JPS596950A - Fluid energy mill - Google Patents

Fluid energy mill

Info

Publication number
JPS596950A
JPS596950A JP11486782A JP11486782A JPS596950A JP S596950 A JPS596950 A JP S596950A JP 11486782 A JP11486782 A JP 11486782A JP 11486782 A JP11486782 A JP 11486782A JP S596950 A JPS596950 A JP S596950A
Authority
JP
Japan
Prior art keywords
fluid
pulverized
nozzles
nozzle
energy mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11486782A
Other languages
Japanese (ja)
Inventor
修二 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11486782A priority Critical patent/JPS596950A/en
Publication of JPS596950A publication Critical patent/JPS596950A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、被粉砕処理物を混合]〜だ高圧流体をノズル
から噴射させることによって、被粉砕処理物に十分な運
動エネルギーを付与した状態で被栓′砕処理物どうしを
衝突させ、粉砕処理を効率良く行えるように、粉砕室に
複数個のノズルを設ける七井に、前記ノズルに被粉砕処
理物を混合した高圧流体の供給路を連通接続し、かつ、
前記ノズルをそこから噴射されるジェット流の衝突によ
り被粉砕処理物どうしを衝突させる状態に配置した流体
エネルギーミルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for mixing the material to be crushed and mixing the material to be crushed by jetting high-pressure fluid from a nozzle, thereby imparting sufficient kinetic energy to the material to be crushed. A supply path for a high-pressure fluid mixed with the material to be pulverized is connected to the nozzle in which a plurality of nozzles are provided in the pulverizing chamber so that the pulverizing process can be carried out efficiently by colliding with each other, and
The present invention relates to a fluid energy mill in which the nozzle is arranged so that the objects to be crushed collide with each other by collision of jet streams ejected from the nozzle.

この種の流体エネルギーミルにおいては、従来、例えば
特開昭48−70946号公報に記載のものがあυ、第
4図に示すように、2個のノズル(05) 、 (05
)を、その取付位相を180°異らせて一直線上に対向
させて配置し、噴射された被粉砕処理物どうしを正面衝
突させていた。
Conventionally, this type of fluid energy mill is described in, for example, Japanese Unexamined Patent Publication No. 48-70946. As shown in FIG. 4, two nozzles (05) and (05
) were arranged facing each other in a straight line with their installation phases different by 180°, and the injected materials to be crushed collided head-on with each other.

ところが、衝突によって粉砕された処理物がジェット流
の流動方向と逆方向に飛散され、後続の被粉砕処理物に
干渉し、後続の被粉砕処理物の運動エネルギーを低トさ
せてしまい、粉砕効率を低ドする欠点があった。
However, the pulverized material is scattered in the opposite direction to the flow direction of the jet stream due to the collision, which interferes with the subsequent pulverized material and reduces the kinetic energy of the subsequent pulverized material, reducing the pulverization efficiency. It had the disadvantage of being low-quality.

本発明は、上記の点に鑑み、ノズルの配置を合理的に改
良し、粉砕処理物に起因する被粉砕処理物の運動エネル
ギーの低ドを回避して粉砕効率を向上できるようにする
ことを目的とする。
In view of the above points, the present invention aims to improve the pulverization efficiency by rationally improving the nozzle arrangement and avoiding the low kinetic energy of the object to be pulverized due to the pulverization object. purpose.

本発明は、上記目的の達成のために、画成した流体エネ
ルギーミルにおいて、前記ノズルを、そこから噴射され
るジェット流が互いに交差して衝突する状態に配置しで
あることを特徴とする。
To achieve the above object, the invention is characterized in that, in a defined fluid energy mill, the nozzles are arranged in such a way that the jet streams ejected therefrom intersect and collide with each other.

