JPS596350A - Rare earth element cobalt material for magnet and preparation thereof - Google Patents

Rare earth element cobalt material for magnet and preparation thereof

Info

Publication number
JPS596350A
JPS596350A JP57113682A JP11368282A JPS596350A JP S596350 A JPS596350 A JP S596350A JP 57113682 A JP57113682 A JP 57113682A JP 11368282 A JP11368282 A JP 11368282A JP S596350 A JPS596350 A JP S596350A
Authority
JP
Japan
Prior art keywords
rare earth
alloy
earth element
owt
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57113682A
Other languages
Japanese (ja)
Other versions
JPH0319289B2 (en
Inventor
Tadakuni Sato
忠邦 佐藤
Kazuhiro Abe
和裕 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP57113682A priority Critical patent/JPS596350A/en
Publication of JPS596350A publication Critical patent/JPS596350A/en
Publication of JPH0319289B2 publication Critical patent/JPH0319289B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a magnet material having a max. energy product equal to or more than that of a conventional one, low in cost and easy in preparation, obtained by containing a rare earth element, Fe, Cu and Zr in Co in a specific ratio. CONSTITUTION:In a powder sintering type R2T17 type magnet alloy (wherein R is Y and a rare earth element, T is a transition metal), a alloy powder consisting of, on the basis of a wt%, 22.5-27.5% R, 15.0-23.0% Fe, 3.3-5.0% Cu, 1.5- 3.5% Zr and the remainder Co is molded under pressure to be sintered at 1,170- 1,230 deg.C. In the next step, the sintered alloy is subjected to solution heat-treatment at 1,130-1,200 deg.C and, thereafter, cooled at a ratio of 1,500-1,000 deg.C/hr. Subsequently, the treated alloy is heated to be held at 600-950 deg.C and cooled to 500 deg.C at a cooling speed of 0.05-5 deg.C/min. By this method, even if a Co amount is reduced, a magnet material having high magnetic characteristics can be simply prepared.

Description

【発明の詳細な説明】 本発明は’ R2Co17金属間化合物(ここでRはイ
ツトリウム及び希土類元素の少くとも一種を表す)を主
体とするR−Co−Cu−Fe系粉末焼結型永久磁石材
料およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an R-Co-Cu-Fe powder sintered permanent magnet material mainly composed of an R2Co17 intermetallic compound (where R represents at least one of yttrium and a rare earth element). and its manufacturing method.

R−Co−Cu−Fe合金磁石材料としては、従来では
Cu 10 wt%程度以上、 Fe 6 wt%以下
とするのが普通であった。その理由はCuの添加量がこ
れよのとされていた。
Conventionally, the R-Co-Cu-Fe alloy magnet material has generally been about Cu 10 wt% or more and Fe 6 wt% or less. The reason for this was thought to be the amount of Cu added.

ところで、Cu10wt%程度とし+ Fe 3 wt
 %以下とすると、必然的にCoの含有量が増加し、高
価以1下とした従来のR−Co −Cu −Fe系永久
磁石においては、その製造過程において、溶体化処理後
RCo s相の析出を抑えるため急冷し々ければ々らな
かった。しかしながら、急冷はそれ自体困難な操作であ
シ、冷却媒体を多く必要とするばかシで力く、製品に割
れを生じ易く1歩留を低くする原因にもなっている。
By the way, Cu is about 10 wt% + Fe 3 wt
% or less, the Co content inevitably increases, and in the conventional R-Co-Cu-Fe permanent magnets, which are expensive or less, the RCo s phase is removed after solution treatment in the manufacturing process. Rapid cooling was necessary to suppress precipitation. However, quenching is a difficult operation in itself, requires a large amount of cooling medium, and is very forceful, which tends to cause cracks in the product and lowers the yield.

また、従来の製造方法では、溶体化処理後、多段時効を
行なっているが、その場合、高い保磁力が得られるが、
4πl8−H曲線の第2象限において。
In addition, in conventional manufacturing methods, multi-stage aging is performed after solution treatment, but in that case, a high coercive force can be obtained, but
In the second quadrant of the 4πl8-H curve.

