JP5043955B2 - Superconducting synchronous motor - Google Patents

Superconducting synchronous motor Download PDF

Info

Publication number
JP5043955B2
JP5043955B2 JP2009538352A JP2009538352A JP5043955B2 JP 5043955 B2 JP5043955 B2 JP 5043955B2 JP 2009538352 A JP2009538352 A JP 2009538352A JP 2009538352 A JP2009538352 A JP 2009538352A JP 5043955 B2 JP5043955 B2 JP 5043955B2
Authority
JP
Japan
Prior art keywords
superconducting
coil
field coil
inductor
refrigerant tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009538352A
Other languages
Japanese (ja)
Other versions
JP2010511366A (en
Inventor
ギル グォン,ヨン
ミン キム,ホ
ギュ ベック,スン
ヨン イ,オン
ドック イ,ジェ
ホ イ,サン
チュン キム,ヨン
シック ジョ,ヨン
シック リュ,ガン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Electrotechnology Research Institute KERI
Original Assignee
Korea Electrotechnology Research Institute KERI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Electrotechnology Research Institute KERI filed Critical Korea Electrotechnology Research Institute KERI
Publication of JP2010511366A publication Critical patent/JP2010511366A/en
Application granted granted Critical
Publication of JP5043955B2 publication Critical patent/JP5043955B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、回転子が磁性材でなった両側の二つの誘導子と界磁鉄心(field core)で構成されており、界磁巻線は運転中に回転しない超伝導巻線で構成され、界磁巻線が直流電源で励磁されて、二つの誘導子の中で一方はN極、他方はS極に励磁され、誘導子の周りに3相(3 phase)に励磁される電気子巻線(armature winding)が共心型に配置され、最外側を機械シールドで取り囲んでいる構造の超伝導同期電動機の超伝導界磁巻線に関するもので、コイルの構造、冷却などに関する技術である。   In the present invention, the rotor is composed of two inductors on both sides made of magnetic material and a field core, and the field winding is composed of a superconducting winding that does not rotate during operation. The field winding is excited by a DC power source, one of the two inductors is excited to the N pole, the other is excited to the S pole, and the coil is wound around the inductor in three phases (3 phase). This is related to the superconducting field winding of a superconducting synchronous motor having a structure in which lines (armature winding) are concentrically arranged and the outermost side is surrounded by a mechanical shield, and is related to the coil structure, cooling, and the like.

一般に、既存の相伝導電動機の場合は、回転子の重さの殆どを積層された珪素鋼板のような磁性材でなった鉄心が占め、界磁と電気子コイルは鉄心でなったスロット内に挿入されることでその構造がなされる。一方、超伝導電動機の場合は、強磁場を発生させる超伝導界磁巻線(Superconducting Field Winding)を利用することにより、器機内部の鉄心を使用しなくても既存の相伝導電動機の1/2〜1/3の大きさで同等な出力を発生させることができる。   In general, in the case of an existing phase conduction motor, an iron core made of a magnetic material such as a laminated silicon steel plate occupies most of the weight of the rotor, and the field and the electric coil are in a slot made of iron core. The structure is made by being inserted. On the other hand, in the case of a superconducting motor, by using a superconducting field winding that generates a strong magnetic field, a half of an existing phase conduction motor can be used without using an iron core inside the device. An equivalent output can be generated with a size of ~ 1/3.

このような鉄心を使用しない共心型の構造において、目標出力を得るために、回転する極低温容器(Cryostat)内に界磁コイルを配置して超伝導状態に作った後、強磁場が発生するようにする。したがって、超伝導コイルを冷却させるための装置が電気的なコイルとともに配置されてならなければならなく、既存の回転機技術では使用されない極低温分野の技術であって、現在主に使用されるBi2223酸化物系超伝導線で作られた界磁コイルの場合、30Kelvin前後に冷却されて使用されており、冷媒としては液体ネオンまたはヘリウムガスを主に使用している。   In such a concentric structure that does not use an iron core, a strong magnetic field is generated after a field coil is placed in a rotating cryogenic container (Cryostat) in a superconducting state in order to obtain a target output. To do. Therefore, a device for cooling the superconducting coil must be arranged together with the electric coil, and it is a technology in the cryogenic field that is not used in the existing rotating machine technology, and is currently mainly used Bi2223. In the case of a field coil made of an oxide-based superconducting wire, it is cooled and used around 30 Kelvin, and liquid neon or helium gas is mainly used as a refrigerant.