つまり、ノズルから噴射されるジェット流が互いに交差
して衝突するために、被粉砕処理物どうしの衝突に伴っ
て、粉砕された処理物がノズルからのジェット流と異な
る方向に跳ね返されて飛散される。
In other words, since the jet streams injected from the nozzles cross each other and collide with each other, as the objects to be crushed collide with each other, the crushed objects are bounced back and scattered in a direction different from the jet stream from the nozzles. Ru.

従って、粉砕処理物をジェット流中から迅速に排除し、
粉砕処理物が後続の被粉砕処理物に衝突する等の干渉を
回避し、ノズルから噴射される被粉砕処理物の運動エネ
ルギーを衝突するまで高い状態に維持でき、粉砕効率を
向上できると共に微細化できるようになった。
Therefore, the pulverized material can be quickly removed from the jet stream,
It is possible to avoid interference such as collision between the pulverized material and the subsequent pulverized material, and maintain the kinetic energy of the pulverized material injected from the nozzle in a high state until it collides, improving pulverization efficiency and making it finer. Now you can.

次に、本発明の実施例を例示図に基づいて説明する。Next, embodiments of the present invention will be described based on illustrative drawings.

基台(1)に備えられた円筒部(3)に、粉砕分級室(
2)を形成するためのケーシング(4)を取付け、第2
図に示すように、2個のノズル(5) 、 +ii+を
、それらノズル+5+ 、 (5)からのジェット流ど
うしの交角(θ)が鈍角になるように前記粉砕分級室(
2)に配設し、もって、流体及びそれに分散混入された
被粉砕処理物をノズル(5)、(5)夫々から粉砕分級
室(2)内に供給して、粉砕分級室(2)内での被粉砕
処理物とうしの衝突によって粉砕を行い、さらに、衝突
後の粉砕処理物を粉砕分級室(2)内壁へ衝突させて再
度粉砕処理を行えるように流体エネルギーミルを構成し
である。
A pulverization and classification chamber (
2) and attach the casing (4) to form the second
As shown in the figure, two nozzles (5), +ii+ are inserted into the crushing and classifying chamber (
2), so that the fluid and the material to be crushed dispersed therein are supplied into the crushing and classifying chamber (2) from the nozzles (5) and (5), respectively. The fluid energy mill is configured so that pulverization is performed by the collision of the object to be pulverized with the cow, and the pulverized object after the collision is made to collide with the inner wall of the pulverization and classification chamber (2) to perform the pulverization process again. .

前記粉砕分級室(2)に、粉砕処理後の微粉を取出す回
収路(7)が接続されている。
A collection path (7) for taking out the fine powder after the crushing process is connected to the crushing and classifying chamber (2).

環状流路(8)を形成するパイプ(8りを、粉砕分級室
(2)に対してほぼ同芯状に配置した状態で円筒部(3
)に支持フレーム(61を介して取付支持させ環状流路
(8)に、コンプレッサー等の適宜高圧流体供給装置(
9)を流体供給管(10)により接続すると共に、ノズ
ル(5)夫々と環状流路(8)とを連通管(11)によ
り各別に接続して流体供給路fR+を構成しである。 
そして、流体供給管(10)を環状流路(8)に対して
その周方向−刃側に向かって開口させると共に、連通管
till 、 fill夫々への流体取出口(lla、
)を環状流路(8)に対してその周方向他方側に向かっ
て開口させ、また、細かいあるいは事目fIに破砕処理
されて比較的細かくなった石炭等の被粉砕処理物を供給
する原料ホッパ(121を、ロータリーフィーダ等の密
閉型式で供給量調節自在な定量供給装置(131を介し
て流体供給管(lO)に接続し、その供給装置α3から
環状流路(8)及び連通%run。
The pipe (8) forming the annular flow path (8) is arranged approximately concentrically with respect to the crushing and classification chamber (2), and the cylindrical part (3)
) is attached and supported via the support frame (61), and an appropriate high-pressure fluid supply device (such as a compressor) is connected to the annular flow path (8).
9) are connected by a fluid supply pipe (10), and the nozzles (5) and the annular flow path (8) are separately connected by a communication pipe (11) to form a fluid supply path fR+.
Then, the fluid supply pipe (10) is opened to the annular flow path (8) in the circumferential direction toward the blade side, and fluid outlet ports (lla, lla,
) is opened toward the other side in the circumferential direction with respect to the annular flow path (8), and the material to be crushed is supplied with a material to be crushed, such as coal that has been crushed into fine particles or particles fI and has become relatively fine. The hopper (121) is connected to a fluid supply pipe (lO) via a closed type quantitative supply device (131) such as a rotary feeder that can freely adjust the supply amount, and the supply device α3 communicates with the annular flow path (8). .