角型性が悪く、肩が丸くなるという欠点があった。It had the disadvantage of poor squareness and rounded shoulders.

本発明は、この点に鑑み、最大エネルギー積(B H)
maX・とじて従来と同等以上のものが得られ・安価で
しかも製造容易2歩留の高い焼結型R−C。
In view of this point, the present invention provides the maximum energy product (B H)
A sintered type R-C that can obtain maX and better results than conventional products, is inexpensive, easy to manufacture, and has a high yield.

−Cu −Fe系永久磁石材料およびその製造方法を提
供することを目的とする。
An object of the present invention is to provide a -Cu-Fe based permanent magnet material and a method for manufacturing the same.

本発明の他の目的は、低Cu 、高Fe含有としてCo
量を少なくしながら、従来と同等以上の磁気特性を有し
、しかも4πl8−H曲線の角型性の良いR−Co−C
u−Fe系永久磁石材料およびその製造方法を提供する
ことである。
Another object of the present invention is to use Co as a low Cu, high Fe content.
R-Co-C has magnetic properties equivalent to or better than conventional ones while reducing the amount, and has good squareness of the 4πl8-H curve.
An object of the present invention is to provide a u-Fe permanent magnet material and a method for manufacturing the same.

本発明の材料は、粉末焼結型R2T17系磁石合金(と
こでRはイツトリウム及び希土類元素、Tは遷移金属を
表わす。)において、Rを225〜27、5 wtチ、
Feを15.0〜23.0 wt%、 Cuを3.3〜
5.Owt%+ zrを1.5〜3.5 wt % 、
 Cr2を残部とした希土類コバルト系磁石材料である
The material of the present invention is a powder sintered R2T17 magnet alloy (where R represents yttrium and a rare earth element, and T represents a transition metal), in which R is 225 to 27.5 wt.
Fe 15.0~23.0 wt%, Cu 3.3~
5. Owt% + zr 1.5 to 3.5 wt%,
It is a rare earth cobalt based magnet material with Cr2 as the balance.

本発明の第1の製造方法は、粉末焼結型R2T17系磁
石合金(ここで〆イットリウム及び希土類元素、Tは遷
移金属を表わす。)において、Rを22.5〜27.5
 wt%、 Feを15.0〜23.Owt%。
In the first manufacturing method of the present invention, R is 22.5 to 27.5 in a powder sintered R2T17 magnet alloy (here, yttrium and a rare earth element, T represents a transition metal).
wt%, Fe 15.0-23. Owt%.

Cuを3.3〜5.0 wt% 、 Zrを1.5〜3
.5 wt%、G。
Cu: 3.3-5.0 wt%, Zr: 1.5-3
.. 5 wt%, G.

を残部とする合金粉末を作り、該合金粉末を加圧成形し
て1170℃〜1230℃で焼結した後。
After preparing an alloy powder with the remainder being , the alloy powder is press-molded and sintered at 1170°C to 1230°C.

1130℃〜1200℃で溶体化処理後1500℃/一
時間〜1000℃/時間の割合で空冷し2次に600〜
950℃に加熱保持後0905〜b分の冷却速度で50
0℃迄冷却することを特徴とする希土類コバルト系磁石
材料の製造方法である。
After solution treatment at 1130°C to 1200°C, air cooling at a rate of 1500°C/1 hour to 1000°C/hour and then 600°C/hour.
50 at a cooling rate of 0905-b after heating and holding at 950℃
This is a method for producing a rare earth cobalt magnet material, which is characterized by cooling to 0°C.

本発明の第2の製造方法はR2T17系合金磁石(ここ
で、Rはイツトリウムおよび希土類元素。
The second manufacturing method of the present invention is an R2T17 alloy magnet (where R is yttrium and a rare earth element).

T1は遷移金属を表わす。)を粉末冶金法によって製造
する方法において、Rを22.5〜27.5 wt係。
T1 represents a transition metal. ) by a powder metallurgy method, in which R is 22.5 to 27.5 wt.

Feを15.0〜23. Owt%、 CUを3.3〜
5.Q wt % 。
Fe from 15.0 to 23. Owt%, CU 3.3~
5. Qwt%.

