JPS5959042A - Superconductive rotary electric machine - Google Patents

Superconductive rotary electric machine

Info

Publication number
JPS5959042A
JPS5959042A JP57168828A JP16882882A JPS5959042A JP S5959042 A JPS5959042 A JP S5959042A JP 57168828 A JP57168828 A JP 57168828A JP 16882882 A JP16882882 A JP 16882882A JP S5959042 A JPS5959042 A JP S5959042A
Authority
JP
Japan
Prior art keywords
superconducting
field coil
cooling liquid
rotor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57168828A
Other languages
Japanese (ja)
Other versions
JPH0463616B2 (en
Inventor
Toru Otaka
徹 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57168828A priority Critical patent/JPS5959042A/en
Publication of JPS5959042A publication Critical patent/JPS5959042A/en
Publication of JPH0463616B2 publication Critical patent/JPH0463616B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To rapidly evaporate cooling liquid in a rotor while holding the stable state by adding a DC current to a field coil to flow an AC current when the cooling liquid in the rotor having the field coil is forcibly evaporated. CONSTITUTION:A superconductive field coil 3 is connected to an external DC power source 9 through a slip ring brush 8 to flow a DC current as an exciting current from the DC power source 9. When the cooling liquid in the rotor is forcibly cooled, the power source 9 and an AC power source 10 are connected in series with each other by the switching operation of a changeover switch 11 to flow the exciting current through a superconductive field coil 3 from the power sources 9, 10.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超電導線を巻回してなる界磁コイルを備えた超
電導口°転電機に係月特に冷却液体を強制気化させる機
能を持った超電導回転電機に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a superconducting rotating machine having a function of forcibly vaporizing a cooling liquid, which is connected to a superconducting rotor having a field coil formed by winding a superconducting wire. Regarding electrical equipment.

〔発明の技術的背景〕[Technical background of the invention]

近年、高い磁束密度を得ることのできる超電導界磁コイ
ルを装着した超電導回転電機は、高効率化、小形化が可
能であることからその研究開発が進められてきている。
In recent years, research and development has been progressing on superconducting rotating electric machines equipped with superconducting field coils that can obtain high magnetic flux density because they can be made more efficient and more compact.

超電導界磁コイルは、超電導線を超電導化するだめ、液
体ヘリウム等極低温の冷却液体でマイナス23(1℃程
度に冷却しなければならない。このため、超電導界磁コ
イルを効率的に冷却するだめの冷却通路・$i¥造や、
常温部との間の熱絶縁の構造等が、超電導回転電機の開
発上重要な、+5インドである。
In order to make the superconducting wire superconducting, the superconducting field coil must be cooled to -23℃ (approximately 1℃) using an extremely low temperature cooling liquid such as liquid helium.For this reason, it is difficult to efficiently cool the superconducting field coil. Cooling passage, $i¥ structure,
The structure of thermal insulation between the room temperature part and the like is important for the development of superconducting rotating electric machines, which is +5 India.

超電導回転電機では、液体ヘリウム等の極低温冷却液体
は回転子の中心孔よシ供給きれ、遠心力により外周壁側
へ同心円状に片寄る。外周壁内面に超電導界磁コイルが
取付けられ、超電2η線は冷却液体に浸漬され、低温を
維持して超電導状態が保たれる。冷却液体は、超電導界
磁コイル等の熱によって気化され、冷却気体となって冷
却通路を通シ、)・ルクチーーブ等の周囲の熱を吸収し
て徐々に温度が高オシ中心孔よシ排出てれる。この冷却
通路の設計は、常温からマイナス230℃程度という大
きな熱勾配を考應して各部の熱応力を計算し、かつ超電
導界磁コイルを安定して超電導状態に保つため、最も外
部から熱が侵入しないように設計される。
In a superconducting rotating electric machine, cryogenic cooling liquid such as liquid helium is not supplied through the center hole of the rotor, and is concentrically shifted toward the outer peripheral wall due to centrifugal force. A superconducting field coil is attached to the inner surface of the outer peripheral wall, and the superconducting 2η wire is immersed in a cooling liquid to maintain a low temperature and maintain a superconducting state. The cooling liquid is vaporized by the heat of the superconducting field coils, etc., becomes a cooling gas, passes through the cooling passage, absorbs the heat from the surroundings of the tube, etc., and is gradually discharged through the central hole where the temperature is high. It will be done. The design of this cooling passage takes into account the large thermal gradient from room temperature to -230°C, calculates the thermal stress in each part, and maintains the superconducting field coil in a stable superconducting state. Designed to prevent intrusion.

