JPS5964726A - Apparatus for refining liquid metal - Google Patents

Apparatus for refining liquid metal

Info

Publication number
JPS5964726A
JPS5964726A JP57172917A JP17291782A JPS5964726A JP S5964726 A JPS5964726 A JP S5964726A JP 57172917 A JP57172917 A JP 57172917A JP 17291782 A JP17291782 A JP 17291782A JP S5964726 A JPS5964726 A JP S5964726A
Authority
JP
Japan
Prior art keywords
cooling
liquid metal
refining
vessel
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57172917A
Other languages
Japanese (ja)
Inventor
Tamotsu Sano
佐野 保
Mitsuo Ueda
上田 三男
Yasushi Maita
舞田 靖司
Yoshito Abe
義人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57172917A priority Critical patent/JPS5964726A/en
Publication of JPS5964726A publication Critical patent/JPS5964726A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To effectively utilize the volume of a refining vessel while shortening a time for refining, by forming the cooling system of the titled apparatus for refining liquid metal into a plurality of independent cooling systems having different distances from the passageway of the liquid metal inside the main body of said refining vessel. CONSTITUTION:A coolant is supplied through an inflow pipe 9 to a jacket 11 surrounding the outer surface of the main body 1 of a tubular refining vessel and discharged through an outflow pipe 10. A plurality of independent coil- shaped cooling systems I -IV having different coil sizes are provided coaxially with the main body 1 inside a plenum 20 at the lower part of the refining vessel 1, so that the coolant is introduced from inlet vessel 14 through inflow pipes 15 and discharged through coil-shaped cooling pipes 16 and then outflow pipes 17. Liquid metal (e.g. Na) is introduced through the inflow nozzles 14 into an inner space 13, let flow to the plenum 20 at the lower part, refined in the cooling systems I -IV while precipitately caking impurities therein, raised inside the inner tube 12 of the vessel and then withdrawn through an outflow nozzle 8 at the top part. Thus, the blockade of the passageway of the liquid metal is made hard to form.

Description

【発明の詳細な説明】 本発明は、不純物析出層が精製装置を閉塞しに(い液体
金属(例えばNa、になど、以下LMと略す)の精製装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for purifying liquid metals (such as Na, etc., hereinafter abbreviated as LM) in which impurity deposits clog the apparatus.

従来、LMは高速増殖炉の冷却用などで使われる場合に
は高純度(−例として酸素濃度が約1〜5 wpp+n
 )で使うため、コールドトラップによる純化すなわち
LMを低Iu1容J4内に導し)で飽和溶解度を起す不
純物を金網状充填物表面=析出捕獲する方法により純化
している。通常運転時には主冷却系のLMの一部を純化
系に導し)で純化しているが、これは高純度で使って0
るものを更に純化しているものである。したがって。
Conventionally, when LM is used for cooling fast breeder reactors, etc., it has a high purity (for example, the oxygen concentration is about 1 to 5 wpp+n).
), it is purified by cold trap purification, that is, by introducing LM into low Iu volume J4), and trapping impurities that cause saturated solubility by precipitation on the surface of a wire mesh packing. During normal operation, a part of the LM in the main cooling system is guided to the purification system), but this is used at high purity and
It is a further purification of what is already known. therefore.

コールドトラップの時間当りの不純物捕獲量は僅かな爪
であり、言い換えれば高純度のものを更に精製するため
に不純物捕獲性が極めて篩いことが要求される。コール
ドトラップ装置の?iL来の一般的な例を第1図に示す
。第1図におし1て精製容器本体lの直胴部に積層金網
なとの冷却用充填物2があり、これらの外囲に冷却用ジ
ャケット11がある。LMはL M流入ノスル4より流
入し、下降管5より下部プレナム6で反転して冷却用充
填物2内を貫流して上部プレナム7を経てL M流出ノ
ズル8より流出する。冷却用ジャケット11の冷却ガス
流入管9より冷却空気が環状空間に流入し、冷却ガス出
口管lOより流出する。精製容器本体・冷却用充填物は
空冷によりtic 1lot (Naの場合約1+ o
 t: 1ilIt!; )となるため、冷却用充填物
2のワイヤ表向に不純物が41r出捕獲される。
The amount of impurities captured per hour by a cold trap is small; in other words, in order to further refine high-purity products, extremely high impurity capture properties are required. Cold trap device? A common example since iL is shown in FIG. As shown in FIG. 1, there is a cooling packing 2 such as a laminated wire mesh in the straight body of the purification container body 1, and a cooling jacket 11 is provided around the outer circumference of the cooling packing 2. As shown in FIG. LM flows in from the LM inlet nozzle 4, reverses from the downcomer pipe 5 at the lower plenum 6, flows through the cooling packing 2, passes through the upper plenum 7, and flows out from the LM outlet nozzle 8. Cooling air flows into the annular space from the cooling gas inlet pipe 9 of the cooling jacket 11 and flows out from the cooling gas outlet pipe IO. The purification container main body and cooling filling are air-cooled to 1 tic 1 lot (approx. 1+ o in case of Na).
t: 1ilIt! ), impurities 41r are emitted and captured on the surface of the wire of the cooling filler 2.