Zrを1.5〜3.5 wt%、 coを残部とする合
金粉末を作り、該合金粉末を加圧成形して1170℃〜
1230℃で焼結した後、1130℃〜1200℃で溶
体化処理後行い、その後、750℃〜900℃に加熱保
持後0.05〜b 度で冷却する加熱−保持−冷却のサイクルを少々くとも
2回行うことを特徴とする希土類コバルト系磁石材料の
製造方法である。
An alloy powder containing 1.5 to 3.5 wt% of Zr and the balance of cobalt is prepared, and the alloy powder is press-molded to 1170°C~
After sintering at 1230°C, solution treatment is performed at 1130°C to 1200°C, followed by a heating-holding-cooling cycle of heating and holding at 750°C to 900°C and cooling at 0.05 to 100°C. This is a method for producing a rare earth cobalt magnet material, which is characterized in that both steps are carried out twice.

本発明によれば、Cuが3.3〜5. Owt %と少
ないがFeが15.0〜23.Owt%と多(Zr 1
.5〜3.5wt%を使用するため、全体としてCo量
が少なくなるので安価となる。またこのようにCuを減
少し。
According to the present invention, Cu is 3.3 to 5. Although the Owt% is small, Fe is 15.0 to 23. Owt% and many (Zr 1
.. Since 5 to 3.5 wt% is used, the overall amount of Co is reduced, resulting in low cost. In addition, Cu is reduced in this way.

Feを多く用いているがr Zrを1.5〜3.5 w
t%含有させることによシ、残留磁束密度Brを10 
KGauss以上、保磁力II(cを9 KOe以上’
 (”H)maXを24(MGauss Oe )以上
と、従来と同等以上の特性を得ることができる。
Although a large amount of Fe is used, r Zr is 1.5 to 3.5 w
By containing t%, the residual magnetic flux density Br can be reduced to 10
K Gauss or more, coercive force II (c more than 9 KOe'
With ("H)maX of 24 (MGauss Oe) or more, it is possible to obtain characteristics equivalent to or better than conventional ones.

更に2本発明によれば、 Cuが3.3〜5. Owt
係と少ないので、溶体化処理後の冷却において、析出物
(RO5相)の出る恐れがほとんどなく、冷却をブロア
ーによる強制空冷によって行うことで充分であることが
わかった。なおCu量が5. Owt %よシ多くなる
と、溶体化処理後、やはシ急冷を必要とする。
Furthermore, according to the present invention, Cu is 3.3 to 5. Owt
It was found that there was little risk of the formation of precipitates (RO5 phase) during cooling after solution treatment, and that cooling by forced air cooling using a blower was sufficient. Note that the amount of Cu is 5. If the amount exceeds Owt%, rapid cooling is required after solution treatment.

更に2本発明の第2の製造方法によれば4πl8−H曲
線の角型性を改良できる。
Furthermore, according to the second manufacturing method of the present invention, the squareness of the 4πl8-H curve can be improved.

以下2本発明を実施例について詳細に説明する。The present invention will be described in detail below with reference to two examples.

実施例1 Smが22.0〜28.0 wt%、 Feが15.0
〜24.0wt% 、 Cuが30〜5.0 wt%、
 Zrが1.5〜3.5wt%、残部Coの組成で示さ
れる合金となるように原料を調合し、この混合物をアル
コ8ン算囲気中で、′高周波加熱によ”R2T17系合
金を溶解した。
Example 1 Sm: 22.0 to 28.0 wt%, Fe: 15.0
~24.0wt%, Cu 30~5.0wt%,
The raw materials were prepared to form an alloy with a composition of 1.5 to 3.5 wt% Zr and the balance Co, and this mixture was heated by high-frequency heating to melt the R2T17 alloy. did.

この合金を粗粉砕し、ゴールミルを用いて平均粒径的4
μmに微粉砕した。
This alloy was coarsely ground, and using a goal mill, the average particle size was 4.
It was pulverized to micrometers.