超伝導電動機/発電機の利点としては、超伝導界磁コイルで強磁場を発生させることができるので、既存の機器に比べて大きさ及び重さを大幅に減りながら効率を向上させることができるが、欠点としては、超伝導界磁コイルを運転温度である50Kelvin以下の極低温に冷却させなければならないものである。そして、MRIのような停止状態の超伝導マグネットの場合は、極低温冷却技術の発達によって、4.2Kelvinまで冷却しなければならない金属系超伝導線を使用した場合であっても技術的な困難があまりないが、超伝導回転機とともに回転する超伝導界磁コイルに冷媒を供給するためには、冷媒が液化する停止状態の極低温冷却機に対して冷媒が流出または流入する管路も必ず極低温に維持されるとともに回転部と非回転部を連結する部分が存在しなければならなく、主に磁性流体シーリング(Ferro−fluid seal)部を備えてこのような問題を解決している。しかし、このような連結部は、構造が複雑で、脆弱であり、結果として長期間の運転時、信頼性の問題を引き起こすことができ、冷却効率が落ちて超伝導電動機/発電機全体の効率向上に影響を及ぼすことになる。   The advantage of a superconducting motor / generator is that a superconducting field coil can generate a strong magnetic field, which can improve efficiency while significantly reducing the size and weight compared to existing equipment. However, the disadvantage is that the superconducting field coil must be cooled to a cryogenic temperature of 50 Kelvin or less, which is the operating temperature. In the case of a superconducting magnet in a stopped state such as MRI, even if a metal superconducting wire that must be cooled to 4.2 Kelvin is used due to the development of cryogenic cooling technology, it is technically difficult. However, in order to supply the refrigerant to the superconducting field coil that rotates together with the superconducting rotating machine, the pipes through which the refrigerant flows out or flows into the stopped cryogenic refrigerator where the refrigerant liquefies must be provided. There must be a portion that is kept at a very low temperature and connects the rotating part and the non-rotating part, and mainly includes a ferrofluid sealing part to solve such a problem. However, such a connecting part has a complicated structure and is fragile. As a result, it can cause a problem of reliability during long-term operation, and the cooling efficiency is lowered and the overall efficiency of the superconducting motor / generator is reduced. It will affect the improvement.

このように回転する極低温超伝導界磁コイルは一般的に直流磁場を発生するようになっているので、殆どが同期機または直流機の界磁コイルに使用され、交流磁場が発生する電気子巻線(Armature Winding)には既存の電動機と同様な相伝導銅コイルが使用される。   Since the cryogenic superconducting field coil rotating in this manner generally generates a DC magnetic field, most of them are used for a field coil of a synchronous machine or a DC machine, and an electric element generating an AC magnetic field is used. A phase conduction copper coil similar to that of an existing electric motor is used for the winding (armature winding).

したがって、現在開発されている大部分の超伝導電動機は、磁場遮蔽シールドが機械の最外層に円筒状に、既存の回転機で採用される強磁性体を積層して使用し、機械シールドのすぐ内側に3相の相伝導コイルが配置される。   Therefore, most of the superconducting motors currently being developed use a magnetic shielding shield in a cylindrical shape on the outermost layer of the machine and a layer of ferromagnetic material used in existing rotating machines. A three-phase phase conduction coil is disposed inside.

このように配置された電気子巻線と超伝導界磁コイルとの間には電気伝導に優れたアルミニウム銅などで製作される常温ダンパー(Warm Damper)が取り付けられ、既存の同期電動機が脱調した場合に誘導電流を流して再び同期速度に回復することを助ける。また、電気子巻線で発生する交流磁場が直流磁場を発生させる超伝導界磁コイルに影響を及ぼすことを防ぐ役目をし、極低温容器と超伝導界磁コイルとの間に配置される低温ダンパー(Cryogenic Damper)の場合は、回転子の外筒から流入する放射熱を遮蔽する役割も同時に果たすことになる。通常、安全性にすぐれた酸化物系超伝導線を使用する場合は常温ダンパーを使用する。   A room-temperature damper (Warm Damper) made of aluminum copper or the like excellent in electrical conduction is attached between the armature winding and the superconducting field coil arranged in this way, and the existing synchronous motor is stepped out. If it does, it will help to restore the synchronous speed again by flowing an induced current. It also serves to prevent the AC magnetic field generated by the electric winding from affecting the superconducting field coil that generates the DC magnetic field, and is a low temperature disposed between the cryogenic container and the superconducting field coil. In the case of a damper (Cryogenic Damper), it also plays a role of shielding radiant heat flowing from the outer cylinder of the rotor. Normally, when using oxide-based superconducting wires with excellent safety, use a room temperature damper.

現在開発されている超伝導電動機/発電機は回転界磁型であるので、回転する超伝導界磁コイルを冷却するために前述した構造が複雑であり、長期運転の際に信頼性の問題を引き起こすことができ、冷却効率を低下させる要因になるなど、超伝導回転機の極低温冷却システムの改善が要求されており、さらに、10MW前後の中小型機では、超伝導界磁コイルを共心にする場合、まだ高価である超伝導線の量があまり多く必要となり、究極には超伝導電動機/発電機の経済性の問題を引き起こす。   Since the superconducting motor / generator currently being developed is a rotating field type, the above-described structure is complicated to cool the rotating superconducting field coil, which causes reliability problems during long-term operation. It is necessary to improve the cryogenic cooling system of the superconducting rotating machine, which can cause the cooling efficiency to decrease, and in addition, the superconducting field coil is concentric for small and medium-sized machines around 10 MW. In this case, a large amount of superconducting wire that is still expensive is required, which ultimately causes economic problems of the superconducting motor / generator.

したがって、本発明は前記のような問題点を解決するためになされたもので、既存の極低温冷却システムの問題を解決するとともに、同一容量で要求される超伝導線の量を最小化することができる超伝導電動機/発電機に使用される超伝導界磁コイルを提供することをその目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and solves the problems of existing cryogenic cooling systems and minimizes the amount of superconducting wires required for the same capacity. It is an object of the present invention to provide a superconducting field coil used for a superconducting motor / generator capable of performing the above.

