JPS596046B2 - Interference wave blocking device using magnetic path and good conductor plate - Google Patents

Interference wave blocking device using magnetic path and good conductor plate

Info

Publication number
JPS596046B2
JPS596046B2 JP3455278A JP3455278A JPS596046B2 JP S596046 B2 JPS596046 B2 JP S596046B2 JP 3455278 A JP3455278 A JP 3455278A JP 3455278 A JP3455278 A JP 3455278A JP S596046 B2 JPS596046 B2 JP S596046B2
Authority
JP
Japan
Prior art keywords
interference waves
magnetic core
conductor
thin
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3455278A
Other languages
Japanese (ja)
Other versions
JPS54127201A (en
Inventor
昭彦 矢ケ崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3455278A priority Critical patent/JPS596046B2/en
Publication of JPS54127201A publication Critical patent/JPS54127201A/en
Publication of JPS596046B2 publication Critical patent/JPS596046B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Regulation Of General Use Transformers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】 本発明は、導線路を通つて機器に侵入する障害波により
機器の機能に支障を来たすのを防止するために、導線路
中の障害波を、該導線路に挿入した磁路とその磁路のす
べてを横断して設けた良電導体板により遮断する様にし
た装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for inserting interference waves in a conductor into a conductor in order to prevent interference waves from entering the device through the conductor and interfering with the functions of the device. The present invention relates to a device in which a magnetic path is cut off by a good conductor plate provided across all of the magnetic paths.

従来、例えば、計算機・精密測定機器・自動制御機器・
情報処理装置等においてデジタル化した装置や、テレビ
・高性能音響機器等の家電機器が普及する一方、そのデ
ジタル情報や放送電波の入出力回路や電源回路に混入し
て誤動作させ、はなはだしくは該装置を破損させ、ある
いはテレビ等に受信障害をあたえるパルスノイズ(障害
波)も、自動車・自動点滅機器・整流子モーター利用家
電機器等の普及や、高周波加工機・放電灯・SCR等の
高速スイッチング素子により大電力のコントロールを行
なう各種機器等の普及にともなつて著しく増大している
ので、このような障害波の除去は、発生源となる機器に
おいても被害を受ける機器においても、各機器に共通し
て強く望まれている。この様な障害波を形成するパルス
の実態は、広い周波数範囲にわたつて種々不規則なもの
が混在しており、又このような障害波が諸機器に伝播す
る径路は、障害波の発生源やそれに連る導線路から空間
を輻射して直接機器に侵入する径路と、発生源あるいは
機器に連なる導線路を伝導してそれらの端子から侵出あ
るいは侵入する径路とがある。
Conventionally, for example, computers, precision measuring equipment, automatic control equipment,
As digitalized information processing equipment and home appliances such as televisions and high-performance audio equipment become more and more popular, digital information and broadcast waves can get mixed into the input/output circuits and power supply circuits, causing malfunctions and causing serious problems in the equipment. Pulse noise (interfering waves) that can damage televisions or cause reception problems on TVs, etc. are becoming increasingly common in automobiles, automatic flashing equipment, home appliances that use commutator motors, and high-speed switching elements such as high-frequency processing machines, discharge lamps, and SCRs. The number of interference waves has increased significantly with the spread of various types of equipment that control large amounts of power. Therefore, removal of such interference waves is common to all equipment, both the source equipment and the equipment that is damaged. This is strongly desired. The actual state of the pulses that form such interference waves is a mixture of various irregular pulses over a wide frequency range, and the paths through which such interference waves propagate to various devices are dependent on the source of the interference waves. There are two routes: one in which radiation radiates into the space from the source or the conductor line connected to it and directly intrudes into the equipment, and the other route in which it conducts through the source or the conductor line connected to the equipment and leaks or invades from the terminals thereof.