この粉末を10KOeの磁場中+ 1 ton/儒2の
圧力で成形した。成形物をAr雰囲気中、1170℃〜
1230℃で1〜2時間焼結した後、1130℃〜12
00℃で溶体化処理を行った後、ブロワ−で1500℃
〜1000℃/時間で空冷した。
This powder was compacted at a pressure of +1 ton/F2 in a magnetic field of 10 KOe. The molded product is heated to 1170°C in an Ar atmosphere.
After sintering at 1230℃ for 1-2 hours, 1130℃~12
After solution treatment at 00°C, heat to 1500°C with a blower.
Air cooling was performed at ~1000°C/hour.

次にこの試料を600〜950℃で0.2〜30時間保
持した後、0.05〜b 速度で500℃以下まで冷却した。試料の組成を種々変
化させた場合の磁気特性を夫々、第1図。
Next, this sample was held at 600-950°C for 0.2-30 hours, and then cooled to below 500°C at a rate of 0.05-b. Figure 1 shows the magnetic properties when the composition of the sample was variously changed.

第2図、第3図、第4図に示す。It is shown in FIGS. 2, 3, and 4.

第1図はSmを22.0〜28. Owt%と変えr 
Fe19、 Owt$、 Cu 4.5 wt%、 Z
r 2.6 wt%、残部C’0とした場合の特性であ
る。第2図社、Sm26.0wt% + Feを15.
0〜24.Owt%と変え、 Cu 4.8wtチ+ 
Zr 2.4 wt%、残部Coとした場合である。
Figure 1 shows Sm between 22.0 and 28. Change to Owt%r
Fe19, Owt$, Cu 4.5 wt%, Z
These are the characteristics when r is 2.6 wt% and the remainder is C'0. 2nd company, Sm26.0wt% + Fe 15.
0-24. Change it to Owt%, Cu 4.8wt +
This is the case where Zr is 2.4 wt% and the balance is Co.

第3図はr Sm 26.3 wt%+ Fe 20.
5 Wt4.Cuを3.0〜50wt%と変えp Zr
 2.5 wt%、残部COと    ゛した場合であ
る。第4図はr Sm 26.2 wt%、 Fe19
.5 wt%、 Cu 4.9 wt%、 Zrを1.
5〜3.5 wt%と変え、残部Coとした場合である
Figure 3 shows r Sm 26.3 wt% + Fe 20.
5 Wt4. By changing Cu to 3.0 to 50 wt%, p Zr
2.5 wt%, with the remainder being CO. Figure 4 shows r Sm 26.2 wt%, Fe19
.. 5 wt%, Cu 4.9 wt%, Zr 1.
This is a case where the content is changed to 5 to 3.5 wt% and the balance is Co.

チ以上ではBrおよびHeが低下し、従って(BH)m
aXも低下する。この結果Smの量は22.5〜275
wtチと限定される。
Above H, Br and He decrease, and therefore (BH)m
aX also decreases. As a result, the amount of Sm is 22.5 to 275
Limited to wt chi.

第2図に関して、 Fe含有量が234よシも多くなる
と保磁力tHcが低下しp (BH)maxも急激に低
下する。また、15%よシ少ないとxHcが10KOe
にみたなくなる。従ってFeは15〜23チとする。
Regarding FIG. 2, when the Fe content increases beyond 234, the coercive force tHc decreases and p (BH)max also decreases rapidly. Also, if it is less than 15%, xHc will be 10KOe
It disappears. Therefore, the Fe content is set to 15 to 23.

第3図に関して、Cu量は33%以下ではrHcが低下
し5チ以上とするとBrが低下してしまう。またCuが
5チより多いと、溶体化処理後の冷却時にRCo s相
が析出しゃすくなシ、急冷を必要とする。
Regarding FIG. 3, when the Cu amount is less than 33%, rHc decreases, and when it is more than 5%, Br decreases. Moreover, if the Cu content is more than 5, the RCos phase will not precipitate during cooling after solution treatment, and rapid cooling will be required.

従って、 Cuは3.3〜5.Owt%とする。Therefore, Cu is 3.3 to 5. Owt%.

