JPS5961770A - Uniform velocity electrophoretic analytical apparatus - Google Patents

Uniform velocity electrophoretic analytical apparatus

Info

Publication number
JPS5961770A
JPS5961770A JP57172632A JP17263282A JPS5961770A JP S5961770 A JPS5961770 A JP S5961770A JP 57172632 A JP57172632 A JP 57172632A JP 17263282 A JP17263282 A JP 17263282A JP S5961770 A JPS5961770 A JP S5961770A
Authority
JP
Japan
Prior art keywords
potential gradient
ion component
ion
gradient detector
migration speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57172632A
Other languages
Japanese (ja)
Inventor
Shoichi Kobayashi
章一 小林
Yasuyo Sawamoto
澤本 恭代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP57172632A priority Critical patent/JPS5961770A/en
Publication of JPS5961770A publication Critical patent/JPS5961770A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/4473Arrangements for investigating the separated zones, e.g. localising zones by electric means

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To obtain the absolute value of the effective moving speed of each ion component without mixing a reference ion component, by providing a means for calculating effective moving speeds of ion components on the basis of the outputs of a potential gradient detector and a passage detecting means of the boundary between different kinds of ion component zones. CONSTITUTION:The passage detecting routine of a uniform velocity electrophoretic analytical apparatus 1 calculates the time change value of the timewise average value of the output signal from potential gradient detectors 6, 7 porvided to a migration tube 8 and the time gradient value thereof and the calculated values are compared with respective threshold values to detect that the boundary part between different kinds of ion component zones pass the positions of the detectors 6, 7. A migration speed detecting routine 11 detects the migration speed (v) of each ion component zone on the basis of the passing time thereof. A moving degree calculating routine 12 calculates the effective moving degrees of ion components from the outputs of the detectors 6, 7 and (v) to display the calculated values by a display apparatus 13. Therefore, the effective moving degree of each ion component is calculated without mixing a reference ion component.

Description

【発明の詳細な説明】 この発明は、等速電気泳動分析装置Rに関し、特に、イ
オン成分の実効移動度の絶対値を得ることができる等速
電気泳動分析装置を提供する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an isokinetic electrophoresis analyzer R, and particularly provides an isokinetic electrophoresis analyzer that can obtain the absolute value of the effective mobility of an ion component.

イオン成分A、B、Cが等速電気泳動状態にあるとき、
式(1)の関係が成立することは良く知られている。た
だし、各イオン成分の実効移動度をml、mQ、m8、
各イオン成分ゾーンにおける電界強度をEl、E2.E
3、泳動速度をVとする。
When ionic components A, B, and C are in a state of isokinetic electrophoresis,
It is well known that the relationship of equation (1) holds true. However, the effective mobility of each ionic component is ml, mQ, m8,
The electric field strength in each ionic component zone is El, E2. E
3. Let the migration speed be V.

v=m 1・E t =m 2−E 2 =m s−E
 a −(1)ところで電位勾配検出器の装置定数をA
としたとき、電界強度Eにおける出力yが、 p=A−E    ・・・・・・(11)となることも
良(知られている。
v=m1・Et=m2-E2=m s-E
a - (1) By the way, the device constant of the potential gradient detector is A
It is well known that the output y at the electric field strength E is p=A-E (11).

そこで上記(1)式は、 となり、これを変形すれば、 となる。Therefore, the above equation (1) is So, if you transform this, becomes.

従来の電位勾配検出器を有する等速電気泳動装置を用い
ると、上記(i’/ )式に基いて、出力される電位勾
配yの逆数から各イオン成分の実効移動度mの相対値を
得ることができる。しかし、絶対値はそのままでは得ら
れないので、絶対値を求めるときには、実効移動度既知
の基準イオン成分を試料に混入して等速電気泳動しなけ
ればならず、大変不便である。
When using an isotachophoresis apparatus with a conventional potential gradient detector, the relative value of the effective mobility m of each ion component can be obtained from the reciprocal of the output potential gradient y based on the above equation (i'/). be able to. However, since the absolute value cannot be obtained as is, when determining the absolute value, it is necessary to mix a reference ion component with known effective mobility into the sample and perform isokinetic electrophoresis, which is very inconvenient.

この発明は、このような事情に鑑みそなされたもので、
基準イオン成分を混入せずに各イオン成分の実効移動度
の絶対値を得ることができる等速電気泳動分析装置を提
供するものである。
This invention was made in consideration of these circumstances.
The present invention provides an isotachophoresis analyzer that can obtain the absolute value of the effective mobility of each ion component without mixing a reference ion component.