本発明は、前記課題を解決するために、直流磁場を発生する超伝導界磁コイルが、極低温冷媒である液体窒素または液体ネオンを収容し、極低温冷却機と直結されて伝導冷却方式で冷却させる冷媒槽の内に設置され、前記超伝導界磁コイルは超伝導線材でなる超伝導同期電動機を提供する。   In order to solve the above-mentioned problems, the present invention provides a superconducting field coil that generates a DC magnetic field that contains liquid nitrogen or liquid neon, which is a cryogenic refrigerant, and is directly connected to a cryogenic cooler in a conduction cooling system. The superconducting field coil is installed in a refrigerant tank to be cooled, and the superconducting field coil provides a superconducting synchronous motor made of superconducting wire.

そして、前記超伝導界磁コイルは、前記超伝導界磁コイル及び冷媒槽の両端にそれぞれ位置する回転子;前記回転子の外側に形成された鉄心型の固定子;及び前記固定子の内表面に前記誘導子を取り囲むように形成され、3相に励磁される共心型の電気子巻線;をさらに含むことができる。   The superconducting field coil includes a rotor located at both ends of the superconducting field coil and the refrigerant tank; an iron core type stator formed on the outside of the rotor; and an inner surface of the stator And a concentric electric coil wound around the inductor and excited in three phases.

そして、前記超伝導界磁コイルは、前記超伝導界磁コイル及び冷媒槽を取り囲むように形成され、前記回転子からの放射熱と前記電気子巻線で発生する交流磁場を遮断させるダンパーをさらに含むことができる。   The superconducting field coil is formed so as to surround the superconducting field coil and the refrigerant tank, and further includes a damper that cuts off the radiant heat from the rotor and the AC magnetic field generated by the electric coil. Can be included.

そして、前記冷媒槽の周りは放射熱浸入の遮断のための多重の断熱材で取り囲まれ、前記冷媒槽とダンパーの間には真空層が形成されることができる。   The refrigerant tank is surrounded by multiple heat insulating materials for blocking radiant heat intrusion, and a vacuum layer can be formed between the refrigerant tank and the damper.

一方、本発明は、超伝導線材が巻線されたシングルパンケーキコイルまたはダブルパンケーキコイルでなって直流電源を励磁させる超伝導界磁コイルと;前記パンケーキコイルの両端にそれぞれ位置し、磁性材でなった鉄心型の誘導子、前記超伝導界磁コイルの中心部に結合される界磁コア、及び前記誘導子及び界磁コアに同軸状に結合されて軸回転するシャフトでなる回転子と;前記回転子の外側に形成された鉄心型の固定子と;前記固定子の内表面に形成され、3相に励磁される共心型の電気子巻線と;前記超伝導界磁コイルを取り囲むように形成され、前記回転子からの放射熱と前記電気子巻線で発生する交流磁場を遮断させるダンパーと;を含んでなり、前記超伝導界磁コイルは、極低温冷媒である液体窒素または液体ネオンを収容し、極低温冷却機と直結されて伝導冷却方式で冷却させる冷媒槽の内に設置され、前記冷媒槽の周りは放射熱浸入の遮断のための多重の断熱材で取り囲まれ、前記冷媒槽と界磁コアの外周面の間、及び前記冷媒槽の外周面と前記ダンパーの間には真空層を形成される超伝導同期電動機を提供する。   On the other hand, the present invention provides a superconducting field coil which is a single pancake coil or a double pancake coil around which a superconducting wire is wound to excite a DC power source; A core-type inductor made of a material, a field core coupled to a central portion of the superconducting field coil, and a rotor composed of a shaft that is coaxially coupled to the inductor and the field core and rotates about its axis An iron core type stator formed on the outer side of the rotor; a concentric coil wound on the inner surface of the stator and excited in three phases; and the superconducting field coil And a damper that cuts off the radiant heat from the rotor and an AC magnetic field generated by the electric coil, and the superconducting field coil is a liquid that is a cryogenic refrigerant. Contains nitrogen or liquid neon Installed in a refrigerant tank that is directly connected to a cryogenic cooler and cooled by a conduction cooling method, and the periphery of the refrigerant tank is surrounded by multiple heat insulating materials for blocking radiant heat intrusion, Provided is a superconducting synchronous motor in which a vacuum layer is formed between the outer peripheral surface of the magnetic core and between the outer peripheral surface of the refrigerant tank and the damper.

そして、前記誘導子は、前記界磁コアと一体に形成され、前記界磁コアの一端部から直径方向に突出するように多数の突出極部が形成された第1誘導子;及び前記第1誘導子に対向して多数の突出極部が形成された第2誘導子でなる誘導子;を含んでなることができる。   The inductor is formed integrally with the field core, and a first inductor having a plurality of protruding pole portions formed so as to protrude in a diametrical direction from one end of the field core; and the first An inductor composed of a second inductor having a number of protruding pole portions formed opposite to the inductor.

ここで、前記超伝導界磁コイルは、前記第1誘導子と第2誘導子の突出極部の間に位置し、超伝導界磁コイルはBSCCOまたはYBCO超伝導線で作られ、多数のパンケーキコイルまたはダブルパンケーキコイルで構成される。   Here, the superconducting field coil is located between the protruding poles of the first inductor and the second inductor, and the superconducting field coil is made of BSCCO or YBCO superconducting wire, and has a large number of pans. It consists of a cake coil or a double pancake coil.