第4図に関しては、zrの含有量が1.5〜3.5wt
%の範囲を越えるとBrおよび工、ネルギー積(BH)
mayが低下してしまう。
Regarding Figure 4, the content of zr is 1.5 to 3.5wt.
If the range of % is exceeded, Br and energy product (BH)
may decrease.

実施例2 Smが25.3 wt%、 Feが19.0wt%の場
合と21、 Owt%の場合、 Cuが4.8 Wt 
% + Zrが2.5w1%、Co残部なる合金を実施
例1と同様にして。
Example 2 When Sm is 25.3 wt%, Fe is 19.0 wt% and 21.0 wt%, Cu is 4.8 Wt
%+Zr was 2.5w1%, and the remaining Co was the same as in Example 1.

溶解、粉砕、磁場成形した。Melted, crushed, and magnetically molded.

この成形物をAr雰囲気中1210℃で1時間保持した
後、 11−80℃で1時間溶体化処理を行った。この
試料を750℃〜900℃で0.5〜20時間保持した
後、0.05〜b 却速度で500℃以下まで冷却した後750℃〜900
℃で0〜5時間保持し、0.05〜bの範囲の冷却速度
で500℃以下まで冷却した。
This molded product was maintained at 1210° C. for 1 hour in an Ar atmosphere, and then subjected to solution treatment at 11-80° C. for 1 hour. After holding this sample at 750°C to 900°C for 0.5 to 20 hours, cooling to 500°C or less at a cooling rate of 0.05 to 750°C to 900°C.
℃ for 0 to 5 hours and cooled to below 500℃ at a cooling rate in the range of 0.05 to b.

その試料の磁気特性を表−1に示す。The magnetic properties of the sample are shown in Table 1.

表−1中、試料通の奇数のものは従来法の熱処理で1回
のみ処理に対し、試料形が偶数の試料は熱処理を2回施
こした場合である。これらの結果から、保持時間の合計
が同じであっても冷却を2回即ち熱処理を2回施こりせ
ばHe r (BH)maxが大巾に改善される。
In Table 1, the odd numbered samples were heat treated only once by the conventional method, while the even numbered samples were heat treated twice. From these results, even if the total holding time is the same, Her (BH)max can be greatly improved by performing cooling twice, that is, performing heat treatment twice.

以下余白 実験届イの場合Rを22.5〜27.5 wt%、 F
e19 wt%+ ’−Cu 3.3〜5. Owt 
9’ * Zrを1.5〜3.5wt%、Goを残部と
する組成で試料1の場合の熱処理条件は750℃、20
時間保持後1℃/m 1 nで冷却、試料2の場合の熱
処理条件は750℃15時磁気特性を比較してみると保
磁力゛については試料lで6 KOe 、試料2で9 
KOeと試料2の方が大きく、最大エネルギー積(BH
)maxも試料1で22MGOe +試料2で28.5
 MGOe  と試料2の方がはるかに大きいことが明
らかである。即ち、熱処理を2回施すことによ5Hcお
よび角形比を大きくシ。
In the case of the margin experiment report A below, R is 22.5 to 27.5 wt%, F
e19 wt%+'-Cu 3.3-5. Owt
9' * The heat treatment conditions for sample 1, which has a composition of 1.5 to 3.5 wt% Zr and the balance of Go, are 750°C and 20°C.
After holding for a time, cooling at 1°C/m 1 n, the heat treatment conditions for sample 2 were 750°C and 15 hours. Comparing the magnetic properties, the coercive force was 6 KOe for sample 1 and 9 KOe for sample 2.
KOe and sample 2 are larger, and the maximum energy product (BH
)max is also 22MGOe for sample 1 + 28.5 for sample 2
It is clear that MGOe and sample 2 are much larger. That is, by applying heat treatment twice, 5Hc and squareness ratio can be greatly reduced.

(BH)maXが増大することが明らかである。It is clear that (BH)maX increases.

実験への場合Fe 21 wt%とFe含有量を変えて
も従来の方法である試料11よシ試料12の方が保磁力
も最大エネルギー積もはるかに良いことがわかる。
In the case of the experiment, it can be seen that even if the Fe content is changed to Fe 21 wt%, sample 12 is much better in coercive force and maximum energy product than sample 11, which is the conventional method.