(Il+を経てノズル(5)に至るまでの間に被粉砕処
理物を流体中に均一的に混合するように混合用助走流路
を形成してあり、もって、連続あるいは連続的に供給さ
れる適当量の被粉砕処理物と流体を、混合状態で流体供
給管(10)から環状流路(8)内に噴射させ、環状流
路(8)内での高速流動によって均等に被粉砕処理物を
流体中に分散させると共に、被粉砕処理物を適当な濃度
で分散混入した流体をノズル(5)に供給するように構
成しである。
(A run-up flow path for mixing is formed so that the material to be pulverized is uniformly mixed in the fluid before reaching the nozzle (5) through Il+, so that it is continuously or continuously supplied. An appropriate amount of the material to be pulverized and the fluid are injected in a mixed state from the fluid supply pipe (10) into the annular channel (8), and the material to be pulverized is evenly distributed by high-speed flow in the annular channel (8). is dispersed in the fluid, and the fluid containing the material to be pulverized at an appropriate concentration is supplied to the nozzle (5).

1肪記載合用助走流路の途中に環状流路(8)を備えさ
せ、スペースの割に助走流路を十分長くできるように構
成し、そして、流体供給−N (101よりもパイプ(
sa)i大径にして攪乱r’d< +AIを構成してあ
り、被粉砕処理物が環状流路(8)に流体との混合状態
で供給されるに伴い、そこで失速して攪拌される状態と
なって、より一層良好な混合状態が得られるように構成
しである。
1. An annular flow path (8) is provided in the middle of the combined run-up flow path, and the run-up flow path is configured to be sufficiently long considering the space.
sa) i The diameter of the stirrer is set to r'd< +AI, and as the material to be pulverized is supplied to the annular flow path (8) in a mixed state with the fluid, it stalls and is stirred there. The structure is such that an even better mixing state can be obtained.

ナイフロン等の適当な固気分離装置+141 、及びそ
のド流側のブロアーやポンプ等適当な流体吸排出装置止
金回収路(7)に接続(7て、粉砕処理された微粉を流
体から分離して回収できるように構成しである。
Connect to an appropriate solid-gas separator such as Knifron + 141, and an appropriate fluid suction/discharge device such as a blower or pump on the downstream side (7) to separate the pulverized fine powder from the fluid. It is constructed so that it can be collected.

前記実施例では、2本の連通管ill 、 1110流
路断面積の総和をパイプ(8a)の流路−1面積よりも
小に構成し、環状流路(8)から連通管fill 、 
tillに、被粉砕処理物との混合状態で流体を加速し
て流入させるようにしているが、11I記連通管+I1
1 、 (111をノズル(5)、(5)においてのみ
加速させるように構成するものでも良い。
In the embodiment described above, the sum of the cross-sectional areas of the two communication pipes 1110 and 1110 is smaller than the area of the flow channel -1 of the pipe (8a), and the communication pipes 1110 and 1110 are connected from the annular flow path (8) to the communication pipes fill and 1110, respectively.
The fluid is accelerated to flow into the till in a mixed state with the material to be pulverized.
1, (111) may be configured to accelerate only at the nozzles (5), (5).