高速炉の蒸気腎′4−:用におはる1云、然慎破用Jハ
故の際には、かなりの量の木が1.へ1中に力父出する
ため、−挙にL Mの純1すが低下する。酸素濃度でい
えば二次冷却系L kj 31’均で数十〜数百W p
 p Inに達する。しかも、中ないし大規模破損の場
合にはローカルに不純物塊が仔在することもありうる。
At the time of the fast reactor's steam reactor's collapse, a considerable amount of wood was destroyed. Since the force is exerted during the first phase, the net power of LM decreases all at once. In terms of oxygen concentration, the secondary cooling system L kj 31' average is several tens to hundreds of W p
p In is reached. Moreover, in the case of medium to large-scale damage, there may be local impurity lumps.

このような「j不純物6度となったL Mを−E述のよ
うなill常運転時用のコールドトラップで純化する場
合には、一定限度以下のトラッピンク率(すなわち時間
当りの不純物捕獲m)にて純化する必要がある。
When purifying LM with 6 degrees of impurity like this in a cold trap for constant operation as described in -E, the trapping rate below a certain limit (i.e. impurity capture m ).

具体的には、コールドトラップ温度の低下を極めて徐々
に行う等の方法である。もし、いきなり高いトラッピン
グ率でコールドトラップを働かせると、第1図の従来装
置の場合には冷却用充填層2の下部、すなイっちL M
の充埴層人1−1部で忽ち大量の析出物発生による閉塞
を/A:し。
Specifically, this method involves lowering the cold trap temperature very gradually. If the cold trap suddenly operates at a high trapping rate, in the case of the conventional device shown in Fig. 1, the lower part of the cooling packed bed 2, L M
A blockage occurred due to the formation of a large amount of precipitate in the 1-1 section of the Jukui layer.

コールドトラップ運転不能となる。したかって低いトラ
ノビツク率で純化を行わさるを(14ないので、場合に
よっては純化に数+[1を要することにもなる。このた
め、ブラットの体止期間が長くなり修理期間経費の増大
、及びプラノ1−停止に伴う経済的損失をきたす。
Cold trap becomes inoperable. Therefore, purification is performed at a low Tranowicz rate (14), so in some cases, purification may require several + [1. As a result, Blatt's recovery period becomes longer, the cost of repair increases, and Plano 1 - Economic loss due to outage.

本発明は−1−記の従来技術の欠点を解消し、高不純物
濃度となったL Mを純化する場合に次のような特長を
備えた液体金属精製装置の提供を1目的とする。
One object of the present invention is to eliminate the drawbacks of the prior art described in -1- and to provide a liquid metal refining apparatus having the following features when purifying LM with a high impurity concentration.

Q)LM流路の閉塞が生しにくい。Q) Blockage of the LM channel is less likely to occur.

■ LM純化時間を短縮化した。■ LM purification time has been shortened.

■ プレナム容積の有効利用ができる。■ Plenum volume can be used effectively.