なお希土類金属RとしてはSmの他に同等の化学的特性
を有するY 、 La 、 Ce r Pr 、 Na
 r Eu rGd + Tb r Dy r Ho 
+ Er r Tm + Yb 、 Luを用いること
ができる。
In addition to Sm, rare earth metals R include Y, La, Cer Pr, and Na, which have similar chemical properties.
r Eu rGd + Tb r Dy r Ho
+ Er r Tm + Yb and Lu can be used.

本発明は2以上のような構成よシなるものでRを22−
5〜27.5 wt % r Feを15.0〜23.
Owt%。
The present invention has a configuration in which R is 2 or more, and R is 22-
5 to 27.5 wt % r Fe to 15.0 to 23.
Owt%.

Cuを3.3〜5. Owt%、 Zrを1.5〜3.
5 wt−% + C。
Cu from 3.3 to 5. Owt%, Zr 1.5-3.
5 wt-% + C.

を残部とする組成によシ、高い磁気特性を得ながら+C
o量を減少し、製造を簡単化することができる。
+C while obtaining high magnetic properties due to the composition with the balance being
It is possible to reduce the amount of o and simplify manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は2本発明の実施例の磁気特性を示すグラフ
で、第1図はSmの量に対する最大エネルギー積(BH
)max *残留磁束密度Br+および保磁力wHcの
変化を示し、第2〜4図はそれぞれ、 Fe rCu 
、およびZrの量に対する(B H)maz + Br
 + rHcの変化を示すグラフである。 第1図 第2図 第3図 Cu(wt%) 第4図 Zr (wt%)
Figures 1 to 4 are graphs showing the magnetic properties of the two embodiments of the present invention, and Figure 1 is the maximum energy product (BH
)max *Changes in residual magnetic flux density Br+ and coercive force wHc are shown in Figures 2 to 4, respectively.
, and (B H) maz + Br for the amount of Zr
+ is a graph showing changes in rHc. Figure 1 Figure 2 Figure 3 Cu (wt%) Figure 4 Zr (wt%)

Claims (1)

【特許請求の範囲】 1、 粉末焼結型R2T、7系磁石合金(ここでRはイ
ツトリウム及び希土類元素、Tは遷移金属を表わす。)
において、Rを22.5〜27.5 wt%、Feを1
5.0〜23.Owt%r Cuを3.3〜5. Ow
t%。 Zrを1.5〜3.5 wtチ+ COを残部とした希
土類コバルト系磁石材料。 2、粉末焼結型R2T17系磁石合金(ここでRはイツ
トリウム及び希土類元素、Tは遷移金属を表わす。)の
製造方法において、Rを22,5〜27.5wt % 
+ Feを15.0〜23. Owt%、 Cuを3.
3〜5.Ov/l % r Zrを1.5〜3.5 w
t%r Coを残部とする合金粉末を作シ、該合金粉末
を加圧成形して1170℃〜1230℃で焼結した後、
1130℃〜1200℃で溶体化処理後1500℃/時
間〜1000℃/時間の割合で空冷し2次に600〜9
50℃に加熱保持後0.05〜b 迄冷却することを特徴とする希土類コバルト系磁石材料
の製造方法。 3、R2T17系合金磁石(ここでRはイツトリウム及
び希土類元素、Tは遷移金属を表わす。)を粉末冶金法
によって製造する方法において、Rを22、5〜27.
5 wt%、 Feを15.0〜23.Owt%。 Cuを3.3〜5. Owtチ、Zrを1.5〜3.5
 wt % 、 COを残部とする合金粉末を作シ、該
合金粉末を加圧成形して1170℃〜1230℃で焼結
した後。 1130℃〜1200℃で溶体化処理を行々い。 その後、750℃〜900℃に加熱保持後、0.05〜
b 持−冷却のサイクルを少くとも2回行うことを特徴とす
る希土類コバルト系磁石材料の製造方法。
[Claims] 1. Powder sintered R2T, 7-series magnetic alloy (R represents yttrium and rare earth elements, and T represents a transition metal.)
In, R was 22.5 to 27.5 wt%, Fe was 1
5.0-23. Owt%r Cu from 3.3 to 5. Ow
t%. A rare earth cobalt-based magnet material containing 1.5 to 3.5 wt Zr + CO as the balance. 2. In the method for producing a powder sintered R2T17 magnet alloy (where R represents yttrium and a rare earth element, and T represents a transition metal), R is 22.5 to 27.5 wt%.
+ Fe from 15.0 to 23. Owt%, Cu 3.
3-5. Ov/l % r Zr 1.5~3.5w
After producing an alloy powder with the balance being t%r Co, pressing the alloy powder and sintering it at 1170°C to 1230°C,
After solution treatment at 1130°C to 1200°C, it is air cooled at a rate of 1500°C/hour to 1000°C/hour and then heated to 600°C to 90°C.
A method for producing a rare earth cobalt-based magnet material, which comprises heating and holding at 50°C and then cooling to 0.05-b. 3. In a method for manufacturing an R2T17 alloy magnet (where R represents yttrium and a rare earth element, and T represents a transition metal) by a powder metallurgy method, R is 22, 5 to 27.
5 wt%, Fe 15.0-23. Owt%. Cu from 3.3 to 5. Owtchi, Zr 1.5 to 3.5
After producing an alloy powder with wt % and CO as the balance, the alloy powder was press-molded and sintered at 1170°C to 1230°C. Solution treatment was carried out at 1130°C to 1200°C. After that, after heating and holding at 750℃~900℃, 0.05~
b. A method for producing a rare earth cobalt-based magnet material, characterized by carrying out a holding-cooling cycle at least twice.
JP57113682A 1982-06-30 1982-06-30 Rare earth element cobalt material for magnet and preparation thereof Granted JPS596350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57113682A JPS596350A (en) 1982-06-30 1982-06-30 Rare earth element cobalt material for magnet and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57113682A JPS596350A (en) 1982-06-30 1982-06-30 Rare earth element cobalt material for magnet and preparation thereof