尚、対象とする被粉砕処理物は、石炭、樹脂、珪石、セ
ラミック等の比重の大きいものから比重の小さいものま
でいかなるものであってもよ(、また、利用する流体は
、空気、蒸気が一般11Jであるが、例えば低温粉砕を
要する場合には流体窒素又は炭酸ガスを利用する等、各
種変更自在である。
The object to be pulverized may be anything from coal, resin, silica stone, ceramic, etc., ranging from high specific gravity to low specific gravity (in addition, the fluid used may be air, steam, etc. Although it is generally 11J, various modifications can be made, such as using fluid nitrogen or carbon dioxide gas when low-temperature pulverization is required.

次に、別の実施例を説明する。Next, another example will be described.

(イ)第3図に示すように、粉砕分級室(2)に5個ノ
スル(5)・・を設けて、それらノズル(5)・・から
のジェット流どうしの交角(θ)が紗角になるように構
成すると共に、ジェット流の噴射に伴って被粉砕処理物
及び流体が粉砕分級室(2)内で中心(円周りで旋回流
i1Jするように夫々のノズル(5)・・の向きを設定
した状態で設け、粉砕分級室(2)内での流体輸送力と
遠心力との作用によって粉砕部からの被粉砕処理物を微
粉々粗粉とに分けるように構成し、かつ、微粉のみ回収
路(7)を通って取出し、粗粉を粉砕分級室(2)内で
N転させながらノズル(5)・・からジェット流と4(
に噴出される被粉砕処理物と衝突させて、粗粉を微粉化
するべく構成する。
(B) As shown in Figure 3, five nozzles (5) are provided in the crushing and classification chamber (2), and the intersection angle (θ) of the jet streams from these nozzles (5) is the gauze angle. At the same time, each nozzle (5)... It is provided in a state in which the direction is set, and is configured to separate the material to be crushed from the crushing section into fine powder and coarse powder by the action of fluid transport force and centrifugal force in the crushing and classification chamber (2), and Only the fine powder is taken out through the collection path (7), and while the coarse powder is rotated N in the crushing and classification chamber (2), the jet stream and 4 (
The coarse powder is made to collide with the material to be pulverized that is ejected from the pulverizer, thereby pulverizing the coarse powder.

(ロ) ノズル(5)を環状流路(8)Qこ直結する。(b) Directly connect the nozzle (5) to the annular channel (8) Q.

被粉砕処理物を流体供給路(R)の途中に供給するに、
ホッパー+IZと定駐供給装+l!Y+13から成るも
のに限らず、例えはスクリューフィーダ等各種の十・段
が採用できる。
When supplying the material to be pulverized to the middle of the fluid supply path (R),
Hopper + IZ and stationary supply equipment +l! Not limited to the one consisting of Y+13, for example, various types of stages such as a screw feeder can be adopted.

本発明においてQ」被粉砕処理物の微粉化が11能とな
り、殊に、燃焼効率を向上させるために燃料オイル中に
混入する石炭微粉を効率良く得ることができ、実用上極
めて有用である。
In the present invention, the pulverization of the material to be pulverized (Q) becomes 11, and in particular, it is possible to efficiently obtain fine coal powder mixed into fuel oil in order to improve combustion efficiency, which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る流体エネルギーミルの′ノで施例を
示し、第1図は要1■−の概略縦断面図を含むフローシ
ート、第2図は第1因のn −n線断面図、第3図は別
実施例を示す要部の横断面図、第4図は従来例を示す要
111呪の概略衛面図である。 (2)・・・粉砕室、(5)・・・ノズル、tR)・・
・供給路、(θ)・・・・交角。
The drawings show an embodiment of the fluid energy mill according to the present invention, and FIG. 1 is a flow sheet including a schematic vertical cross-sectional view of point 1-, and FIG. 2 is a cross-sectional view taken along line n--n of the first factor. , FIG. 3 is a cross-sectional view of the main part showing another embodiment, and FIG. 4 is a schematic diagram of the main part 111 showing the conventional example. (2)... Grinding chamber, (5)... Nozzle, tR)...
・Supply path, (θ)...intersection angle.