以下、図面を参照して、この発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図に示す(1)は、この発明の等速電気泳動分析装
置の一実施例である。高電圧電源回路(2)の両端にタ
ーミナル液電極槽(3)とリーディング液?!!極槽(
4)とが接続され、それら電極槽(3)、 (4)は泳
動管(8)イ゛連結されている。泳動管(8)のターミ
ナル液電極槽(3)側の位置には試料注入部(5)が介
設され、またリーディング液電極槽(4)側の位置には
2つの電位勾配検出器(6)、 (7)が一定距離lだ
け離れて介設されている。これら電位勾配検出器(6)
、(7)の出力は、データ処理装置(9)に入力される
。データ処理装置(9)に入力される。データ処理装置
(9)は、たとえばマイクロコンピュータであり、通過
検出ルーチン00.泳動速度検出ルーチンQl)および
移動度算出ルーチン(6)を少なくとも有している。0
引ヨ表示装置である。
(1) shown in FIG. 1 is an embodiment of the isotachophoresis analyzer of the present invention. Terminal liquid electrode tank (3) and leading liquid at both ends of high voltage power supply circuit (2)? ! ! Polar tank (
4), and these electrode tanks (3) and (4) are connected to an electrophoresis tube (8). A sample injection part (5) is interposed at a position on the terminal liquid electrode tank (3) side of the migration tube (8), and two potential gradient detectors (6) are installed at a position on the leading liquid electrode tank (4) side. ), (7) are interposed a certain distance l apart. These potential gradient detectors (6)
, (7) are input to a data processing device (9). The data is input to a data processing device (9). The data processing device (9) is, for example, a microcomputer, and the passage detection routine 00. It has at least a migration speed detection routine Ql) and a mobility calculation routine (6). 0
It is a pullback display device.

通過検出ルーチンαOは、電位勾配検出器(6)、 (
7)の出力信号に対し、その所定時間当りの平均値の時
間変化値とその時間変化値の時間勾配値とを算出し、時
間変化値および時間勾配値を各々しきい変化値詔よびし
きい勾配値に比較し、それに基いて異種のイオン成分ゾ
ーン間の境界部分が電位勾配検出器((i) t’ (
7)の位置を通過していることを検出するルーチンであ
る。このルーチンは基本的に従来公知のものである。
The passage detection routine αO includes a potential gradient detector (6), (
7) For the output signal, calculate the time change value of the average value per predetermined time and the time gradient value of the time change value, and set the time change value and the time gradient value as threshold change values and thresholds, respectively. Based on the gradient value, the boundary between different ion component zones is detected by the potential gradient detector ((i) t' (
This routine detects that the vehicle is passing through the position 7). This routine is basically known in the art.

泳動速度検出ルーチンθυは、前記通過検出ルーチン叫
で検出される成るイオン成分ゾーンの通過時刻に基づい
て、泳動速度Vを検出する。すなわち、成るイオン成分
ゾーンの前端境界部分が検出器(6)を通過する時刻が
tl、検出器(7)を通過するによって泳動速度Vを検
出するルーチンである。
The migration speed detection routine θυ detects the migration speed V based on the time of passage of the ion component zone detected in the passage detection routine. That is, the routine detects the time tl at which the front end boundary portion of the ion component zone passes through the detector (6), and the migration speed V at the time when the front end boundary portion of the ion component zone passes through the detector (7).

移動度算出ルーチン(ロ)は、成るイオン成分ゾーンに
対する電位勾配検出器(6)〔または(7)〕の出力値
2と前記泳動速度検出ルーチンQめで得られる泳動速度
Vとから、次式 によってそのイオン成分の実効移動度mを算出するルー
チンである。ただし、Aは電位勾配検出器(6)〔また
は(7)〕によって決まる装置定数で、式(11)のA
と同じものである。
The mobility calculation routine (b) uses the output value 2 of the potential gradient detector (6) [or (7)] for the ion component zone and the migration speed V obtained in the migration speed detection routine Q, using the following formula. This is a routine for calculating the effective mobility m of the ionic component. However, A is a device constant determined by the potential gradient detector (6) [or (7)], and A in equation (11) is
is the same as

Aの値は、装置(1)で既知実効移動度mの基準物質を
測定して(vii )式により求める。これは1度だけ
行えばよい。
The value of A is determined by the equation (vii) by measuring a reference material with a known effective mobility m using the apparatus (1). This only needs to be done once.