そのため2本発明の液体金属精製装置1ソは、精製容器
本体と、該精製容器本体内に開1−1シ精製容器本体外
のjM系と連通したLM流人手段及びL M流出手段と
、精製容器本体内部若しくは外表面に不純物析出用冷却
系とを備えた液体金属精製装置において、該冷却系を精
製容器本体内での特定のLM流路からの距離が異なる複
数の独立な冷却系とする事を特長とする。
Therefore, the liquid metal refining apparatus 1 of the present invention includes a refining container main body, an LM flow means and an LM outflow means that are opened in the refining container main body and communicated with the jM system outside the refining container main body, In a liquid metal refining apparatus equipped with a cooling system for precipitation of impurities inside or on the outer surface of the purification vessel body, the cooling system is provided with a plurality of independent cooling systems having different distances from a specific LM flow path within the purification vessel body. It is characterized by

ここで、LM流人手段及びL M流出手段とはLM系と
連通して精製容器本体内にL Mを流入及び流出させ得
る手段ならば何でも良く、管(断面形状は問わない)及
び単に流入し1若しくは流出口であっても良い。また、
不純物(11出用の冷却系とは不純物析出時の結晶熱を
精製容器外に運び出す手段を指し1例えば冷媒を循環さ
せた冷却管及び冷却ジャケット並びにその一部が冷却管
若しくは冷却ジャケットに接触した金属線若しくは金網
でも良い。好ましくは、冷媒を循環させた冷却管若しく
は冷却ジャゲットのほうが冷却能力が大きく好適である
。複数の独立な冷却系とは、冷却系の能力を互いに無関
係に増減可能な2個以−Fの冷却系を指し、必らずしも
冷媒供給手段を別にする必要はない。たとえば、各冷却
系の系内に冷媒流鼠を増減させ得る弁を備えてあれば、
冷媒供給手段は11−てあ−9でも良く、むしろそのは
うが好ましい。特定の流路からの距離が異なる複数の独
立な冷却系を備えるとは、複数の冷却系から見て各冷却
系との距離が異なる流路を少なくとも1つ確保できれば
良いという事である。伝熱管破損事故等の大量の不純物
を精製する場合に最θj該流路から最も1illlれた
冷却系を作動させ順次近くの冷却系をも伺加すれば、不
純物の析出が、該流路から最も遠い所から起こり、流路
の閉塞が起こりにく(なる。尚、特定の流路とは1っで
ある必要はない。
Here, the LM inflow means and the LM outflow means may be any means that communicates with the LM system and allows LM to flow in and out of the purification vessel body, including pipes (regardless of cross-sectional shape) and simple inflow means. It may also be an outlet or an outlet. Also,
The cooling system for impurities (11) refers to a means for transporting the heat of crystallization at the time of impurity precipitation out of the purification vessel.1 For example, cooling pipes and cooling jackets in which refrigerant is circulated, and parts of them that come into contact with the cooling pipes or cooling jackets. Metal wires or wire mesh may also be used. Preferably, cooling pipes or cooling jackets that circulate refrigerant have a large cooling capacity and are suitable. Multiple independent cooling systems are defined as systems in which the capacity of the cooling systems can be increased or decreased independently of each other. Refers to a cooling system of two or more units, and it is not necessarily necessary to use a separate refrigerant supply means. For example, if each cooling system is equipped with a valve that can increase or decrease the flow of refrigerant,
The refrigerant supply means may be an 11-tea-9 type, but it is preferable that the refrigerant supply means be 11-tea-9 type. Providing a plurality of independent cooling systems with different distances from a specific flow path means that it is sufficient to ensure at least one flow path with different distances from each cooling system when viewed from the plurality of cooling systems. When refining a large amount of impurities due to a heat exchanger tube breakage accident, etc., by operating the cooling system closest to the flow path and sequentially adding the cooling systems closest to the flow path, the precipitation of impurities can be reduced from the flow path. This occurs from the farthest point, making it less likely that the flow path will be blocked. Note that the specific flow path does not necessarily have to be one.

以下に図面をもって本発明を詳説する。The present invention will be explained in detail below with reference to the drawings.

第2図は本発明の第1実施例を示す液体金属精製装置の
断1n1図である。PJ fに1状の精製容器本体1の
外表面を取り囲む冷却シャケラ1−11中を冷却ガス(
冷媒)冷却カス流入管9から流入し。
FIG. 2 is a 1n1 cross-sectional view of a liquid metal refining apparatus showing a first embodiment of the present invention. A cooling gas (
Refrigerant) flows in from the cooling waste inflow pipe 9.