〔背景肢術の問題点〕[Problems with background limb techniques]

ところで、上述のように設計・製イ1されだ超電導回転
電機を停止させる揚台、に當状態ではlhJ心円状に分
布している冷却液体は、回転数が低下してくると遠心力
が小さくなシ回転子の内部下方に溜ってくる。すると、
回転子上部ili温度が高く下部は極低温に保たれるこ
ととなり、回転子上部・下部で大きな熱歪みが発生し、
軸振動の増大等超電導回転電機として不安定な状態とな
る。このため、超電導回転電機を停止させる場合には、
定常回転状態で速やかに内部の冷却液体を気化させる必
要がある。然乍ら、一度極低温状態になった回転子は外
部からの熱侵入は殆んどなく、冷却液体の供給を停止し
ても短時間では内部の冷却液体を気化させることは不用
能である。
By the way, in the above-mentioned design and manufacture of the lifting platform for stopping the superconducting rotating electric machine, the cooling liquid distributed in a lhJ circular shape is affected by centrifugal force as the rotational speed decreases. It accumulates inside the small rotor. Then,
The temperature at the top of the rotor is high and the bottom is kept at an extremely low temperature, causing large thermal distortions at the top and bottom of the rotor.
The superconducting rotating electric machine becomes unstable due to increased shaft vibration. Therefore, when stopping a superconducting rotating electric machine,
It is necessary to quickly vaporize the internal cooling liquid under steady rotation. However, once the rotor reaches an extremely low temperature, there is almost no heat intrusion from the outside, and even if the supply of cooling liquid is stopped, it is not necessary to vaporize the internal cooling liquid in a short period of time. .

〔発明の目的〕[Purpose of the invention]

本発明は上記のような事情に鑑みて成されたもので、そ
の目的は超電導回転子を停止する場合等、安定した状態
を保ちつつ回転子内部の冷却液体を速やかに気化するこ
とが可能な超電導回転電機を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to quickly vaporize the cooling liquid inside the rotor while maintaining a stable state, such as when stopping the superconducting rotor. Our objective is to provide a superconducting rotating electric machine.

〔発明の概要〕[Summary of the invention]

上記目的を達成するだめに本発明では、超電導線を巻回
してなる昇磁コイルと、この昇磁コイルに直流電流を流
す直流電源とを有し、前記超電導界磁コイルを冷却液体
で冷却するように構成された超電導回転電機において、
前記界磁コイルを備える回転子内の冷却液体の強制気化
時に、前記界f妊コイルに前記直流電流に加えて交61
電流を流すだめの交流電源システムを備えたことを特徴
とする。
In order to achieve the above object, the present invention includes a magnetizing coil formed by winding a superconducting wire, and a DC power source that supplies a direct current to the magnetizing coil, and cooling the superconducting field coil with a cooling liquid. In a superconducting rotating electrical machine configured as follows,
During the forced vaporization of the cooling liquid in the rotor equipped with the field coil, an alternating current 61 is applied to the field coil in addition to the direct current.
It is characterized by being equipped with an AC power supply system that allows current to flow.

〔発明の実施例」 以下、本発明を図面に示す一実施例について説明する。[Embodiments of the invention] An embodiment of the present invention shown in the drawings will be described below.

第1図は、本発明による超電導回転電機の断面構成例を
示すものである。1゛ス1において、本回転電機は回転
子1と固定子2とから成シ、回転子1の内部には超電導
線を巻回してなる超電導界磁コイル3が巻回されている
。また、4は冷却液体を回転電機外部から回転子1内部
へ導くだめの冷却液体供給中心管である。そして、これ
Uてよシ導かれる回転子1内部の冷却液体を、遠心力に
より超電導界磁コイル3が巻装されている室の外壁ちに
同心円状に分布させて超電導界磁コイル3を冷却し、気
化した冷却液体を中心孔の排気管6を介して機外へ排出
する構成となっている。
FIG. 1 shows an example of the cross-sectional configuration of a superconducting rotating electrical machine according to the present invention. 1, the rotating electric machine is composed of a rotor 1 and a stator 2, and a superconducting field coil 3 made of a superconducting wire is wound inside the rotor 1. Further, reference numeral 4 designates a cooling liquid supply central pipe for guiding the cooling liquid from the outside of the rotating electric machine to the inside of the rotor 1. Then, the cooling liquid inside the rotor 1 guided by this U is distributed concentrically on the outer wall of the chamber in which the superconducting field coil 3 is wound by centrifugal force to cool the superconducting field coil 3. The structure is such that the vaporized cooling liquid is discharged to the outside of the machine via an exhaust pipe 6 in the center hole.