超伝導界磁コイルの冷却のために、前述したように、冷媒槽内に超伝導界磁コイルが設置され、液体窒素または液体ネオン等の冷媒を注入して冷却することもでき、本発明では、界磁コイルが停止状態にあるから、極低温冷却機を界磁コイルに直接連結して伝導冷却で界磁コイルを冷却することもできる。   In order to cool the superconducting field coil, as described above, the superconducting field coil is installed in the refrigerant tank, and can be cooled by injecting a refrigerant such as liquid nitrogen or liquid neon. Since the field coil is in a stopped state, the cryogenic cooler can be directly connected to the field coil to cool the field coil by conduction cooling.

また、前記ダンパーは前記冷媒槽の外周面の間に高真空で維持可能な強度を有し、非正常運転の際に発生する交流磁場を遮蔽することができるアルミニウムまたは銅合金材質であることができる。   The damper may be made of an aluminum or copper alloy material having a strength that can be maintained in a high vacuum between the outer peripheral surfaces of the refrigerant tank and capable of shielding an alternating magnetic field generated during an abnormal operation. it can.

ここで、前記界磁コイルの外周面と冷媒槽の内周面及び前記冷媒槽の外周面とダンパーの内周面との間には高真空層を設置して冷媒槽への熱浸入を遮断し、冷媒槽の周りに断熱材を多重に設置して放射熱の浸入を遮断するができる。   Here, a high vacuum layer is installed between the outer peripheral surface of the field coil and the inner peripheral surface of the refrigerant tank, and between the outer peripheral surface of the refrigerant tank and the inner peripheral surface of the damper, thereby blocking the heat intrusion into the refrigerant tank. In addition, it is possible to block the intrusion of radiant heat by installing multiple heat insulating materials around the refrigerant tank.

この際、前記ダンパーは高真空を維持するとともに非正常運転の際に発生する電気子コイルからの交流磁場の浸入を遮断する役目もしなければならないので、十分な強度を有するとともに電気伝導性に優れたアルミニウムまたは銅合金を使用することができる。   At this time, the damper must maintain a high vacuum and also serve to block the intrusion of the alternating magnetic field from the electric coil generated during abnormal operation, so that it has sufficient strength and excellent electrical conductivity. Aluminum or copper alloy can be used.

前記のような構成の本発明は、運転中に超伝導界磁コイルが回転しないので、回転界磁型超伝導同期電動機に比べ、超伝導界磁コイルの冷却のための冷却システムの設計が容易で単純になり、電動機の信頼性及び安全性を向上させ、全体システムの体積を減少させる効果がある。   Since the superconducting field coil does not rotate during operation, the present invention configured as described above makes it easier to design a cooling system for cooling the superconducting field coil than a rotating field superconducting synchronous motor. This improves the reliability and safety of the motor and reduces the volume of the entire system.

また、ダンパーが第1誘導子及び第2誘導子の突出極部の間に取り付けられるので、有効空隙が減少し、回転子が磁性材でなるので、起磁力損失が低減して超伝導線材量を減少させることができ、界磁コアによって発生した磁束の経路になるので、超伝導界磁コイルに及ぶ磁場の影響が低減し、よって超伝導界磁コイルで発生することができる磁界による超伝導クエンチ(quench)の影響を低減させることができる効果がある。   Further, since the damper is attached between the protruding pole portions of the first inductor and the second inductor, the effective gap is reduced and the rotor is made of a magnetic material, so that the magnetomotive force loss is reduced and the amount of superconducting wire is reduced. And the magnetic flux path generated by the field core reduces the influence of the magnetic field on the superconducting field coil, thus superconducting by the magnetic field that can be generated by the superconducting field coil. There is an effect that the influence of the quench can be reduced.

また、空隙磁束密度が交番しないので、電動機の体積は増加するが、冷却システムが単純になることによって全体システムの体積が減少し、誘導子数の変化によって電動機の多極化が可能であり、超伝導界磁コイルがシングルパンケーキコイルあるいはダブルパンケーキコイルの形態であるので、巻線作業が容易である効果がある。   Also, since the gap magnetic flux density is not alternating, the volume of the motor increases, but the overall system volume decreases due to the simplification of the cooling system, and the motor can be multipolarized by changing the number of inductors. Since the field coil is in the form of a single pancake coil or a double pancake coil, there is an effect that the winding work is easy.

以下、本発明の好適な実施例を添付図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明の好適な実施例として、回転子200の極数が6で、電気子巻線400の巻線方式が共心型である単極(Homopolar)型超伝導同期電動機について説明する。   As a preferred embodiment of the present invention, a homopolar superconducting synchronous motor in which the number of poles of the rotor 200 is 6 and the winding method of the armature winding 400 is a concentric type will be described.

一般に、単極型超伝導同期電動機は、電動機の極数と運転周波数に対する同期速度(synchronous speed)で回転する同期機(synchronous machine)であって、運転速度は負荷変動に影響を受けないものを言う。   Generally, a single-pole superconducting synchronous motor is a synchronous machine that rotates at a synchronous speed with respect to the number of poles of the motor and the operating frequency, and the operating speed is not affected by load fluctuations. To tell.

本発明による超伝導同期電動機の主要部の構造及び形状は図1に示されており、図2は本発明による超伝導同期電動機において超伝導界磁コイルと冷媒槽が設置され、極低温冷却機が超伝導界磁コイルに連結されたものを示すものである。   The structure and shape of the main part of the superconducting synchronous motor according to the present invention are shown in FIG. 1, and FIG. 2 is a superconducting synchronous motor according to the present invention in which a superconducting field coil and a refrigerant tank are installed. Is connected to a superconducting field coil.