精製容器本体1内を冷却しつつ、冷却カス流出管10か
ら流出する。この冷却ンヤケノト11も1.)1.71
−請求の範囲で言う1つの冷却系である。更にコイル径
の異なる複数の独立なコイル状冷却系1〜1■を精製容
器下部のプレナム20内に精製容器本体1と同軸に設け
ている。L Mが]、M流入ノズル4.容器内周12下
端を経て冷却系1内をt]復する流路を考えれば、各冷
却系はその流路からの距離が異なる複数の冷却系となる
。尚。
While cooling the inside of the purification container main body 1, it flows out from the cooled waste outflow pipe 10. This cooling notebook 11 is also 1. )1.71
- One cooling system referred to in the claims. Furthermore, a plurality of independent coiled cooling systems 1 to 12 having different coil diameters are provided coaxially with the purification vessel main body 1 in a plenum 20 at the bottom of the purification vessel. LM], M inflow nozzle 4. If we consider a flow path that goes back and forth within the cooling system 1 via the lower end of the inner circumference 12 of the container, each cooling system becomes a plurality of cooling systems having different distances from the flow path. still.

コイル状冷却系■及び111は図示を省略している。The coiled cooling systems (1) and 111 are not shown.

冷却カスは図外の冷却カスループから精製容器本体!外
の冷却カス人口弁14に入り、部製容器本体1の底面を
貫通ずる冷却カス流入管15と。
The cooling waste flows from the cooling waste loop (not shown) to the purification container itself! A cooling waste inlet pipe 15 enters the outer cooling waste intake valve 14 and passes through the bottom surface of the container body 1.

精製容器下部プレナム(下部空間)20内に1+’i製
容器本体と同心に螺設されたコイル状冷却管16とを経
由し、精製容器本体1底1f11をl’l1通する冷却
カス流出管17から、再度冷却カスループへと戻る。L
 Mは精製容器本体1の側ifj上部のl、 M流入ノ
ズル(LM流人手段に相当)から流入し。
A cooling waste outflow pipe that passes l'l1 through the bottom 1f11 of the purification container main body 1 via a coiled cooling pipe 16 screwed concentrically with the 1+'i container body in the purification container lower plenum (lower space) 20. 17, the flow returns to the cooling gas loop again. L
M flows in from the M inflow nozzle (corresponding to the LM flow means) at the upper side of the purification container body 1.

半円筒状の容器内筒12の外表面でゆく手をさえきられ
て私製済みL M 、!:混合せずに容器内筒12と精
製容器本体1とによって形成された内空間13を冷却ン
ヤケット3に沿いつつ下部プレナム20へと流れ、精製
容器本体11の内壁及び下部プレナム20内のI〜1v
の冷却系で精製された後。
My hand was blocked by the outer surface of the semi-cylindrical container inner cylinder 12, so I made it myself! : Flows into the lower plenum 20 along the cooling jacket 3 through the inner space 13 formed by the container inner cylinder 12 and the purification container body 1 without mixing, and the I~ in the inner wall of the purification container body 11 and the lower plenum 20. 1v
After being refined in the cooling system.

容器内筒12内を上昇して、精製容器本体】頂部のL 
M流出ノスル8 (L M流出手段に相当)から1図外
のL M主ループへともとる。事故時においては、冷却
ノヤケット3のほか精製容器本体1内壁に最も近い冷却
系1■のめ冷却カス人口弁14を開きI〜■の冷却系て
は閉しる事により。
Rise inside the container inner cylinder 12 to remove the purification container main body】 L at the top
It is also taken from the M outflow nostle 8 (corresponding to the LM outflow means) to the LM main loop outside of Figure 1. In the event of an accident, in addition to the cooling jacket 3, the cooling waste population valve 14 is opened for the cooling system 1, which is closest to the inner wall of the purification vessel main body 1, and the cooling systems I to II are closed.

精製容器本体1内檗近傍のみ冷却し、内壁及び冷却系■
の冷却管壁に確実に不純物を析出させる。その後はこの
析出固着物を核としてプレナト中火部に向って不純物伍
出塊の成長が進むが。
Only the vicinity of the inner chamber of the purification container body 1 is cooled, and the inner wall and cooling system■
ensure that impurities are deposited on the walls of the cooling pipes. After that, with this precipitated solid matter as a nucleus, the impurity ooze mass grows toward the medium-heated part of the prenat.