第2図は、本発明の超電導回転電機における超電導界磁
コイルの励磁電源システムを示すものである。図におい
て、3は上記回転子1側の超電導界磁コイル、7は固定
子2側の3相の固定子コイルである。この超電導界磁コ
イル3は、スリ:、ブリング・ブラシ8を介して外部の
直流電源9に接続づれ、直流電源9よシ励磁電流として
の直流電流を流すようにしている。また、)0は交流電
源であシ、上記回転子1内の冷却液体の強制冷却時に、
切換スイッチ1ノの切換動作により上記直流電源9回路
に直列に接続し、直流、交流両電源9,1oにて超電導
界磁コイル3に励磁電流を流すように構成している。
FIG. 2 shows an excitation power supply system for a superconducting field coil in a superconducting rotating electric machine of the present invention. In the figure, 3 is a superconducting field coil on the rotor 1 side, and 7 is a three-phase stator coil on the stator 2 side. This superconducting field coil 3 is connected to an external DC power source 9 via a pickpocket and a ring brush 8, so that a DC current as an excitation current flows through the DC power source 9. Also, )0 is an AC power supply, and when the cooling liquid in the rotor 1 is forcedly cooled,
The superconducting field coil 3 is configured to be connected in series with the DC power source 9 circuit by switching the changeover switch 1, and to flow an exciting current to the superconducting field coil 3 using both the DC and AC power sources 9 and 1o.

かかる構成において、超電導回転電機が定格回転数で運
転されている場合、冷却液体は第1図に示すように回転
子1内部の外屑壁に同心円状に分布し、超電導界磁コイ
ル3を超電導状態に保っている。超電導材質は極低温に
すると抵抗が略零となり、電流を流しても殆んど損失を
発生しない。しかし、流す電流がある値を越すと低温が
保たれていても、超電導から常電導に転移して損失を発
生する。また、周囲の磁界の大きさによっても制限され
、超電導材質が超電導を保つためには温度と電流と磁界
の3つが、材料および形状で決まるある値以下でなけれ
ばならない。才だ、超電導材質(・よ直流電流が流れる
時には超電導状態を保つことができるが、交流電流が流
れると電流がわずかな値でも常電導に転移する。超電導
回転電機に用いられる超電導線材は、超電導を安定化す
るため@iil母材に超電導線を埋込めたものを使用し
、例え常電導に転移しても電流が抵抗の小さい鋼材に流
れるようにして界磁コイルを採機している。
In this configuration, when the superconducting rotating electric machine is operated at the rated rotation speed, the cooling liquid is distributed concentrically on the outer waste wall inside the rotor 1 as shown in FIG. kept in good condition. When a superconducting material is brought to an extremely low temperature, its resistance becomes almost zero, and there is almost no loss even when current is passed through it. However, when the current flowing through the material exceeds a certain value, the material transitions from superconductivity to normal conductivity, causing loss even if the temperature is maintained. It is also limited by the magnitude of the surrounding magnetic field, and in order for a superconducting material to maintain its superconductivity, three things, temperature, current, and magnetic field, must be below a certain value determined by the material and shape. Superconducting materials (...) can maintain a superconducting state when direct current flows through them, but when alternating current flows, the current changes to normal conductivity even if the current is small. The superconducting wire used in superconducting rotating electrical machines is In order to stabilize the current, we use a superconducting wire embedded in the @iil base material, and even if it changes to normal conductivity, the field coil is made so that the current flows through the steel material with low resistance.