図示のように、本発明による超伝導同期電動機は、大別して超伝導界磁コイル100、回転子200、固定子(stator)300、電気子巻線(armature winding)400及びダンパー500で構成される。   As shown, the superconducting synchronous motor according to the present invention is roughly composed of a superconducting field coil 100, a rotor 200, a stator 300, an armature winding 400, and a damper 500. .

前記超伝導界磁コイル100は、テープ形状をしている超伝導線材が巻線されたシングルパンケーキコイルまたはダブルパンケーキコイルの形態に巻線されてなり、所望の磁場及び強度を得るために、前記シングルパンケーキコイルまたはダブルパンケーキコイルを単数または複数積層して形成させる。   The superconducting field coil 100 is wound in the form of a single pancake coil or a double pancake coil around which a tape-shaped superconducting wire is wound in order to obtain a desired magnetic field and strength. The single pancake coil or the double pancake coil is formed by laminating one or more.

このようなシングルパンケーキコイルまたはダブルパンケーキコイルを積層して形成した前記超伝導界磁コイル100を界磁コア220と同軸状に結合させる。   The superconducting field coil 100 formed by stacking such single pancake coils or double pancake coils is coaxially coupled to the field core 220.

ここで、前記超伝導線材は、Bi−2223あるいは2世代線材であるYBCO高温超伝導線材を使用する。   Here, as the superconducting wire, Bi-2223 or a YBCO high temperature superconducting wire which is a second generation wire is used.

前記超伝導界磁コイル100は磁性材で形成された二つの誘導子210の間に位置することになり、一つの誘導子210と一体に形成された界磁コア220に同軸状に結合され、前記超伝導界磁コイル100に直流電源を印加することにより、超伝導界磁コイル100は直流電源で励磁され、二つの誘導子210の一方はN極、他方はS極になる。   The superconducting field coil 100 is positioned between two inductors 210 made of a magnetic material, and is coaxially coupled to a field core 220 formed integrally with the one inductor 210. By applying a DC power supply to the superconducting field coil 100, the superconducting field coil 100 is excited by the DC power supply, and one of the two inductors 210 becomes an N pole and the other becomes an S pole.

前記誘導子210は、界磁コア220と一体に形成された第1誘導子211と、前記第1誘導子211に対向するように形成された第2誘導子212とから構成され、前記第1誘導子211は、界磁コア220の一端部から直径方向に突出するように多数の突出極部213が形成され、前記第2誘導子212もこれに対応するように、多数の突出極部213が形成されることにより、回転子200の極数が六つになる。   The inductor 210 includes a first inductor 211 formed integrally with the field core 220 and a second inductor 212 formed so as to face the first inductor 211, and The inductor 211 is formed with a plurality of protruding pole portions 213 so as to protrude from one end of the field core 220 in the diametrical direction, and the second inductor 212 corresponds to this. Is formed, the number of poles of the rotor 200 becomes six.

本発明においては前記突出極部213が三つ形成されたものとして示されているが、これに限定されなく、当業界で通常の知識を持った者であれば、前記突出極部213の数を適宜選択して装着することができることはもちろんである。   In the present invention, the three protruding pole portions 213 are shown as being formed. However, the present invention is not limited to this. Of course, it is possible to select and mount as appropriate.

そして、前記回転子200の外側には鉄心型の固定子300が形成され、一側に装着された極低温冷却機600が前記超伝導界磁コイル100と熱的に互いに連結される。   An iron core type stator 300 is formed outside the rotor 200, and a cryogenic cooler 600 mounted on one side is thermally connected to the superconducting field coil 100.

そして、前記固定子300の内周面と回転子200との間に、より詳細には前記誘導子210の外周面との間には共心型に配置され、3相に励磁される電気子巻線400が形成される。   An electric element which is arranged concentrically between the inner peripheral surface of the stator 300 and the rotor 200, more specifically between the outer peripheral surface of the inductor 210 and is excited in three phases. Winding 400 is formed.

ここで、前記超伝導界磁コイル100は回転しない状態で、前記誘導子210と界磁コア220でなる回転子200の周りに共心型に配置され、3相に励磁される電気子巻線400によって回転磁界が発生することによって前記回転子200が回転することになるものである。   Here, the superconducting field coil 100 does not rotate, and is arranged concentrically around the rotor 200 including the inductor 210 and the field core 220 and is excited in three phases. When the rotating magnetic field is generated by 400, the rotor 200 is rotated.

そして、前記超伝導界磁コイル100は、運転温度である極低温を維持するために、冷媒槽110内に設置され、液体窒素または液体ネオンなどの冷媒のなかで運転温度によって適当な冷媒を選定して冷却する。   The superconducting field coil 100 is installed in the refrigerant tank 110 in order to maintain the cryogenic temperature, which is the operating temperature, and an appropriate refrigerant is selected from the refrigerants such as liquid nitrogen or liquid neon. And cool.

他の冷却方法として、G−M型(G−Mtype)またはパルスチューブ型(Pulse tube Type)などの極低温冷却機600を停止状態の超伝導界磁コイル100に直接連結して、伝導冷却方式で前記超伝導界磁コイル100を冷却することができる。   As another cooling method, a cryogenic cooler 600 such as a GM type (G-Mtype) or a pulse tube type (Pulse tube Type) is directly connected to the superconducting field coil 100 in a stopped state to conduct a cooling method. Thus, the superconducting field coil 100 can be cooled.