次段階では冷却系■の冷却カス人口弁を開いて冷却系I
I+による冷却も行い、プレナム内の冷却範囲を中央寄
りに増やす。このため、上、(1のように器壁から中央
部に向って成長しつつある析出同化が確実に進行する。
In the next step, open the cooling waste valve of cooling system ■ and
I+ will also be used for cooling, increasing the cooling range within the plenum closer to the center. For this reason, the precipitation assimilation that is growing from the vessel wall toward the center as shown in (1) progresses reliably.

以降、順次冷却系U。From then on, the cooling system U.

冷却系■の冷却操作を加えていって、プレナム20内の
不純物析出を行イつせる。このような操作ヲ行うと、プ
レナム20内での不純物析出固化が着実かつ迅速に進む
が1本実施例では第1図のような密な充填物を使わない
ため高いトラノビツク率で閉塞の恐れなしに運転するこ
とが出来。
By adding a cooling operation to the cooling system (2), precipitation of impurities in the plenum 20 is carried out. If such an operation is carried out, the precipitation and solidification of impurities within the plenum 20 will proceed steadily and quickly; however, in this embodiment, a dense packing as shown in FIG. able to drive.

短期間で純化できる。更に、F部ブレナムの冷却管装填
部全域が不純物捕獲に有効使用されるので、たとえば従
来装置にくらべて小型ですむ等のメリットがある。
It can be purified in a short period of time. Furthermore, since the entire area of the cooling pipe loading section of the F section blennium is effectively used for capturing impurities, there are advantages such as a smaller size compared to conventional devices, for example.

なお1 ’ l ie実施例と反対に、運転スター1一
時に冷却系1のみで冷却し、以後1.II、Ivと加え
ていく手法でも同様の効果が期待できる。また、コイル
状冷却管16の周囲に各冷却系にのみ接するように積層
金網等をまきつけるか、若しくはコイルピッチを小さく
すれば、析出面積が広がり、精製能力が向上する。各冷
却系に用いる冷却管径を小さくして冷却系を増しても同
様である。
Note that, contrary to the 1' ie embodiment, the operating star 1 is cooled only by the cooling system 1 at one time, and thereafter 1. A similar effect can be expected by adding II and Iv. Furthermore, by wrapping a laminated wire mesh or the like around the coiled cooling pipe 16 so as to contact only each cooling system, or by reducing the coil pitch, the precipitation area will be expanded and the refining capacity will be improved. The same effect can be obtained even if the diameter of the cooling pipe used in each cooling system is made smaller to increase the number of cooling systems.

第3図は本発明の第2実施13’l+として反転式でな
い精製装置の断面図を示す。L Mは精製容器本体!底
部に取りつけられたL M流入管4を通って容器内に流
入し、邪魔板2Iにより精製容器本体1内壁方向に流れ
を分散させて、精製する。
FIG. 3 shows a cross-sectional view of a non-inverting purification apparatus as a second embodiment 13'l+ of the present invention. LM is the purification container itself! It flows into the container through the LM inflow pipe 4 attached to the bottom, and is purified by dispersing the flow toward the inner wall of the purification container main body 1 by the baffle plate 2I.

第4図は本発明の第3実施例の縦断面図及Q・第5図は
第4図のA−A断面図であり、冷却系以外は第2図の第
1実施例と同一である。本実施例の冷却管18は水平面
内屈曲形状であり、容器内筒I2の下端(最短LM折返
し流路)からの距離(こ応して1〜1vの冷却管を水平
に配置する。
Figure 4 is a longitudinal cross-sectional view of the third embodiment of the present invention, and Figure 5 is a cross-sectional view taken along line A-A in Figure 4, which is the same as the first embodiment in Figure 2 except for the cooling system. . The cooling pipe 18 of this embodiment has a bent shape in a horizontal plane, and the cooling pipe is arranged horizontally at a distance of 1 to 1 V from the lower end (shortest LM return flow path) of the container inner cylinder I2.

平常運転では全冷却系を作動させる−が、事故時には冷
却系1及び冷却ンヤケノト3のみで冷却・精製をはしめ
、その後順次系統■、Ill、IVと加えていく。これ
により、プレナム内の底面から不純物の析出が起こり、
第1実施例同様の効果が得られる。
During normal operation, all cooling systems are activated, but in the event of an accident, only cooling system 1 and cooling system 3 are used for cooling and purification, and then systems ①, Ill, and IV are added in sequence. This causes impurities to precipitate from the bottom of the plenum.
Effects similar to those of the first embodiment can be obtained.