A=−−ソー ・・−・・・(XA+ )mの値は先行
するイオン成分の影響をうけることがあるので、収用m
の状態に基準物質溶液を調整してこれをリーディング液
とし、適当なターミナル液を用いて装置(1)で電気泳
動させ、(vii )式からAを求めるのが最もよい。
A=--so...-(XA+) Since the value of m may be affected by the preceding ionic components, the value of expropriation m
It is best to adjust the standard substance solution to the state shown in (vii), use it as a leading solution, perform electrophoresis in apparatus (1) using an appropriate terminal solution, and then calculate A from equation (vii).

そうすれば先行するイオンによる影響がないからである
This is because there is no influence from preceding ions.

(■1)式は、(in ”)式を変形したものであるか
ら、これにより実効移動度mを算出できることは容易に
理解できるであろう。なお、(vii )式は(■1)
式を変形したものである。
Since formula (■1) is a modification of formula (in ''), it is easy to understand that the effective mobility m can be calculated using this formula.
This is a modified version of the formula.

データ処理装置(9)で求められた実効移動度mは、表
糸装置α枠に出力され、表示される。
The effective mobility m determined by the data processing device (9) is output to the front thread device α frame and displayed.

変形実施例としては、電位勾配検出器(6)又は(7)
のいずれか一方を他の検出器たとえば導電率検出器とし
たものが挙げられる。また、電位勾配検出器(6)又は
(7)のいずれか一方を省略し、その位置に管路径急変
部を形成すると共に電源回路(2)に供給電圧の時間的
変化を測定する電圧変化測定手段を接続したものが挙げ
られる。いずれも通過検出手段として機能する。
As a variant embodiment, a potential gradient detector (6) or (7)
One example is one in which one of the two is used as another detector, such as a conductivity detector. In addition, either one of the potential gradient detectors (6) or (7) is omitted, and a sudden change in pipe diameter is formed at that position, and voltage change measurement is performed to measure temporal changes in the voltage supplied to the power supply circuit (2). An example is one in which means are connected. Both function as passage detection means.

以上の説明から理解されるように、この発明は、高電圧
電源回路の両端にそれぞれ接続されたターミナル液電極
槽とリーディング液電極槽の間に試料注入部と電位勾配
検出器とが順に管路にて連結された等速電気泳動分析装
置において、電位勾配検出器から定距離だけ離れた管路
位置を異種のイオン成分ゾーン間の境界部分が通過する
のを検出する通過検出手段、前記電位勾配検出器と前記
通過検出手段の出力信号に基いてイオン成分ゾーンの泳
動速度Vを求める泳Ib速度検出手段およびあるイオン
成分ゾーンに対する前記電位勾配検出器の出力値2と前
記泳動速度Vとから次式、m = A・− (ただし、Aは電位勾配検出器により決まる定数→ に基いてそのイオン成分の実効移動度ntを算出する移
動度算出手段を具備したことを持?改とする等速電気泳
動分析装置を提供するものであって、これにより基阜物
質を用いずに試料のイオン成分の実効移動度を絶対値で
得ることができるようになる。
As can be understood from the above description, the present invention provides a method in which a sample injection section and a potential gradient detector are arranged in a conduit in order between a terminal liquid electrode tank and a leading liquid electrode tank respectively connected to both ends of a high voltage power supply circuit. In an isotachophoresis analyzer connected to From the electrophoresis speed V and the output value 2 of the potential gradient detector for a certain ion component zone and the electrophoresis speed V for a certain ion component zone, Equation, m = A - (where A is a constant determined by the potential gradient detector →). The present invention provides an electrophoresis analyzer, which makes it possible to obtain the effective mobility of ionic components of a sample in absolute value without using a base material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の等速電気泳動分析装置の一実施例の
構成説明図である。 (1)・・・等速電気泳動分析装置、 (6)、 (7)・・・電位勾配検出器、(9)・・・
データ処理装置、(II・・・通過検出ルーチン、0]
)・・・泳動速度検出ルーチン、 0’II・・・移動度算出ルーチン。 代理人弁理士野河信太jg
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the isotachophoresis analyzer of the present invention. (1)... Isokinetic electrophoresis analyzer, (6), (7)... Potential gradient detector, (9)...
Data processing device, (II...passage detection routine, 0]
)...Migration speed detection routine, 0'II...Mobility calculation routine. Representative Patent Attorney Shinta Nogawa JG

Claims (1)

【特許請求の範囲】 1、高は正電源回路の両端にそれぞれ接続されたターミ
ナル液電極槽とリーディング液電極槽の間に試料注入部
と電位勾配検出器とが順に管路にて連結された等速電気
泳動分析装置において、電位勾配検出器から定距離だけ
離れた管路位置を異種のイオン成分ゾーン間の境界部分
が通過するのを検出する通過検出手段、前記電位勾配検
出器と前記通過検出手段の出力信号に基いてイオン、成
分ゾーンの泳動速度Vを求める泳動速度検出手段および
あるイオン成分ゾーンに対する前記電位勾配検出器の出
力値yと前記泳動速度Vとから次式、 m = A・− (ただし、Aは電位勾配検出器により決まる定数) に基いてそのイオン成分の実効移動度mを算出する移動
度算出手段を具備したことを特徴とする等速電気泳動分
析装置。
[Claims] 1. A sample injection section and a potential gradient detector are connected in order by a pipe between a terminal liquid electrode tank and a leading liquid electrode tank, which are respectively connected to both ends of a positive power supply circuit. In an isotachophoresis analyzer, a passage detection means for detecting passage of a boundary portion between zones of different types of ion components through a conduit position separated by a fixed distance from a potential gradient detector, said potential gradient detector and said passage; From the migration speed detection means for determining the migration speed V of the ion and component zone based on the output signal of the detection means, the output value y of the potential gradient detector for a certain ion component zone, and the migration speed V, the following formula, m = A - (where A is a constant determined by a potential gradient detector) An isotachophoresis analyzer characterized by comprising mobility calculation means for calculating the effective mobility m of the ionic component based on the following.
JP57172632A 1982-09-30 1982-09-30 Uniform velocity electrophoretic analytical apparatus Pending JPS5961770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57172632A JPS5961770A (en) 1982-09-30 1982-09-30 Uniform velocity electrophoretic analytical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57172632A JPS5961770A (en) 1982-09-30 1982-09-30 Uniform velocity electrophoretic analytical apparatus

Publications (1)

Publication Number Publication Date
JPS5961770A true JPS5961770A (en) 1984-04-09

Family

ID=15945472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57172632A Pending JPS5961770A (en) 1982-09-30 1982-09-30 Uniform velocity electrophoretic analytical apparatus

Country Status (1)

Country Link
JP (1) JPS5961770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048130A1 (en) * 2006-10-16 2008-04-24 Freescale Semiconductor, Inc. System and method for electromigration tolerant cell synthesis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120696A (en) * 1974-03-07 1975-09-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120696A (en) * 1974-03-07 1975-09-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048130A1 (en) * 2006-10-16 2008-04-24 Freescale Semiconductor, Inc. System and method for electromigration tolerant cell synthesis
US7721245B2 (en) 2006-10-16 2010-05-18 Freescale Semiconductor, Inc. System and method for electromigration tolerant cell synthesis

Similar Documents

Publication Publication Date Title
Huang et al. On-column conductivity detector for capillary zone electrophoresis
Altria et al. High voltage capillary zone electrophoresis: Operating parameters effects on electroendosmotic flows and electrophoretic mobilities
EP0295942B1 (en) On-column conductivity detector for microcolumn electrokinetic separations
US3811841A (en) Gating flow cell structure for continuous-flow analysis systems
Vacík et al. Improvement of the performance of a high-frequency contactless conductivity detector for isotachophoresis
Beckers et al. Use of a double-detector system for the measurement of mobilities in zone electrophoresis
SU654193A3 (en) Method of determining relative volume of particles in liquid and device for effecting same
US3941678A (en) Apparatus for electrophoretic analysis
JPS5961770A (en) Uniform velocity electrophoretic analytical apparatus
US5342492A (en) System for electrokinetic separation and detection where detection is performed at other than separation electric field
US4193296A (en) Method and an instrument for the measurement of the flow rate of gases based on ionization
Gáspár et al. Study of quantitative analysis of traces in low-conductivity samples using capillary electrophoresis with electrokinetic injection
Svoboda et al. A conductimetric detector with a wide dynamic range for liquid chromatograpy
US3474006A (en) Detection of water in halogenated hydrocarbon streams
SU949421A1 (en) Device for counting and measuring particle size
JPS6435260A (en) Chlorine ion concentration measuring apparatus
JP2523608B2 (en) Phase difference detection method in AC applied polarization reaction
SU1659822A1 (en) Apparatus for measuring concentration of substances
JP3210094B2 (en) Capacitor and fluid sensor using the same
Vespalec et al. Methods for determination of electrophoretic mobility and stability of complexes originating in solutions during the chiral discrimination process
US5121062A (en) Streaming current detector probe
JPS5451562A (en) Calibration method of electromagnetic flow meter
JPS6195213A (en) Electromagnetic flow meter
JPH07190928A (en) Concentration measuring apparatus for suspension
SU319268A1 (en)