodiment, the gas retention in the reaction chamber can be more uniformly rubbed. The shape of the outlet (JIL+) is not limited to the present invention, and various modifications may be considered, such as a shape in which both ends 8b in the longitudinal direction of each gas outlet (, [lb) are completely cut out. However, if both end portions in the longitudinal direction of the gas exhaust port (llb) are completely cut out, the gas introduction '1Q2
) is required, making the structure complicated. In addition, other parts of the present invention η may be modified as long as they do not change the spirit thereof.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば原料ガス尋人流量
を太キくシでも、排気系による大流量排気、反応室内の
低圧維持が容易であり、また反応室内のガス滞留を均一
にすることができ、反応室内に設けられた基体表面に均
一な膜厚及び膜特性の膜形成を行なうことができる膜形
成装置を提供することができる、。
As explained above, according to the present invention, even if the flow rate of the raw material gas is increased, it is easy to exhaust a large flow rate using the exhaust system and maintain a low pressure in the reaction chamber, and the gas retention in the reaction chamber can be made uniform. It is possible to provide a film forming apparatus capable of forming a film with uniform thickness and film characteristics on the surface of a substrate provided in a reaction chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第2図tよ
回倒の要部を示す斜視図、第3図はそのX−Y断聞図、
il工4図は回倒の他の要部を示−4″うP[視図であ
る。 ■・・・膜形成装置6.4・・・反応室、□7・・・基
体、11・・・管状)711材、Ila・・・ガス酌人
口、llb・・・ガス排〆「1.12・・・ガス導入管
、[:3・・・排気系、 代1・(1人弁理士 則 近 憲 佑 (ほか1名) 第  1 図 第  2 図
Fig. 1 is a vertical sectional view showing an embodiment of the present invention, Fig. 2 is a perspective view showing the main part of the rotation, Fig. 3 is an X-Y section view thereof,
Fig. 4 is a perspective view of other important parts of the rotation. ■... Film forming device 6.4... Reaction chamber, □7... Base, ...Tubular) 711 material, Ila...Gas drinking capacity, llb...Gas exhaust 〈1.12...Gas introduction pipe, [:3...Exhaust system, Substitute 1 (1 patent attorney) Noriyuki Chika (and 1 other person) Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)原料用ガス導入系及び排気系を備えた反応室内で
原料ガスを分解して、この原料ガス中の元素を含んだ膜
を反応室内に設けられた基体表面に形成する膜形成装置
において、前記原料用ガス導入系に連通ずる複数のガス
導入口と前記ガス排気系に連通ずる複数のガス排気口と
が交互にかつ前記基本表面に対向して配設されており、
前記ガス排気口の総開口断面積が前記ガス導入口の総開
口断面積よりも大面〆積であることを特徴とする膜形成
装置。
(1) In a film forming apparatus that decomposes a raw material gas in a reaction chamber equipped with a raw material gas introduction system and an exhaust system, and forms a film containing elements in the raw material gas on a substrate surface provided in the reaction chamber. , a plurality of gas introduction ports communicating with the raw material gas introduction system and a plurality of gas exhaust ports communicating with the gas exhaust system are arranged alternately and facing the basic surface,
A film forming apparatus characterized in that the total opening cross-sectional area of the gas exhaust port is larger than the total opening cross-sectional area of the gas inlet.
(2)基体表面に対して平行な反応室の側壁にガス排気
系が設けられたことを特徴とする特許請求の範囲第1項
記載の膜形成装置。
(2) The film forming apparatus according to claim 1, characterized in that a gas exhaust system is provided on a side wall of the reaction chamber parallel to the substrate surface.
(3)複数のガス導入口と複数のガス排気口とが交互に
配設された内壁を有する管状部材が、その内壁を基体表
面に対向させて反応室内に設けられることを特徴とする
特許請求の範囲第1項及び第2項記載の膜形成装置。
(3) A patent claim characterized in that a tubular member having an inner wall in which a plurality of gas inlets and a plurality of gas exhaust ports are arranged alternately is provided in a reaction chamber with the inner wall facing the substrate surface. The film forming apparatus according to the ranges 1 and 2.
JP57179747A 1982-10-15 1982-10-15 Film forming device Pending JPS5970760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57179747A JPS5970760A (en) 1982-10-15 1982-10-15 Film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57179747A JPS5970760A (en) 1982-10-15 1982-10-15 Film forming device

Publications (1)

Publication Number Publication Date
JPS5970760A true JPS5970760A (en) 1984-04-21

Family

ID=16071157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57179747A Pending JPS5970760A (en) 1982-10-15 1982-10-15 Film forming device

Country Status (1)

Country Link
JP (1) JPS5970760A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839145A (en) * 1986-08-27 1989-06-13 Massachusetts Institute Of Technology Chemical vapor deposition reactor
EP0625589A1 (en) * 1993-05-20 1994-11-23 Siegfried Dr. Strämke CVD reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839145A (en) * 1986-08-27 1989-06-13 Massachusetts Institute Of Technology Chemical vapor deposition reactor
EP0625589A1 (en) * 1993-05-20 1994-11-23 Siegfried Dr. Strämke CVD reactor

Similar Documents

Publication Publication Date Title
US6716284B2 (en) Apparatus and process of improving atomic layer deposition chamber performance
JP3897382B2 (en) Vacuum system cleaning method and apparatus for CVD system
US5425842A (en) Method of manufacturing a semiconductor device using a chemical vapour deposition process with plasma cleaning of the reactor chamber
TW434325B (en) Chemical vapor deposition (CVD) apparatus
WO2005124845A1 (en) Substrate processing equipment and semiconductor device manufacturing method
US8093072B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
KR19990063409A (en) Heat treatment equipment
JP2005502784A (en) Plasma reinforced atomic layer deposition apparatus and thin film forming method using the same
JP2001520321A (en) Lid assembly for process chamber using asymmetric flow geometry
KR100721504B1 (en) Plasma enhanced atomic layer deposition equipment and method of forming a thin film using the same
KR20050046617A (en) Atomic layer deposition process and apparatus
JP2020033619A (en) Exhaust piping device and cleaning device
TWI723125B (en) Apparatus for processing substrate
JP2006279058A (en) Heat treatment apparatus and method of manufacturing semiconductor device
JP2010504436A (en) System and method including a particle trap / filter for recirculating diluent gas
KR20070098104A (en) Thinfilm deposition apparatus having gas curtain
JPS5970760A (en) Film forming device
JP2004288984A (en) Film forming system and film forming method
JPH0824503A (en) Cold trap and device for producing semiconductor device
JP2653083B2 (en) Plasma CVD equipment
JPH0892746A (en) Plasma chemical vapor deposition and device therefor
JPH02184022A (en) Cvd electrode
JPH03151629A (en) Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film
JPS5970761A (en) Film forming device
JP2832322B2 (en) Semiconductor manufacturing equipment