Claims (1)

【特許請求の範囲】 ■ 粉砕室(2)に複数個のノズル(5)・・を設ける
と共に、IIJ記ノズル(5)・・に、被粉砕処理物を
混合した高圧流体の供給路(川を連通接続し、かつ、前
記ノズル(6)・・をそこから噴射されるジェット流の
衝突により被粉砕処理物どうしを衝突させる状態に配置
した流体エネルギーミルにおいて、1f1記ノズル(5
)・・をそこから噴射されるジェット流が互いに交差し
て衝突する状態に配置しであることを特徴とする流体エ
ネルギーミル。 ■ 目IJg己ノズル(5)・・からのジェット流どう
しの交角(θ)が鋭角である特許請求の範囲第0項に記
載の流体エネルギーミル。 ■ 071 Fy己ノズル(5)・・からのジェット流
と゛うしの交角(θ)が鈍角である特許請求の範囲第0
項に記載の流体エネルギーミル。
[Claims] ■ The grinding chamber (2) is provided with a plurality of nozzles (5), and the nozzles (5) described in IIJ are connected to a supply path (river) for high-pressure fluid mixed with the material to be ground. 1f1 nozzle (5
) are arranged in such a way that the jet streams ejected therefrom intersect and collide with each other. (2) The fluid energy mill according to claim 0, wherein the intersection angle (θ) between the jet streams from the nozzles (5) is an acute angle. ■ 071 Fy Claim No. 0 in which the intersection angle (θ) between the jet stream from the self-nozzle (5) and the above is an obtuse angle.
Fluid energy mill as described in Section.
JP11486782A 1982-07-01 1982-07-01 Fluid energy mill Pending JPS596950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11486782A JPS596950A (en) 1982-07-01 1982-07-01 Fluid energy mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11486782A JPS596950A (en) 1982-07-01 1982-07-01 Fluid energy mill

Publications (1)

Publication Number Publication Date
JPS596950A true JPS596950A (en) 1984-01-14

Family

ID=14648672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11486782A Pending JPS596950A (en) 1982-07-01 1982-07-01 Fluid energy mill

Country Status (1)

Country Link
JP (1) JPS596950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263204A (en) * 1988-02-29 1989-10-19 Gte Prod Corp Low oxygen content fine globular particles and production thereof by fluid energy milling and high temperature treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263204A (en) * 1988-02-29 1989-10-19 Gte Prod Corp Low oxygen content fine globular particles and production thereof by fluid energy milling and high temperature treatment

Similar Documents

Publication Publication Date Title
US6951312B2 (en) Particle entraining eductor-spike nozzle device for a fluidized bed jet mill
US5992773A (en) Method for fluidized bed jet mill grinding
JP2002524232A (en) Crusher and crushing method
US6942170B2 (en) Plural odd number bell-like openings nozzle device for a fluidized bed jet mill
CN106040393A (en) Water jet flow pulverizing system
WO1990007379A1 (en) Process and device for crushing bulk materials
JPS596950A (en) Fluid energy mill
KR20140009224A (en) Method for grinding powder
JPS58137449A (en) Opposed type jet mill
JPS58143853A (en) Supersonic jet mill
JP2010284634A (en) Apparatus for pulverization
US3468489A (en) Comminuting apparatus
CN110773293A (en) Fluidized bed type airflow crushing system
US2765122A (en) Jet mill
JP4230050B2 (en) Jet crushing apparatus and jet crushing method
JP3091281B2 (en) Collision type air crusher
JP3091289B2 (en) Collision type air crusher
JPS596949A (en) Fluid energy mill
KR101525561B1 (en) The sludge drying method by air current and air pressure of ventury eject type corresponding to the variable percentage of water content
KR100239240B1 (en) Crushing method and apparatus
CN205495765U (en) Jet mill
JPS6242753A (en) Method and apparatus for producing fine powder
JP2004290738A (en) Pneumatic crusher
JP2000107619A (en) Vertical roller mill
JPS6316979B2 (en)