本超電導回転電機では、強制的に冷却液体を気化させる
ために励磁電源として、直流電源9に交流電源10を直
列接続可能な構成として艷る。交流電源10を直列に接
続して超電導界磁コイル3を励磁すると、超電導材質は
常電導に転移し励磁電流は銅母材に流れる。銅母材は、
常電導の超電導材質に比べると小さいが抵抗を有するた
め損失を発生し1、この銅母材から発生する熱により冷
却液体は気化して機外に排出される。この気化が余シに
も急激VC行なわれると、回転子1内部の圧力が増大し
て危険な状態となるが、励磁電流の大きさを制御するこ
とにより安定した状態で冷却液体の強制冷却を行なうこ
とができる。
In this superconducting rotating electric machine, an AC power source 10 is connected in series to a DC power source 9 as an excitation power source in order to forcibly vaporize the cooling liquid. When the AC power supply 10 is connected in series and the superconducting field coil 3 is excited, the superconducting material changes to normal conductivity and the exciting current flows through the copper base material. The copper base material is
Although it is small compared to normal conductive superconducting materials, it has a resistance, which causes loss1, and the cooling liquid is vaporized by the heat generated from this copper base material and discharged outside the machine. If this vaporization is carried out rapidly by VC, the pressure inside the rotor 1 will increase, creating a dangerous situation. However, by controlling the magnitude of the excitation current, the cooling liquid can be forcedly cooled in a stable state. can be done.

上述したように、例え直流電流であってもある値を越す
と超電導材質は常電導となるので、単純に直流励磁電流
で強制気化もでき得るが、この場合には急激外気化とな
り危険な状態となる。また、回転子1内部に強制気化用
のヒータ巻線を界磁コイル3と別個に配置することも考
えられるが、複雑な超電導回転電機の回転子1内に定常
運転時には全く使用しない部品を数句けることは信頼性
の低下に継がることになり、またヒータ巻線を外部電源
に接続するためのリード線が必要であり、このリード線
を伝わっての熱侵入があるため定常運転時の損失ともな
る。
As mentioned above, even with direct current, superconducting materials become normal conductors when they exceed a certain value, so forced vaporization can be achieved simply by using direct current excitation current, but in this case, vaporization will occur suddenly and create a dangerous situation. becomes. It is also possible to arrange the heater winding for forced vaporization inside the rotor 1 separately from the field coil 3, but the rotor 1 of a complex superconducting rotating electrical machine has several parts that are not used at all during steady operation. This will lead to a decrease in reliability, and a lead wire is required to connect the heater winding to an external power source, and heat may enter through this lead wire, making it difficult to operate during normal operation. It also becomes a loss.

本超電導回転電機では、この点外部の励磁電源の操作の
みによ多回転子1内部の冷却液体を安定した状態を保ち
つつ強制的に気化することが可能である。
In this superconducting rotating electric machine, it is possible to forcibly vaporize the cooling liquid inside the multi-rotor 1 while keeping it in a stable state only by operating the external excitation power source.

尚、冷却液体強制気化時の外部励磁電源としては、前述
した作用から直流電源との併用に依らず交流電源のみで
よいことは明らかである。
It is clear from the above-mentioned effect that only an AC power source may be used as the external excitation power source during forced vaporization of the cooling liquid, regardless of whether it is used in combination with a DC power source.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、回転子内の冷却液
体の強制気化時に界磁コイルに交流電流を流す交流電源
システムを備えるようにしたので、安定した状態で超電
導を常電導に転移でき、回転子内部の冷却液体を速やか
に気化することが可能な極めて信頼性の高い超電導回転
電機が提供できる。
As explained above, according to the present invention, since an AC power supply system is provided that supplies an AC current to the field coil during forced vaporization of the cooling liquid in the rotor, superconductivity can be transferred to normal conductivity in a stable state. , it is possible to provide an extremely reliable superconducting rotating electric machine that can quickly vaporize the cooling liquid inside the rotor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および?P、2図は本発明の一実施例を示す断面
図および回路図である。 1・・・回転子、3・・・超電導界磁コイル、9・・・
直流電源、10・・・交流電源、1ノ・・・切換スイッ
チ。
Figure 1 and ? Figures P and 2 are a sectional view and a circuit diagram showing an embodiment of the present invention. 1... Rotor, 3... Superconducting field coil, 9...
DC power supply, 10...AC power supply, 1no...changeover switch.