このうち輻射して伝播する障害波に対しては、導線路に
フィルター回路(例えば高周波チョークコイルを導線路
に直列に、高周波キャパシタ−を導線路に並列に結線す
るL−C回路)を挿入して除去する方法があるが、これ
は広範囲にわたる種種な周波数の障害波の除去にすべて
有効に適応するのが困難であるばかりでなく、接続する
相手側とのインピーダンスの整合が充分になされていな
いと機能が低下して障害波除去の実効も無い、そのため
諸機器の特性によつていちいち選定せねばならず煩雑に
なり、又障害波の通過の方向によつて除去の効果が異な
るので、電源や信号源側から機器に侵入する障害波を防
止することと、逆に発生源から電源や信号源側に逃げる
障害波を防止することが、同一種のものでは行えない。
殊にこの種のフィルター回路はキャパシタ−の端子の一
方が接地されていることにより効果があるため、通常接
地して使用するたてまえになつており、これを導線路に
挿入すると電源の基本波成分が常時接地線に漏れて、配
電工事上使用を義務ずけられている漏電ブレーカ一を動
作させてしまう事故が現実に多く生じている欠点がある
To deal with interference waves that radiate and propagate, a filter circuit (for example, an LC circuit in which a high-frequency choke coil is connected in series with the conductor and a high-frequency capacitor is connected in parallel to the conductor) is inserted in the conductor. There is a method for eliminating interference waves of various frequencies over a wide range, but this method is not only difficult to apply effectively to eliminating interference waves of various frequencies, but also does not sufficiently match the impedance with the other side to be connected. The function deteriorates and there is no effective removal of interference waves.Therefore, each device must be selected based on its characteristics, which is complicated.Also, the removal effect differs depending on the direction of passage of interference waves, so the power supply It is not possible to prevent interference waves from entering the equipment from the signal source side or prevent interference waves from escaping from the source to the power supply or signal source side using the same type of equipment.
In particular, this type of filter circuit is effective when one of the terminals of the capacitor is grounded, so it is normally used with grounding, and when it is inserted into the conductor line, the basic power supply The disadvantage is that there are many accidents in which the wave components constantly leak into the grounding wire, causing the earth leakage breakers required for power distribution work to operate.

また、機器が高層建築物の上階に設置されている場合は
接地線が長いので、特別な工事をして接地抵抗を充分低
くないかぎりは、高周波成分に対するキヤパシタ一の作
用が低下するばかりでなく、接地線が輻射障害波に対し
受信アンテナとして作用し、逆に機器を誤動作させる等
々の欠点がある。
In addition, if the equipment is installed on the upper floor of a high-rise building, the grounding wire is long, so unless special construction is done to lower the grounding resistance sufficiently, the effect of the capacitor on high frequency components will only decrease. However, there are drawbacks such as the grounding wire acting as a receiving antenna for radiated interference waves and conversely causing equipment to malfunction.

本発明は前述の欠点を有するフイルタ一回路を用いない
で、発生源や機器に連なる導線路を伝導して伝播する障
害波の除去を徹底的に行なおうとするものであつて、次
にその詳細を図面により説明する。第1図において1は
1次巻線、2は2次巻線である。
The present invention attempts to thoroughly remove interference waves propagating through conducting lines connected to sources and equipment without using a filter circuit having the above-mentioned drawbacks. The details will be explained with reference to the drawings. In FIG. 1, 1 is a primary winding, and 2 is a secondary winding.

そして該各巻線と叉交して磁芯3を設ける。この磁芯は
電源周波数(あるいは信号周波数)においては高い実効
透磁率を有するが、周波数が高くなるに従い著しく実効
透磁率の低下する材質と構造の磁芯を用いるのがより有
利である。そして4は、この磁芯を該1次巻線1と2次
巻線2の中間位置において残すところなくすべてを横断
する様に設けた微細な間隙であり、5はこの間隙に設け
た薄い良電導体薄板である。2次巻線2は、測定器・通
信機・制御機器・情報処理機器・家電機器等の被害を受
ける機器や、SCR応用機器等の発生源となる機器等2
0に接続する。
A magnetic core 3 is provided to intersect each winding. Although this magnetic core has a high effective magnetic permeability at the power supply frequency (or signal frequency), it is more advantageous to use a magnetic core made of a material and structure whose effective magnetic permeability decreases significantly as the frequency increases. Reference numeral 4 denotes a minute gap provided so as to cross this magnetic core at an intermediate position between the primary winding 1 and the secondary winding 2 without leaving anything behind, and 5 refers to a thin gap provided in this gap. It is a thin conductor plate. The secondary winding 2 is used for equipment such as measuring instruments, communication equipment, control equipment, information processing equipment, home appliances, etc. that are subject to damage, and equipment that is a source of generation such as SCR application equipment.
Connect to 0.