第6図は本発明の第4実施例で有り、冷却ソヤケノド3
を最短L M折返し流路からの距11111に応じて分
割独立させて、複数の冷却系とした。
FIG. 6 shows a fourth embodiment of the present invention, in which the cooling soybean throat 3
were divided and made independent according to the distance 11111 from the shortest LM turning channel to form a plurality of cooling systems.

1・Mループの!11゛故11.)’には最初、冷却系
Iのみて冷却・精製を行ない、その後順次冷却系II、
III。
1.M loop! 11゛Because 11. )', first, cooling and purification are performed only with cooling system I, and then cooling system II,
III.

+V、Vと加える。これによりプレナム内では底部から
順θ(析出が行われるので1本発明の目的を達成できる
Add +V, V. As a result, in the plenum, precipitation is carried out sequentially from the bottom, so that one of the objects of the present invention can be achieved.

尚、第1実施13’ll及び第4実施例は署長形状の精
製容器に適し、第2実施四及び第3実施1夕11は逆に
短胴)]3状の場合に適する。また、第l実施例ないし
第3実施例では精製容器内装用冷却管を複数の系とした
ものを、第4実施例では冷却ジャケットを複数の系とし
たものを夫々別個に示したが、これらの複合により一層
本発明の目的を効果的に達成できる。また、いずれの実
施例でも冷却管人口弁を閉又は全開で使用する例を述べ
たが、場合によっては−ra+の弁を部分開で使うほう
がプレナム内適正Δ。1度分布を1−)るために好まし
い時期もあるので、各冷却カス人1」弁は流frL:J
、+1節可能なものを用いるほうがより好ましい。いず
れの実施例でもL M流人ノズルとL M流出ノズルを
特定し+  L M lljれの方向を一定にして説明
を進めたが、11M流入ノスルと■・M流出ノズルをと
りかえて、17Mの流れを逆にしても当然同様の効果が
得られる。
In addition, the first embodiment 13'll and the fourth embodiment are suitable for a long-shaped refining container, and the second embodiment 4 and the third embodiment 11 are suitable for a short-body type. In addition, in the first to third embodiments, a plurality of systems of cooling pipes for the interior of the refining vessel were shown, and in the fourth embodiment, a plurality of systems of cooling jackets were shown separately. The object of the present invention can be achieved more effectively by combining the above. Further, in each of the embodiments, an example has been described in which the cooling pipe artificial valve is used in a closed or fully open state, but in some cases, it is better to use a -ra+ valve in a partially open state to achieve an appropriate Δ inside the plenum. There is also a favorable time to maintain the 1 degree distribution, so each cooling valve has a flow frL:J
, it is more preferable to use one that allows +1 clauses. In each example, the explanation was carried out by specifying the LM flow nozzle and the LM outflow nozzle and keeping the direction of the flow constant, but by replacing the 11M inflow nozzle and the Of course, the same effect can be obtained even if the flow is reversed.

以1−述へたとおり1本発明の11に体金属精製装置1
°j′1゛は、伝熱へ破損事故等大量の不純物を精製す
る場合でも、不純物の析出層かL M流路を閉塞しない
よう析出させる小がてきるので、必要以−にに精製能力
を落とす必要がないので精製時間を短縮でき、しかも8
器容梢の有効利用、閉塞ドラフル皆無の精製装置とする
事ができるので。
As described in 1-1 below, 1-1 of the present invention is a body metal refining apparatus 1.
Even when refining a large amount of impurities due to accidents caused by damage to heat transfer, the impurity precipitation layer will be small enough to prevent the impurities from clogging the LM flow path, so the refining capacity will be reduced more than necessary. Since there is no need to remove the
This makes it possible to effectively utilize the top of the container and create a purification device with no blockages.

一般のL M純化装置はもとよりL M冷却型厚r−カ
プラントの二次冷却系純化装置i4+:とじて好適であ
る。
It is suitable not only for the general LM purifier but also for the LM cooling type thick r-couplant secondary cooling system purifier i4+.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液体金属精製装置1″qの断面図。 第2図ないし第6図は本発明の実施例にかかる液体金属
精製装置の断面図である。 I・・・精製容器本体、4・・・L、M流入手段として
U) II M inc 人/ スル、8・・・しM 
?Aj出T一段としてのL M流出II、+4・・・冷
却ガス人1−1弁、15・・・冷却ガス流入管、 +6
・・・冷却管、17・・・冷却カス流出管。 ] 菜、S閃
FIG. 1 is a sectional view of a conventional liquid metal refining device 1''q. FIGS. 2 to 6 are sectional views of a liquid metal refining device according to an embodiment of the present invention. 4...L,M as a means of inflow U) II M inc person/suru, 8...shiM
? LM outflow II as Aj output T first stage, +4...Cooling gas person 1-1 valve, 15...Cooling gas inflow pipe, +6
... Cooling pipe, 17... Cooling waste outflow pipe. ] Na, S Sen

Claims (1)

【特許請求の範囲】[Claims] 精製容器本体と該精製容器本体内に開口し桔製容器本体
外の液体金属系と連通した液体金属流入手段及び液体金
属流出手段と、精製容器本体内部若しくは外表面に不純
物析出用冷却系とを備えた液体金属精製装置において、
冷却系を精製容器本体内での特定の液体金属流路からの
距離が異なる複数の独立な冷却系とする事を特長とする
液体金属精製装置。
A purification container body, a liquid metal inflow means and a liquid metal outflow means that are opened in the purification container body and communicated with a liquid metal system outside the container body made of bamboo, and a cooling system for precipitating impurities inside or on the outer surface of the purification container body. In a liquid metal refining device equipped with
A liquid metal refining device characterized in that the cooling system is a plurality of independent cooling systems having different distances from a specific liquid metal flow path within the refining vessel main body.
JP57172917A 1982-10-01 1982-10-01 Apparatus for refining liquid metal Pending JPS5964726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57172917A JPS5964726A (en) 1982-10-01 1982-10-01 Apparatus for refining liquid metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57172917A JPS5964726A (en) 1982-10-01 1982-10-01 Apparatus for refining liquid metal

Publications (1)

Publication Number Publication Date
JPS5964726A true JPS5964726A (en) 1984-04-12

Family

ID=15950741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57172917A Pending JPS5964726A (en) 1982-10-01 1982-10-01 Apparatus for refining liquid metal

Country Status (1)

Country Link
JP (1) JPS5964726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812522A (en) * 1987-12-04 1989-03-14 Shell Oil Company Molecularly miscible blends of polyketone with polyvinyl phenol

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134809A (en) * 1974-09-18 1976-03-24 Tokyo Shibaura Electric Co

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134809A (en) * 1974-09-18 1976-03-24 Tokyo Shibaura Electric Co

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812522A (en) * 1987-12-04 1989-03-14 Shell Oil Company Molecularly miscible blends of polyketone with polyvinyl phenol

Similar Documents

Publication Publication Date Title
CN103093842B (en) Cold trap for purifying lead and lead-base alloy
TW201022428A (en) Slag discharge device of a coal gasification reactor
CN112410572B (en) Melting and purifying device for liquid metal loop
CN206184428U (en) Reaction material's cooling control system
CN105664804A (en) Axial-radial isothermal reactor
CN105586061B (en) A kind of high temperature coke powder cooling device
CN101954195B (en) Falling film evaporator
US4693088A (en) Cold trap for eliminating impurities from a polluted liquid metal
JPS5964726A (en) Apparatus for refining liquid metal
CN106337136A (en) Lead and lead-based alloy online purifying device
US3962082A (en) Liquid metal cold trap
US4191558A (en) Sodium purification apparatus and method
CN216738629U (en) Water cooling screen for producing silicon single crystal rod
JPS62288495A (en) Heat exchanger
CN210856000U (en) Asphalt falling film cooler with multi-pipe layers
CN209043091U (en) Granular solids cooler
JP2805315B2 (en) Cold trap
CN206444581U (en) A kind of methyl alcohol synthetic reactor
CN208688302U (en) A kind of pharmaceutical purpose material cooler using air cooling mode
CN206037743U (en) Self -circulation vertical spiral coil reaction gas trap that sprays
CN205398544U (en) High temperature fine coke cooling device
CN205462147U (en) Diameter of axle is to isothermal reactor
CN1067725A (en) Cooling contains the method for operating of device and this device of heat dust gas
CN113074569B (en) Particle/molten salt fluidized bed heat exchanger based on spiral bed surface and method
JPS60501566A (en) Heat exchange method and device between solids