Publications (2)

Publication Number Publication Date
JPS596350A true JPS596350A (en) 1984-01-13
JPH0319289B2 JPH0319289B2 (en) 1991-03-14

Family

ID=14618499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57113682A Granted JPS596350A (en) 1982-06-30 1982-06-30 Rare earth element cobalt material for magnet and preparation thereof

Country Status (1)

Country Link
JP (1) JPS596350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620872A (en) * 1984-10-18 1986-11-04 Mitsubishi Kinzoku Kabushiki Kaisha Composite target material and process for producing the same
JPS61260610A (en) * 1985-05-15 1986-11-18 Seiko Instr & Electronics Ltd Manufacture of permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620872A (en) * 1984-10-18 1986-11-04 Mitsubishi Kinzoku Kabushiki Kaisha Composite target material and process for producing the same
JPS61260610A (en) * 1985-05-15 1986-11-18 Seiko Instr & Electronics Ltd Manufacture of permanent magnet

Also Published As

Publication number Publication date
JPH0319289B2 (en) 1991-03-14

Similar Documents

Publication Publication Date Title
JP2904667B2 (en) Rare earth permanent magnet alloy
JPH01219143A (en) Sintered permanent magnet material and its production
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
JPH03129703A (en) Rare-earth-fe-co-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPS596350A (en) Rare earth element cobalt material for magnet and preparation thereof
JPH0146575B2 (en)
JPH0146574B2 (en)
JP3860372B2 (en) Rare earth magnet manufacturing method
JPS6119084B2 (en)
JPH08148315A (en) Production of rare earth magnet
JPH045737B2 (en)
JPH05152115A (en) Manufacture of magnetic recording powder
JPS63216307A (en) Alloy powder for magnet
JPH0477066B2 (en)
JPH08148317A (en) Production of rare earth magnet
JPS6140738B2 (en)
JPH0227425B2 (en)
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPS62170454A (en) Permanent magnet alloy and its manufacture
JPH06108190A (en) Rare earth permanent magnet alloy
JPS5874005A (en) Permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH0241574B2 (en)
JPH04134806A (en) Manufacture of permanent magnet