この場合、運転温度を多様に選定することができる利点があり、特に現在一番経済性にすぐれるものと予測されるYBCO 2世代線の場合、運転温度をよほど高めることができると判断されるので、50Kelvin前後の運転領域で有効な冷却方法として使用できる。   In this case, there is an advantage that the operation temperature can be selected in various ways. In particular, in the case of the YBCO 2 generation line, which is predicted to be most economical at present, it is judged that the operation temperature can be raised much. Therefore, it can be used as an effective cooling method in the operation region around 50 Kelvin.

前記冷媒槽110の外側には、図1(a)及び図2に示すように、外部からの熱浸入を遮断するために、10−5Torr程度の真空層120を形成し、前記冷媒槽110の表面には多重の断熱材、つまり放射力(Emittance)の極小なアルミニウム薄膜のようなものを取り囲むことで、放射熱を遮断する。 As shown in FIGS. 1A and 2, a vacuum layer 120 of about 10 −5 Torr is formed on the outer side of the refrigerant tank 110 in order to block heat penetration from the outside. The surface is surrounded by multiple heat insulating materials, that is, an aluminum thin film having a minimum radiant force (Emittance), thereby blocking the radiant heat.

最終に、前記冷媒槽110の外側に円筒形状のダンパー500を取り付け、前記真空層120は前記冷媒槽110と前記ダンパー500の内面との間に10−5Torr程度に形成されるものである。 Finally, a cylindrical damper 500 is attached to the outside of the refrigerant tank 110, and the vacuum layer 120 is formed at about 10 −5 Torr between the refrigerant tank 110 and the inner surface of the damper 500.

ここで、前記ダンパー500は、前記電気子巻線400で発生する交流磁場を遮断させる役目をする。   Here, the damper 500 serves to block the AC magnetic field generated in the armature winding 400.

したがって、広い運転速度範囲に対して高トルク及び静トルク出力特性の満足が容易な単極型超伝導同期電動機の特徴を回転界磁型超伝導電動機と比較して説明しようとする。   Therefore, the characteristics of a single-pole superconducting synchronous motor that easily satisfies high torque and static torque output characteristics over a wide operating speed range will be described in comparison with a rotating field superconducting motor.

前記のような構成の単極型超伝導同期電動機は、界磁コイルが固定されて、運転中に超伝導界磁コイルが回転しないので、前記超伝導界磁コイルを冷却させるための冷却装置の構成が容易で単純になる。   The single-pole superconducting synchronous motor configured as described above has a field coil fixed, and the superconducting field coil does not rotate during operation. Therefore, a cooling device for cooling the superconducting field coil Configuration is easy and simple.

そして、ダンパー500が第1及び第2誘導子211、212の間に設置されるので、有効空隙が減少し、回転子が磁性材でなるため、起磁力の損失が低減して超伝導線材量が減少し、界磁コア220は界磁コイルによって発生した磁束の経路になるので、超伝導界磁コイル100に及ぶ磁場の影響が低減する。   And since the damper 500 is installed between the 1st and 2nd inductors 211 and 212, since an effective space | gap reduces and a rotor consists of magnetic materials, the loss of a magnetomotive force reduces and superconducting wire amount And the field core 220 becomes a path for the magnetic flux generated by the field coil, so that the influence of the magnetic field on the superconducting field coil 100 is reduced.

したがって、界磁コイル100で発生し得る磁界による超伝導クエンチ(quench)の影響が低減し、空隙磁束密度が交番しなくて電動機体積は増加するが、冷却システムが単純になり、全体システムの体積は減少することになる。   Therefore, the influence of the superconducting quench due to the magnetic field that can be generated in the field coil 100 is reduced, and the motor volume is increased because the gap magnetic flux density is not alternated, but the cooling system is simplified, and the volume of the entire system is reduced. Will decrease.

また、回転子が磁性材を用いる鉄心型であるので、機構的安全性が増加し、誘導子数の変化によって電動機の多極化が可能であり、界磁巻線がシングルパンケーキあるいはダブルパンケーキ形態であるので、巻線作業を容易に実施することができることになるものである。   In addition, since the rotor is an iron core type using a magnetic material, the mechanical safety is increased, the motor can be multipolarized by changing the number of inductors, and the field winding is in the form of a single pancake or double pancake Therefore, the winding work can be easily performed.

本発明は、同一容量で要求される超伝導線の量を最小化する超伝導電動機/発電機に使用される超伝導界磁コイルに適用可能である。   The present invention is applicable to superconducting field coils used in superconducting motors / generators that minimize the amount of superconducting wire required with the same capacity.

本発明による超伝導同期電動機の構造を示す縦断面図及び横断面図である。It is the longitudinal cross-sectional view and cross-sectional view which show the structure of the superconducting synchronous motor by this invention. 本発明の主要部である超伝導界磁コイルと冷媒槽及びダンパーの構造を示す横断面図である。It is a cross-sectional view which shows the structure of the superconducting field coil which is the principal part of this invention, a refrigerant tank, and a damper.