Claims (1)

【特許請求の範囲】[Claims] 超電導線を巻回してなる界磁コイルと、この界磁コイル
eて直1’itC電流を流す直流電源とを有し、前記超
電導界磁コイルを冷却液体で冷却するようK $i17
成された超電導回転電機において、前記界磁コイルを備
える回転子内の冷却液体の強制気化時に前記界磁コイル
に前記直流電流に加えて交流電流を流すだめの交流電源
システムを具備して成ることを特徴とする超電導回転電
機。
It has a field coil formed by winding a superconducting wire, and a DC power source that flows a current of 1'C directly through the field coil, and the superconducting field coil is cooled with a cooling liquid.
A superconducting rotating electrical machine made of the above-mentioned invention, comprising an AC power supply system for flowing an alternating current in addition to the direct current to the field coil during forced vaporization of a cooling liquid in a rotor equipped with the field coil. A superconducting rotating electrical machine featuring:
JP57168828A 1982-09-28 1982-09-28 Superconductive rotary electric machine Granted JPS5959042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168828A JPS5959042A (en) 1982-09-28 1982-09-28 Superconductive rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168828A JPS5959042A (en) 1982-09-28 1982-09-28 Superconductive rotary electric machine

Publications (2)

Publication Number Publication Date
JPS5959042A true JPS5959042A (en) 1984-04-04
JPH0463616B2 JPH0463616B2 (en) 1992-10-12

Family

ID=15875266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168828A Granted JPS5959042A (en) 1982-09-28 1982-09-28 Superconductive rotary electric machine

Country Status (1)

Country Link
JP (1) JPS5959042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667740A1 (en) * 1990-10-05 1992-04-10 Toshiba Kk ROTARY SUPERCONDUCTING APPARATUS.
US7207178B2 (en) 2000-11-21 2007-04-24 Siemens Aktiengesellschaft Superconducting device with a cooling-unit cold head thermally coupled to a rotating superconductive winding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129411A (en) * 1978-03-31 1979-10-06 Hitachi Ltd Rotor of superconductive revolving armature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129411A (en) * 1978-03-31 1979-10-06 Hitachi Ltd Rotor of superconductive revolving armature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667740A1 (en) * 1990-10-05 1992-04-10 Toshiba Kk ROTARY SUPERCONDUCTING APPARATUS.
US5331819A (en) * 1990-10-05 1994-07-26 Kabushiki Kaisha Toshiba Superconducting rotating apparatus
US7207178B2 (en) 2000-11-21 2007-04-24 Siemens Aktiengesellschaft Superconducting device with a cooling-unit cold head thermally coupled to a rotating superconductive winding

Also Published As

Publication number Publication date
JPH0463616B2 (en) 1992-10-12

Similar Documents

Publication Publication Date Title
JP4308308B2 (en) Superconducting electric motor
EP0470762B1 (en) Superconductive switch
US3657580A (en) Magnetically shielded electrical machine with super-conducting filed windings
US4176292A (en) Auxiliary field winding for a superconductive alternating current electrical machine and method of exciting same
US6700297B2 (en) Superconducting PM undiffused machines with stationary superconducting coils
JP5043955B2 (en) Superconducting synchronous motor
US4386289A (en) Device for cooling a superconducting field winding and a damper shield of the rotor of an electric machine
US4987674A (en) Method of making a dynamoelectric machine with superconducting magnet rotor
US6711422B2 (en) Thin film superconducting synchronous motor
JPS6217472B2 (en)
US4034245A (en) Synchronous electrical machine having a superconductive field winding
JPS5959042A (en) Superconductive rotary electric machine
JP3788702B2 (en) Superconducting rotating electrical machine rotor
JPH10144545A (en) Current limiting device
KR101091180B1 (en) Cooling structure of fully superconducting rotating machine
KR101344197B1 (en) Super conducting electric power generation system
JP2019030153A (en) Superconducting rotary machine
JPS61185063A (en) Superconductive generator
JPS5822940B2 (en) Kaiten Denki
Thullen et al. Mechanical Design Concept for 1000-MVA Superconducting Turboalternator
Kim et al. Development and test of an HTS induction generator
JPS6115541A (en) Stator of rotary electric machine
KR101334522B1 (en) Super conducting electric power generation system
JPH01126140A (en) Superconductive energy storage apparatus
Drlik et al. High Temperature, Wide-Speed Range, Oil-Cooled, 30 Kva Generating System