1次巻線1は該機器に電力を供給する交流電源や信号源
や負荷等10に接続する。
The primary winding 1 is connected to an AC power source, a signal source, a load, etc. 10 that supplies power to the device.

今被害を受ける機器と該機器に電力を供給する電源線路
とに接続した場合を例に取ると、1次巻線1には電源線
路を通つて電源周波のほかに種々な高周波の障害波が侵
入して来るが、電源周波成分による磁束は、電源周波成
分に対しては高い実効透磁率を有している磁芯3を通過
して2次巻線2に2次起電力を誘起し、これにより機器
には支障無く電源電力が供給される。
Taking as an example the case where a device that is currently being damaged is connected to a power line that supplies power to the device, the primary winding 1 receives various high-frequency interference waves in addition to the power frequency through the power line. However, the magnetic flux due to the power frequency component passes through the magnetic core 3, which has a high effective magnetic permeability with respect to the power frequency component, and induces a secondary electromotive force in the secondary winding 2. This allows power to be supplied to the equipment without any hindrance.

これに反し1次巻線1に侵入した障害波による高周波成
分の磁束は、磁芯3に流れ込むが、その高い周波数の故
に、主として渦流損失により失われて、2次巻線内に障
害波の誘起は生じ難い。しかしなお若干の高周波成分の
磁束は残つて2次巻線と叉交し、障害波成分を誘起する
可能性が残るし、又実際の品物においては絶縁物の存在
や、磁芯3と巻線1巻線2とノの間の工作上必要な間隙
等、若干の空隙が残り、わずかながら空芯を形成するこ
とを避けられない。
On the other hand, the magnetic flux of the high frequency component due to the interference wave that has entered the primary winding 1 flows into the magnetic core 3, but due to its high frequency, it is mainly lost due to eddy current loss, and the interference wave flows into the secondary winding. Induction is unlikely to occur. However, there is still a possibility that some magnetic flux of high-frequency components remains and intersects with the secondary winding, inducing interference wave components.In addition, in actual products, there is a possibility that there is an insulator, and that the magnetic core 3 and the winding Some gaps remain, such as the gaps required for machining between the first winding 2 and the winding 2, and it is unavoidable that a small air core will be formed.

そして空芯は高周波においても実効透磁率の低下しない
磁芯であるため、高周波磁束はこれを通つて2次コイル
になお若干の障害波を誘起しようとする。ところが本装
置においては良電導体薄板5が空芯も磁芯3も含むすべ
ての磁路を横断して存在し、1次巻線1からの磁束はす
べて必ずこれを貫通しなければ2次コイルには到達でき
ない。注目すべきことは交番磁束が一面の導体を貫通す
るのであるから必ず導体内に誘導起電力を生じ誘導電流
が流れて、その誘導電流により2次磁束を生じ、その磁
束の方向は初めに貫通した磁束と反対方向に生ずること
である。このため両磁束の作用が互に打消し合つて、そ
の大きさが等しければ、貫通した磁束の作用は完全にキ
ヤンセルされて2次巻線2に影響をあたえることができ
なくなる。又電源線路とそれに連る1次巻線から直接輻
射して2次巻線に侵入しようとする障害波も、この良電
導体薄板5を貫通する際同様の原理で良電導体板内に生
ずる反対方向の電流と磁束によりキヤンセルされて、互
の大きさが等しければ2次巻線に影響をあたえることが
出来なくなる。そして電界や磁界中の導電板に生ずる誘
導電流の大きさは、導電板の抵抗に反比例し周波数に比
例して増加するから、該装置の良電導体板5に生ずる誘
導電流は高周波成分になる程良好に流れ、それによる磁
束も多く生ずる。従つて該装置の1次巻線に流入した電
源周波成分と障害波成分のうち、障害波成分は、この良
電導体薄板5に生ずる誘導電流と磁束によつて良好にキ
ヤンセルされ、2次巻線2に誘導を及すことができなく
なる。しかし基本波成分はあまりキャンセルされないの
で、2次巻線2に誘導を生ずることができる。つまり該
装置においては、この例ではその1次巻線1に加えられ
た障害波を含むいわば汚染された電力の中から、障害波
成分を除いた電源周波成分のみを2次巻線2に再生し、
きれいな電力の供給を行うものである。なお該良電導体
薄板5は良電導性である程誘導電流が自由に大きく流れ
ることができて効果が高い。又厚くして板全体の抵抗を
より低くしても、高周波成分は表皮効果が強く、板の表
面しか流れないため、高周波の誘導電流はあまり増えな
いのに、基本波成分の誘導電流が徒らに増して、電源周
波の電力の伝達効率を悪くしたり発熱したりする上に、
第1図4の磁芯を横断する微細間隙を大きくして磁路の
磁気抵抗を大きくするから、できるだけ薄くする。良電
導体薄板として選んだ材料の展延が可能な限り薄くして
も、高周波成分の誘導電流はよく流れて効果が高い。又
これを空隙や半導体被膜や誘電率の低い絶縁物をはさん
で多重にすると一層効果が高くなる。又第1図4の微細
間隙と、良電導体薄板5を複数個所以上設ければ、更に
効果が高くなる。又該良電導体薄板5を接地することに
よつて、直流高電界に対する静電遮蔽の効果をも兼ねさ
せることができる。また用途により、特別に障害波の周
波数が低くて基本波周波数にかなり接近したものさえ含
まれる様な場合は、スーパーマロイ・パーマロイ・純鉄
・コバルト合金等の高透磁率材の薄板を該良電導体薄板
5に重ねて用いると、1次巻線1に侵入した比較的低い
周波数の障害波の磁束は直接これに吸収され、2次巻線
2に到達できなくなり、より高い効果で2次巻線2に誘
導を及ぼさなくなる。
Since the air core is a magnetic core whose effective magnetic permeability does not decrease even at high frequencies, the high frequency magnetic flux passes through it and tends to induce some disturbance waves in the secondary coil. However, in this device, a good conductor thin plate 5 exists across all the magnetic paths including the air core and the magnetic core 3, and all magnetic flux from the primary winding 1 must pass through this to reach the secondary coil. cannot be reached. What should be noted is that since the alternating magnetic flux passes through a conductor on one side, an induced electromotive force is generated within the conductor, and an induced current flows.The induced current generates secondary magnetic flux, and the direction of the magnetic flux is the same as the one that first penetrated. This occurs in the opposite direction to the magnetic flux generated. Therefore, if the effects of both magnetic fluxes cancel each other out and have the same magnitude, the effect of the penetrating magnetic flux is completely canceled and cannot affect the secondary winding 2. Also, interference waves that are directly radiated from the power supply line and the primary winding connected thereto and try to invade the secondary winding are also generated in the good conductor plate by the same principle when penetrating this good conductor thin plate 5. If they are canceled by the current and magnetic flux in opposite directions and have the same magnitude, they will no longer be able to affect the secondary winding. Since the magnitude of the induced current generated in a conductive plate in an electric or magnetic field is inversely proportional to the resistance of the conductive plate and increases in proportion to the frequency, the induced current generated in the good conductor plate 5 of the device has a high frequency component. It flows well and generates a lot of magnetic flux. Therefore, among the power frequency components and interference wave components that have flowed into the primary winding of the device, the interference wave components are effectively canceled by the induced current and magnetic flux generated in this good conductor thin plate 5, and the interference wave components are effectively canceled by the secondary winding. It becomes impossible to apply guidance to line 2. However, since the fundamental wave component is not canceled much, induction can be generated in the secondary winding 2. In other words, in this device, from the so-called contaminated power including the interference waves applied to the primary winding 1 in this example, only the power frequency component excluding the interference wave component is regenerated to the secondary winding 2. death,
It supplies clean electricity. It should be noted that the better the conductivity of the thin plate 5, the more the induced current can flow freely and the more effective it is. Also, even if the resistance of the entire board is lowered by making it thicker, the high frequency component has a strong skin effect and flows only on the surface of the board, so the induced current of the high frequency does not increase much, but the induced current of the fundamental wave component is wasted. In addition, it worsens the transmission efficiency of power frequency power and generates heat.
The magnetic resistance of the magnetic path is increased by increasing the minute gap that crosses the magnetic core in FIG. 1, so it is made as thin as possible. Even if the material selected for the good conductor thin plate is spread as thin as possible, the induced current of high frequency components will flow well and the effect will be high. Furthermore, the effect will be further enhanced if this is layered with a void, a semiconductor film, or an insulator with a low dielectric constant in between. Furthermore, if the fine gaps shown in FIG. 1 and the good conductor thin plates 5 are provided at a plurality of locations, the effect will be further enhanced. Furthermore, by grounding the good conductor thin plate 5, it can also serve as an electrostatic shielding effect against high DC electric fields. Depending on the application, if the frequency of the interference wave is particularly low and even includes frequencies quite close to the fundamental wave frequency, thin sheets of high permeability materials such as supermalloy, permalloy, pure iron, cobalt alloy, etc. are used. When used over the conductor thin plate 5, the magnetic flux of relatively low-frequency interference waves that have entered the primary winding 1 is directly absorbed by it, and cannot reach the secondary winding 2. No induction is exerted on the winding 2.

この場合該高透磁率薄板は基本波磁束によつて飽和させ
られている部分があるが、高周波磁束はこの基本波磁束
の画くメジャード畢化ループ上に小さく鋭く変化するイ
ンクレメンタル磁化ループを画き、この様な場合はなを
好く吸収され損失されるものである。またこの様な良電
導体薄板と高透磁率薄板との二重構造は、高透磁率材薄
板の表面に銀・銅等の良電導性金属のメツキによる薄膜
板層を形成したり、逆に良電導体薄板の表面にフエライ
ト微粉の皮膜を作つて構成してもよい。
In this case, the high-permeability thin plate has a portion saturated by the fundamental wave magnetic flux, but the high-frequency magnetic flux draws an incremental magnetization loop that changes small and sharply on the measured loop formed by the fundamental wave magnetic flux. , in such cases, much of the energy is absorbed and lost. In addition, such a dual structure of a thin plate of good conductor and a thin plate of high magnetic permeability can be achieved by forming a thin film layer by plating a good conductive metal such as silver or copper on the surface of a thin plate of high magnetic permeability material, or vice versa. It may also be constructed by forming a film of fine ferrite powder on the surface of a thin plate of good electrical conductor.

又良電導体薄板5は、例えば硅素鋼のカツトコア、打抜
き成層コア等の磁芯3の微細間隙4における端部の表面
に、銀・銅等の良電導性金属のメツキ層を形成すること
によつて薄膜板を構成し得る。また高周波の遮断効果を
あまり損じない範囲で該良電導体板に1条または多数条
の切れ目を入れ、基本波磁束が大きなループで流れるの
を防ぐと、電源周波数成分の伝達効率をより高くし、発
熱を防止するのに役立せることができる。
The good conductor thin plate 5 is formed by forming a plating layer of a highly conductive metal such as silver or copper on the surface of the end portion in the minute gap 4 of the magnetic core 3 such as a cut core of silicon steel or a punched laminated core. Thus, a thin film plate can be constructed. In addition, if one or more cuts are made in the good conductor plate within a range that does not significantly impair the high frequency blocking effect, the fundamental wave magnetic flux can be prevented from flowing in a large loop, thereby increasing the transmission efficiency of the power frequency component. , can help prevent fever.

前記の良電導体板5は、これを延長して包覆板6を形成
し、この包覆板6により図示のように巻線と磁芯を完全
に包覆する。
The aforementioned good conductor plate 5 is extended to form a cover plate 6, which completely covers the windings and the magnetic core as shown in the figure.

このようにすることによつて、空間から輻射によつて巻
線、磁芯に侵人する障害波を完全に遮断することができ
、さらに、導線路を経て巻線に伝播した障害波が漏洩輻
射することも完全に防止することができるのである。し
たがつて、1次側の巻線、磁芯を包覆板6で包覆しただ
けでも電源線路から1次巻線に侵入した障害波の外部へ
の漏洩輻射は包覆板6により完全に遮断されるので2次
側に漏洩侵入するようなことは全くなく、このため2次
側負荷が障害波ノイズにより誤動作しやすい高速デジタ
ル信号処理機器等である場合には極めて有効である。ま
た、さらに2次側の巻線、磁芯をも包覆板6により包覆
すれば一層効果的であるばかりでなく、2次側の負荷機
器が障害波の発生源であつても1次側への障害波の伝幡
を完全に遮断することができるものである。第2図は前
記第1図示の実施例の装置の1次巻線1と2次巻線2を
さらに個別に包覆板7,7により包覆した実施例を示し
たものであり、この実施例においては、雷等非常にレベ
ルの高い障害波や輻射の特に大なる周波数帯域の障害波
に対してより良い効果を得ることができる。
By doing this, it is possible to completely block interference waves that invade the windings and magnetic core due to radiation from the space, and furthermore, interference waves that have propagated to the windings via the conductor line can leak. Radiation can also be completely prevented. Therefore, even if the primary winding and magnetic core are simply covered with the covering plate 6, the leakage radiation to the outside of the interference waves that have entered the primary winding from the power line can be completely prevented by the covering plate 6. Since it is shut off, there is no leakage or intrusion into the secondary side, and this is extremely effective when the secondary side load is a high-speed digital signal processing device or the like that is prone to malfunction due to interference wave noise. Furthermore, if the windings and magnetic core on the secondary side are also covered by the covering plate 6, it will not only be more effective, but even if the load equipment on the secondary side is the source of interference waves, the primary It is possible to completely block the propagation of interference waves to the other side. FIG. 2 shows an embodiment in which the primary winding 1 and the secondary winding 2 of the apparatus of the embodiment shown in the first diagram are further individually covered by covering plates 7, 7. For example, better effects can be obtained against very high-level interference waves such as lightning, and interference waves in a particularly large frequency band of radiation.

また、前記のいずれの実施例においても、既述したよう
に、良電導体板を良導電性金属メツキ層により薄膜板に
形成して磁芯3の微細間隙4における磁芯端面にメツキ
層による薄膜板を設置すれば、前記微細間隙の過度の拡
大を防ぐことができ、かつ、前記包覆板6,7の形成も
容易となる。
In any of the above embodiments, as described above, the good conductor plate is formed into a thin film plate with a good conductive metal plating layer, and the plating layer is formed on the end face of the magnetic core in the minute gap 4 of the magnetic core 3. By installing a thin film plate, it is possible to prevent the fine gap from expanding excessively, and the formation of the covering plates 6 and 7 is also facilitated.

以上の通り本発明の装置は、それ1台で実用上問題とな
る周波数におけるすべての障害波を除去し得る巾の広い
有効周波数帯域を有し、L−C回路フィルタ一等が1け
たからせいぜい2けた半の有効帯域巾しか得られず、高
域用・中域用・低域用等に分かれ、1台で済まないのに
比し著しく優れている。又本発明の装置は、高周波交流
である障害波を除くのに接地なしで有効に働き、従つて
本発明の装置を高層建物の高階に設置した場合、接地線
(高層階では長くなり障害波の導入アンテナとなりやす
い)を必要とせず、また、接地線工事のできない建造物
においても設置使用することができ、携帯用としても簡
便に活用できる点でも著しく優れている。又1次側と2
次側の構造が対称であることと、結合する機器のインピ
ーダンスとの整合がなされなくてもそれ自体の効果に変
りが無いこととによつて、L−Cフイルタ一回路のよう
に障害波O通過の方向により除去の効果が異ることが無
い、即ち1次側から侵入する障害波を除去するばかりで
無く、2次側から侵入する場合にも1次側に対して同等
の効果があり、従つて障害波を発生する機器の電源側に
挿入すれば該障害波が商用電力線等に流れ込んで障害波
公害を引き起すことも防止できるし、被害機器であると
同時に発生源にもなる可能性のある機器の電源側に1台
を挿入すれば、導線路から侵入する障害波を除去できる
と同時に導線路に出て行く障害波をも除去できるから、
導線路を通じ他に被害をあたえることをも防止できる。
障害波は、規則正しいものも含まれる一方時と所を選ば
ず極めて雑多な形態でも発生し、同一製造者の同機種の
中でも発生に個性がある程で、偶発的にも発生するもの
であるから、これを防止する装置として上述の諸長所を
合わせ持つていることによる相剰的な実用上の有利さは
非常に大きなものである。
As described above, the device of the present invention has a wide effective frequency band that can eliminate all interference waves at frequencies that are a problem in practical use, and since the first class L-C circuit filter is one digit, It can only obtain an effective bandwidth of two and a half digits, and is divided into high-frequency, mid-range, low-frequency, etc., which is significantly superior to the case where only one device is needed. In addition, the device of the present invention works effectively without grounding to eliminate interference waves that are high-frequency alternating current, and therefore, when the device of the present invention is installed on the upper floors of a high-rise building, the grounding wire (the grounding wire becomes longer on the higher floors and the interference waves It is also extremely superior in that it does not require an introductory antenna (which can easily be used as an introductory antenna), can be installed and used even in buildings where grounding wire work is not possible, and can be easily used as a portable device. Also, the primary side and 2
Due to the symmetrical structure of the next side and the fact that there is no change in its own effect even if the impedance of the device to be coupled is not matched, it is possible to reduce interference waves like an L-C filter circuit. The removal effect does not differ depending on the direction of passage; in other words, it not only removes interference waves that enter from the primary side, but also has the same effect on the primary side when they enter from the secondary side. Therefore, by inserting it into the power supply side of a device that generates interference waves, it is possible to prevent the interference waves from flowing into commercial power lines, etc. and causing interference wave pollution, and it can also be a source of generation as well as a damaged device. By inserting one unit into the power supply side of a device that has a power source, it is possible to remove interference waves that enter from the conductor line, and at the same time remove interference waves that go out to the conductor line.
It is also possible to prevent damage to others through the conductor path.
Interference waves can occur regularly, but they can also occur at any time and place in extremely miscellaneous forms, and even among the same models made by the same manufacturer, there are individualities in their generation, and they can also occur accidentally. As a device for preventing this, the combined practical advantage of having the above-mentioned advantages is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例を示す。 1:1次巻線。 2:2次巻線。 3:磁芯。 4:微細間隙。 5:良電導薄板。 6,7:包覆板。 1 and 2 show an embodiment of the present invention. 1: Primary winding. 2: Secondary winding. 3: Magnetic core. 4: Fine gap. 5: Good conductive thin plate. 6, 7: Covering plate.

Claims (1)

【特許請求の範囲】 1 1次巻線、2次巻線、および両巻線を貫通する磁芯
を具備し、両巻線の中間位置における全磁芯部分を横断
する微細間隙の全面積に亘つて設置した良電導体薄板に
より前記両巻線の間の全磁路を横断させるとともに、前
記良電導体薄板を延長して形成した包覆板により前記巻
線、磁芯を包覆したことを特徴とする障害波遮断装置。 2 前記良電導体薄板を、前記微細間隙における磁芯の
端面上に薄膜板状に形成するとともに、前記包覆板を薄
膜板状に形成したことを特徴とする特許請求の範囲1に
記載の障害波遮断装置。
[Claims] 1. A primary winding, a secondary winding, and a magnetic core that passes through both windings, and the total area of a minute gap that crosses the entire magnetic core at an intermediate position between both windings. The entire magnetic path between the two windings is traversed by a thin thin plate of good current conductor that has been installed, and the winding and the magnetic core are covered by a covering plate formed by extending the thin thin plate of good current conductor. An interference wave blocking device featuring: 2. The thin plate of good conductor is formed in the shape of a thin film on the end face of the magnetic core in the minute gap, and the covering plate is formed in the shape of a thin film. Interference wave blocking device.
JP3455278A 1978-03-25 1978-03-25 Interference wave blocking device using magnetic path and good conductor plate Expired JPS596046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3455278A JPS596046B2 (en) 1978-03-25 1978-03-25 Interference wave blocking device using magnetic path and good conductor plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3455278A JPS596046B2 (en) 1978-03-25 1978-03-25 Interference wave blocking device using magnetic path and good conductor plate

Publications (2)

Publication Number Publication Date
JPS54127201A JPS54127201A (en) 1979-10-03
JPS596046B2 true JPS596046B2 (en) 1984-02-08

Family

ID=12417461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3455278A Expired JPS596046B2 (en) 1978-03-25 1978-03-25 Interference wave blocking device using magnetic path and good conductor plate

Country Status (1)

Country Link
JP (1) JPS596046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086436A (en) * 2001-08-13 2003-03-20 Bose Corp Transformer shield

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914699A (en) * 1982-07-17 1984-01-25 株式会社フジクラ Heat shrinkable plastic mold for magnetic shield
JPS6367229U (en) * 1986-10-21 1988-05-06
JPS63137919U (en) * 1987-03-03 1988-09-12

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086436A (en) * 2001-08-13 2003-03-20 Bose Corp Transformer shield
JP4503223B2 (en) * 2001-08-13 2010-07-14 ボーズ・コーポレーション Transformer shield

Also Published As

Publication number Publication date
JPS54127201A (en) 1979-10-03

Similar Documents

Publication Publication Date Title
Rybak et al. Automotive electromagnetic compatibility (EMC)
US5536978A (en) Net current control device
EP1284487B1 (en) Transformer shielding
CN105788746A (en) Electromagnetic interference prevention mixing cable
JPS596046B2 (en) Interference wave blocking device using magnetic path and good conductor plate
US3376523A (en) Transient-suppressing magnetic transmission line
JPH0946080A (en) Shielding of electronic equipment
JP2003348818A (en) Power conversion system, and filter
US5075663A (en) Noise-shielded transformer
JPS5941297B2 (en) power transformer
Ma et al. Analysis of magnetic-film-type noise suppressor integrated on transmission lines for on-chip crosstalk evaluation
JPH03119610A (en) Power source line for preventing noise obstruction
JP2003188778A (en) Filtering device for power line communication system
KR100621540B1 (en) Blocking filter used for power line communication and filtering system using the same
JPS6017883Y2 (en) noise cut transformer
Gabrielson et al. Suppression of powerline noise with isolation transformers
JPS6017882Y2 (en) noise cut transformer
RU2061975C1 (en) Noise-proof transformer
JP2012064777A (en) Noise filter, cable with noise filter, and printed wiring board with noise filter
Lucca Integral equations method for the analysis and design of ELF conductive and magnetic shields
JPH0364009A (en) Transformer prevented from producing noise
JP2601901Y2 (en) High frequency choke coil
KR930007971Y1 (en) Transformer
JP2008016953A (en) Filter circuit
JP2000500929A (en) Current compensated radio disturbance suppression choke with enhanced leakage inductance