符号の説明Explanation of symbols

100 超伝導界磁コイル
110 冷媒槽
120 真空層
200 回転子
210 誘導子
211 第1誘導子
212 第2誘導子
213 突出極部
220 界磁コア
230 シャフト
300 固定子
400 電気子巻線
500 ダンパー
600 極低温冷却機
DESCRIPTION OF SYMBOLS 100 Superconducting field coil 110 Refrigerant tank 120 Vacuum layer 200 Rotor 210 Inductor 211 1st inductor 212 2nd inductor 213 Projecting pole part 220 Field core 230 Shaft 300 Stator 400 Electron winding 500 Damper 600 Pole Low temperature cooler

Claims (5)

直流磁場を発生する超伝導界磁コイルが、極低温冷媒である液体窒素または液体ネオンを収容するとともに極低温冷却機と直結されて伝導冷却方式で冷却させる冷媒槽内に設置され、前記超伝導界磁コイルは、運転中に回転しない超伝導線材でなる、超伝導同期電動機であって
前記超伝導界磁コイル及び冷媒槽の両端にそれぞれ位置する回転子;
前記回転子外側に形成された鉄心型の固定子;及び
前記固定子の内表面に形成され、前記誘導子を取り囲むように形成され、3相に励磁される共心型の電気子巻線;を含み
前記超伝導界磁コイルは、
前記超伝導界磁コイル及び冷媒槽を取り囲むように形成され、前記回転子からの放射熱と前記電気子巻線で発生する交流磁場を遮断させるダンパーをさらに含み、
前記冷媒槽の周りは放射熱浸入の遮断のための多重の断熱材で取り囲まれ、前記冷媒槽とダンパーの間には真空層が形成されることを特徴とする、超伝導同期電動機
A superconducting field coil that generates a DC magnetic field is installed in a refrigerant tank that contains liquid nitrogen or liquid neon, which is a cryogenic refrigerant, and is directly connected to a cryogenic cooler and cooled by a conduction cooling method. field coil is made of a superconducting wire which does not rotate during operation, a superconducting synchronous motor,
Rotors respectively located at both ends of the superconducting field coil and the refrigerant tank;
An iron core type stator formed outside the rotor; and
A concentric electric coil formed on an inner surface of the stator, formed to surround the inductor, and excited in three phases;
The superconducting field coil is
A damper that is formed so as to surround the superconducting field coil and the refrigerant tank, and that cuts off a radiant heat from the rotor and an AC magnetic field generated by the electric element winding;
The superconducting synchronous motor is characterized in that the refrigerant tank is surrounded by a plurality of heat insulating materials for blocking radiation heat intrusion, and a vacuum layer is formed between the refrigerant tank and the damper .
運転中に回転しない超伝導線材が巻線されたシングルパンケーキコイルまたはダブルパンケーキコイルでなり、直流電源を励磁させる超伝導界磁コイルと;
前記超伝導界磁コイルの両端にそれぞれ位置し、磁性材でなった鉄心型の誘導子、前記超伝導界磁コイルの中心部に結合される界磁コア、及び前記誘導子及び界磁コアに同軸状に結合されて軸回転するシャフトでなる回転子と;
前記回転子の外側に形成された鉄心型の固定子と;
前記固定子の内表面に前記誘導子を取り囲むように形成され、3相に励磁される共心型の電気子巻線と;
前記超伝導界磁コイルを取り囲むように形成され、前記回転子からの放射熱と前記電気子巻線で発生する交流磁場を遮断させるダンパーと;を含んでなり、
前記超伝導界磁コイルは、極低温冷媒である液体窒素または液体ネオンを収容するとともに極低温冷却機と直結されて、伝導冷却方式で冷却させる冷媒槽内に設置され、
前記冷媒槽の周りは放射熱浸入の遮断のための多重の断熱材で取り囲まれ、前記冷媒槽とダンパーの間には真空層が形成されることを特徴とする、超伝導同期電動機。
A superconducting field coil comprising a single pancake coil or a double pancake coil wound with a superconducting wire that does not rotate during operation, and exciting a DC power source;
An iron core type inductor made of a magnetic material, positioned at both ends of the superconducting field coil, a field core coupled to a central portion of the superconducting field coil, and the inductor and the field core A rotor consisting of a shaft coupled coaxially and rotating about its axis;
An iron core type stator formed on the outside of the rotor;
A concentric electric coil formed on the inner surface of the stator so as to surround the inductor and excited in three phases;
A damper that is formed to surround the superconducting field coil, and that cuts off the radiant heat from the rotor and the alternating magnetic field generated by the electric winding,
The superconducting field coil accommodates liquid nitrogen or liquid neon which is a cryogenic refrigerant and is directly connected to a cryogenic cooler, and is installed in a refrigerant tank to be cooled by a conduction cooling method,
The superconducting synchronous motor is characterized in that the refrigerant tank is surrounded by a plurality of heat insulating materials for blocking radiation heat intrusion, and a vacuum layer is formed between the refrigerant tank and the damper.
前記誘導子は、
前記界磁コアと一体に形成され、前記界磁コアの一端部から直径方向に突出するように多数の突出極部が形成された第1誘導子;及び
前記第1誘導子と対向し、多数の突出極部が形成された第2誘導子;を含んでなることを特徴とする、請求項に記載の超伝導同期電動機。
The inductor is
A first inductor formed integrally with the field core and formed with a plurality of projecting poles so as to project in a diametrical direction from one end of the field core; The superconducting synchronous motor according to claim 2 , further comprising: a second inductor having a protruding pole portion formed thereon.
前記超伝導界磁コイルは、
前記第1誘導子と第2誘導子の突出極部の間に形成されることを特徴とする、請求項に記載の超伝導同期電動機。
The superconducting field coil is
The superconducting synchronous motor according to claim 3 , wherein the superconducting synchronous motor is formed between projecting pole portions of the first inductor and the second inductor.
前記ダンパーは、
前記冷媒槽の外側に高真空で維持可能な強度を有し、非正常運転の際に発生する交流磁場を遮蔽することができるアルミニウムまたは銅合金材質であることを特徴とする、請求項に記載の超伝導同期電動機。
The damper is
3. The aluminum or copper alloy material according to claim 2 , which has a strength that can be maintained at a high vacuum outside the refrigerant tank and can shield an alternating magnetic field generated during an abnormal operation. The superconducting synchronous motor described.
JP2009538352A 2007-10-02 2008-10-01 Superconducting synchronous motor Expired - Fee Related JP5043955B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020070099338A KR100888030B1 (en) 2007-10-02 2007-10-02 Superconducting synchronous machine
KR10-2007-0099338 2007-10-02
PCT/KR2008/005759 WO2009045038A2 (en) 2007-10-02 2008-10-01 Superconducting synchronous machine

Publications (2)

Publication Number Publication Date
JP2010511366A JP2010511366A (en) 2010-04-08
JP5043955B2 true JP5043955B2 (en) 2012-10-10

Family

ID=40526823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009538352A Expired - Fee Related JP5043955B2 (en) 2007-10-02 2008-10-01 Superconducting synchronous motor

Country Status (4)

Country Link
JP (1) JP5043955B2 (en)
KR (1) KR100888030B1 (en)
DE (1) DE112008000036T5 (en)
WO (1) WO2009045038A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101091180B1 (en) 2010-06-21 2011-12-09 한국전기연구원 Cooling structure of fully superconducting rotating machine
DE102011056008A1 (en) 2011-12-02 2013-06-06 Oswald Elektromotoren Gmbh Electric machine
KR101344164B1 (en) 2012-09-28 2013-12-20 두산엔진주식회사 Super conducting elecreic power generation system and method for controlling thereof
KR20140050169A (en) * 2012-10-18 2014-04-29 제주대학교 산학협력단 Wind generator with superconducting generator and cooler of none coupling type
KR101372822B1 (en) * 2012-12-24 2014-03-12 주식회사 포스코 Apparatus for cooling superconductivity wind-turbine and method for cooling thereof
KR101392949B1 (en) * 2013-12-02 2014-05-09 강경숙 Electric motor with mixed generator
CN110868042B (en) * 2019-11-29 2021-01-15 北京航空航天大学 Scheme of high-rotating-speed high-power-density airborne full-superconducting generator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555043A (en) * 1978-06-23 1980-01-14 Katsuhiro Matsui Double-current motor
JPH03155363A (en) * 1989-11-09 1991-07-03 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Rotor for superconducting rotary electric machine and manufacture thereof
KR100465023B1 (en) * 2002-07-23 2005-01-13 한국전기연구원 Internal Condensation Type Cooling System for High Temperature Superconducting Rotor
JP4501449B2 (en) 2004-02-17 2010-07-14 住友電気工業株式会社 Cooling device for superconducting motor
KR100571679B1 (en) * 2004-04-19 2006-04-17 한국전기연구원 Superconducting motor coupled with fuel cell
DE102005004858A1 (en) * 2005-02-02 2006-08-10 Siemens Ag Machine setup with thermosyphon cooling of its superconducting rotor winding

Also Published As

Publication number Publication date
DE112008000036T5 (en) 2009-09-10
KR100888030B1 (en) 2009-03-09
WO2009045038A3 (en) 2009-05-22
WO2009045038A2 (en) 2009-04-09
JP2010511366A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
US8204562B2 (en) Superconducting synchronous machine
US6489701B1 (en) Superconducting rotating machines
US7489060B2 (en) Superconducting rotating machines with stationary field coils
JP5043955B2 (en) Superconducting synchronous motor
JP4308308B2 (en) Superconducting electric motor
US7492073B2 (en) Superconducting rotating machines with stationary field coils
JP5448296B2 (en) Tubular electrical machine
CN109716636B (en) Rotor with coil arrangement and winding carrier
KR101766684B1 (en) High temperature superconducting rotating machine with a contactless rotary excitation device
JP4247273B2 (en) Machine with rotor and superconducting rotor winding
JP2013506400A (en) Stator assembly
JP4593963B2 (en) Superconducting multipolar electrical machine
US11502590B2 (en) Radial-gap type superconducting synchronous machine, magnetizing apparatus, and magnetizing method
ES2656821B1 (en) Synchronous generator for wind turbines
CN101951128A (en) High-temperature superconducting motor
EP3734811A1 (en) Magnetic shield for a superconducting generator
JP2007089345A (en) Cooling structure of superconducting motor
US20210344256A1 (en) Rotor and machine having superconducting permanent magnets
EP1593194A1 (en) A rotor assembly
Kirtley et al. MIT-EEI program on large superconducting machines
WO2019004847A1 (en) Flywheel energy storage system
Kwon et al. Development of a 100 hp synchronous motor with HTS field coils
US7291958B2 (en) Rotating back iron for synchronous motors/generators
KR20100044393A (en) Superconducting motor having cooling device for armature coil
JP6462490B2 (en) Superconducting motor and superconducting generator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120217

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120321

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120328

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120418

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees